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1. 60s Rocket Person

The 1960s saw the genesis of modern X-ray astronomy, fostered by a series of re-
markable high-altitude rocket experiments carrying little more than glorified Geiger
counters. The Giacconi, Gursky, & Speybroeck (1968) review makes for a good read
and a useful reference1 on these early days. Here we’ll try to reproduce the basic
results of those experiments.

(a) First, construct a quantum efficiency curve (from 1.0 to 100 keV) of a toy Geiger
counter consisting of a tube carrying pure Argon gas enclosed by a Beryllium
window. As in some of Giacconi’s first experiments2, assume an 0.002 inch Be
window and 7 milligram cm−2 of Argon. You might consider checking out the
NIST page for mass-attenuation tables3.

(b) Next, plot the optical depth to X-rays (from 1.0 to 100 keV) for a source emitting
at d = 1 kpc from Earth and detected by a set of Geiger counters at an altitude
80 km. Assume an ISM particle density of pure hydrogen with n = 1 cm−3 and
that the atmosphere to that depth has a mass 10 milligram cm−2 (as reported
in Gursky et al. 1963). At what distance d would the X-ray emitting source
need to be be for interstellar absorption to be comparable to the atmospheric
absorption for X-rays with energy of 1 keV?

(c) Assume that the X-ray emitting source is a neutron star radiating at Eddington
luminosity with a blackbody spectrum at kT = 1 keV. Assume also that the
effective collection area of the Geiger counters on your rocket is A = 500 cm2.
How many photons per second will you accumulate for that source at d = 1
kpc? (Assume you have no other noise or contaminating sources. Also assume
that if a photon is stopped in the argon gas it will be recorded by the detector
electronics). Compare your answer to typical count rate in the original Giaconni
papers.

2. Dont Trap me, Bro

Here we’ll explore the importance of the “trapping radius” for spherical accretion.
Consider a spherical flow of ionized hydrogen onto a BH with mass M that dissipates
(and radiates) an energy per gram of ≈ GM/r as it falls from r to r/2 (this is called
“maximally dissipative”). Even though some of the energy must clearly be escaping
as radiation, presume that the matter is still falling inward at roughly the free-fall

1“Observational Techniques in X-Ray Astronomy” Annual Review of Astronomy and Astrophysics, Vol.
6: 373-416.

2“Two Source of Cosmic X-rays in Scorpius and Satittarius” Giacconi et al., Nature, 1964, 4962, 981.
3http://www.nist.gov/pml/data/xraycoef/index.cfm



speed (we’ll ignore the transsonic radius and assume this is true for all r) all the way
to the BH.

(a) Calculate the Thomson optical depth from an inner radius r to ∞ as a function
of Ṁ . Simplify your expression using the Schwartzchild radius rS = 2GM/c2

and ṀEdd = LEdd/c
2.

(b) At what accretion rate (call this Ṁc) does this optical depth become unity at
r = rS? How does Ṁc compare to ṀEdd?

(c) For Ṁ � Ṁc, the inner parts of the flow become optically thick and the flow
can drag back in the photons that are trying to diffuse outward through it. The
black hole can then swallow these photons, so this may be a way to escape the
Eddington limit on mass accretion. Show that the critical trapping radius (rt)
is equal to (Ṁ/Ṁc)rS . Inside this radius, the accretion flow drags the diffusing
photons back into the black hole.

(d) What is the approximate luminosity, Lesc, that escapes to infinity in the regime
Ṁ � Ṁc How does the efficient, η, depend on the ratio Ṁ/Ṁc in this regime?
Here you may assume that all radiation created inside the trapping radius gets
dragged back into the black hole, and you do not need to invoke a specific
emission mechanism for the radiation.

3. Change in orbital period due to mass transfer.

(a) In a close binary system where orbital angular momentum is conserved, show
that the change in the orbital period produced by mass transfer is given by

1

P

dP

dt
= 3Ṁ1

M1 −M2

M1M2

(b) U Ceph (Algol type binary) has an orbital period of 2.49 days that has increased
by about 20 s in the past 100 yr. The masses of the two stars are M1 = 2.9M�
and M2 = 1.4M�. Assuming that this change is due to the transfer of mass
between the two stars, estimate the mass transfer rate. Which of the stars is
gaining mass?

4. Adapted from problem 4.1 (FKR2) A degenerate star has a mass-radius relation of
the form

R2 = Km
−1/3
2

where K is a constant and m2 is measured in solar masses.

(a) Show that if the star fills the Roche lobe in a close binary with q < 1 we have
the period: P ∝ m−1

2 (JSB notes: recall that q in FKR is the inverse of what
we did in class and in Melia...that is, q is = m2/m1).

(b) From the relation we showed in class ρ̄ ≈ 115P−2
hr gm cm−3, show that the ap-

proximate mass-radius relation of a low-mass main sequence star (M2 ≈ R2/R�)
leads to a period-mass relation of M2 ≈ 0.11Phr.



(c) If K = 2×109 cm, show that this relation and the main-sequence relation above
intersect at about P = 0.6 hr, M2 = 0.07. This shows that there is a minimum
orbital period for CVs, since the secondary cannot be smaller than its radius
when fully degenerate.

5. Adapted from problem 4.2 (FKR2) For the degenerate secondary in the previous
problem, show that

−Ṁ2

M2
= − J̇/J

2/3− q

6. Adapted from problem 4.5 (FKR2) Consider the Roche potential ΦR in Cartesian
coordinates with the orbital plane at z = 0 and the x-axis (y = 0) defined by the line
connecting the two stars. Assume the Lagrange point is at (x1, 0, 0).

(a) Show that, to order of magnitude, that the potential at a nearby point (x1,∆y, 0)
is

∆ΦR ≈ ω2(∆y)2

where ω is the binary frequency 2π/P .

(b) Use an energy argument to show that matter escapes from a lobe-filling star in
a patch of radius:

H = ∆y ≈ cs/ω

around L1 and hence that the instantaneous mass transfer rate is:

−Ṁ2 ∼
1

4π
ρL1c

3
sP

2

where cs and ρL1 are the stellar sound speed and density near L1.

7. Adapted from problem 4.6 (FKR2) For the case of a lower main-sequence star filling
the Roche lobe (P = few hours, surface temperatures of 3000–4000 K) use the result
from above to those that

−Ṁ2 ∼ 10−8(ρL1/ρph)M�yr−1

where ρph ∼ 10−6 gm cm−3 is the photospheric density.


