15381: Artificial Intelligence
Behrang Mohit

@ information:

suznetworks-== {

i

..y
[Iearmng om="

egpmgpg Solving Problems
With Search

E_,,
q
:
S

InteII

inference ““An pianing

Some slides, graphics and ideas are borrowed or adapted from courses offered by Stuart Russell, Hwee Tou Ng

Rebecca Hwa and Milos Hauskrecht.

Example Problem: Romania Trip

[} Oradea

JICraiova

Problem formulation

A problem is defined by four items:

e Initial state

e Actions or successor function
* Goal test

e Path cost

Problem formulation

A problem is defined by four items:

* Initial state

e Actions or successor function
* Goal test

e Path cost

A solution is a sequence of actions leading from the initial state to a goal state

Example: The 8-puzzle

7 2 4 1 2

5 6 3 4 5

8 3 1 6 7 8
e States? Start State Goal State

e Actions?
e @Goal test?
e Path cost?

Tree search algorithms

e Use atree analogy for the movement from the initial state to
the goal.

e Basicidea:

* offline, simulated exploration of state space by generating
successors of already-explored states (a.k.a.~expanding
states)

Tree search example

Tree search example

Tree search example

C Arad 3 Oradea

Search strategies

e A search strategy is defined by picking the order of node
expansion
e Strategies are evaluated along the following dimensions:
e Completeness:
* Time complexity:
* Space complexity:
e Optimality:

10

Evaluating a search strategy

e Strategies are evaluated along the following dimensions:
e Completeness: does it always find a solution if one exists?
e Time complexity: time that it takes to find a solution.
e Space complexity: maximum number of nodes in memory
e Optimality: does it always find a least-cost solution?

* Time and space complexity are measured in terms of
* b: maximum branching factor of the search tree
e d: depth of the least-cost solution

* m: maximum depth of the state space (may be o)
11

Uninformed search strategies

* Uninformed search strategies use only the information available
in the problem definition
* Breadth-first search
* Uniform-cost search
* Depth-first search
e Depth-limited search
* |terative deepening search

12

Breadth-first search (BFS)

e Expand shallowest unexpanded node

 Implementation:
* Frontieris a FIFO queue, i.e., new successors go at end

>@

13

Breadth-first search (BFS)

e Expand shallowest unexpanded node

e Implementation:
* Frontier is a FIFO queue, i.e., new successors go at end

(A)
>(8) (D

14

Breadth-first search (BFS)

e Expand shallowest unexpanded node

 Implementation:
* Frontieris a FIFO queue, i.e., new successors go at end

15

Breadth-first search (BFS)

e Expand shallowest unexpanded node

e Implementation:
* Frontier is a FIFO queue, i.e., new successors go at end

(A)
(B ©
@ & O O

16

Properties of breadth-first search

Complete?
Time?

e Space?
Optimal?

17

Properties of breadth-first search

e Complete? Yes (if b is finite)
e Time?

18

Time and space complexity of BFS

depth number of nodes

d /‘\)Gﬁb j 11:2
ol d N
/m.... .o ‘/zn. a1 :ﬂ E::l)

Expanded nodes: O (b d) Total nodes: QO (b da+1)

o
[] (9]
L

w

o
W
I

o)

[N

19

Properties of breadth-first search

e Complete? Yes (if b is finite)
o Time? 1+b+b?+b3+... +b? + b(b?-1) = O(b%*1)
e Space? O(b?*1) (keeps every node in memory)

mm

.11 m sec. 107 kB
12 10712 13 days 1 peta bytes
16 10716 350 years 10 exta bytes

20

10

Properties of breadth-first search

Complete? Yes (if b is finite)
Time? 1+b+b?+b3+... +b? + b(b?-1) = O(bd+1)
Space? O(b%*1) (keeps every node in memory)

e Space is the bigger problem (more than time)

Optimal?

21

Properties of breadth-first search

Complete? Yes (if b is finite)
Time? 1+b+b2+b3+... +b? + b(b?-1) = O(b+1)
Space? O(b%*1) (keeps every node in memory)

e Space is the bigger problem (more than time)

Optimal? Yes (if cost = 1 per step)

22

11

Uniform-cost search

e Expand least-cost unexpanded node
* Lowest path cost: g(n)

e Implementation:
* frontier = queue ordered by path cost (priority queue)

e Equivalent to breadth-first if step costs are all equal
e Does not care about the number of steps

23

Applying Uniform Cost Search

Sibiu 99 Fagaras

Bucharest

24

12

Properties of the uniform cost search

* Note: Uniform cost search is guided by path costs rather than
depth
* b and d are not really helpful

e Complete?
* Space?
e Optimal?

25

Properties of the uniform cost search

e Complete? Yes, if step cost > €

26

13

Properties of the uniform cost search

* Complete? Yes, if step cost > €

e Time?
e Space?

27

Properties of the uniform cost search

Complete? Yes, if step cost > €

Time? O(bceiling(C*/€)) where C* is the cost of the optimal solution
* Can be much larger than b

Sgace? O(bce/'/ing(C*/e))

Optimal?

28

14

Properties of the uniform cost search

* Complete? Yes, if step cost > €

e Time? O(bceilina(C*/€)) where C* is the cost of the optimal solution
° S|:_Jace? O(bceiling(C*/e))

e Optimal? Yes — nodes expanded in increasing order of g(n)

29

Depth-first search (DFS)

e Expand deepest unexpanded node

* Implementation:

e frontier = LIFO queue, i.e., put b@
successors at front

30

15

Depth-first search (DFS)

e Expand deepest unexpanded node

* Implementation:

e frontier = LIFO queue, i.e., put
successors at front

31

Depth-first search (DFS)

e Expand deepest unexpanded node

* Implementation:

e frontier = LIFO queue, i.e., put
successors at front

32

16

Depth-first search (DFS)

e Expand deepest unexpanded node

* Implementation:

e frontier = LIFO queue, i.e., put
successors at front

33

Depth-first search (DFS)

e Expand deepest unexpanded node

* Implementation:

e frontier = LIFO queue, i.e., put
successors at front

34

17

Depth-first search (DFS)

e Expand deepest unexpanded node

* Implementation:

e frontier = LIFO queue, i.e., put
successors at front

35

Depth-first search (DFS)

e Expand deepest unexpanded node

* Implementation:

e frontier = LIFO queue, i.e., put
successors at front

36

18

Depth-first search (DFS)

e Expand deepest unexpanded node

* Implementation:

37

e frontier = LIFO queue, i.e., put
successors at front

Depth-first search (DFS)

e Expand deepest unexpanded node

* Implementation:

38

e frontier = LIFO queue, i.e., put
successors at front >

19

Depth-first search (DFS)

e Expand deepest unexpanded node

* Implementation:

e frontier = LIFO queue, i.e., put
successors at front

39

Depth-first search (DFS)

e Expand deepest unexpanded node

* Implementation:

e frontier = LIFO queue, i.e., put
successors at front

40

20

Depth-first search (DFS)

e Expand deepest unexpanded node

* Implementation:

e frontier = LIFO queue, i.e., put
successors at front

41

BFS and DFS in a shot

S

o —¢
"4 N\

= o

42

21

Properties of depth-first search

e Complete? No: fails in infinite-depth spaces, spaces
with loops

* Modify to avoid repeated states along path
- complete in finite spaces

43

Time Complexity of DFS

depth number of nodes

1 21=2
m d '& 2 22=4
Gos0ssen o

o

d
* o0 L] L]
... e o0 . . m

Complexity: O(b™)

[}

m_zmd

44

22

Space complexity of DFS

depth number of nodes kept

. b 0 0
® 1 1=(b-1)
m Y R (b l)
2 1=
® 0
® 3 1 =(b-1)
. ‘ m 2=b

Complexity: O (bm)
45

Properties of depth-first search

e Time? O(b™)

e Space? O(bm), i.e., linear space!

e Optimal? No > (3) G

46

23

Depth-limited search

* Problem: DFS fails in infinite state spaces (unbounded tree)

* Depth limited search= depth-first search with depth limit
* i.e., nodes at depth / have no successors
e Knowledge of the problem can provide leads about the
maximum depth
e 20 cities = =197
e Map 21=9

47

Iterative deepening search

e Combines some benefits of BFS and DFS
« Complete if branching factor is finite

* Linear space: O(bd)
e Optimal

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or fail-
ure
inputs: problem, a problem

for depth<— 0 to oco do
result<— DEPTH-LIMITED-SEARCH(problem, depth)
if result £ cutoff then return result

48

24

49

Iterative deepening search / =0

imit=0 2O) [)

50

Iterative deepening search / =1

H S N c/®\© o/.\.
G G B

25

Iterative deepening search / =2

Limit =2 @

A. NG
i, O S, G, G,

51

Iterative deepening search /=3

xf\
R

52

26

53

Iterative deepening search

Number of nodes generated in a depth-limited search to depth
d with branching factor b:

Nps=b0+b"+b%+... +b%2+pd7 + pd

Number of nodes generated in an iterative deepening search to
depth d with branching factor b:

Nips = (d+1)b0 + d bAL + (d-1)bA2 + ... + 3b2 +2b%1 + 1bd

54

Iterative deepening search

Nps=b0+bT+b2+... +b%2+bd" + pd
N g = (d+1)b0 + d bAL + (d-1)bA2 + ... + 302 +2b¢L + 1

Forb=10,d =5,
* Nps=1+10+100+ 1,000+ 10,000 +100,000=111,111
* N =6+50+400 + 3,000 + 20,000 + 100,000 = 123,456

e Overhead =(123,456-111,111)/111,111 =11%

27

55

Properties of iterative deepening search
Complete? Yes

Time? (d+1)b° + d b? + (d-1)b? + ... + b? = O(b“)
Space? O(bd)
Optimal? Yes, if step cost =1

Iterative deepening is the proffered search strategy when the
search space is large and depth of the solution is unknown

56

Summary of algorithms

Criterion Breadth- Uniform- Depth- Depth- Iterative
First Cost First Limited Deepening
Complete? Yes Yes No No Yes
Time O(b4+1) O(blC™/<ly ob™) oY O(b%)
Space oltan O(blC™ /<y O(bm) O(bl) O(bd)
Optimal? Yes Yes No No Yes

28

Bidirectional search

ﬁ; 49
e &

* Motivation: b A d/2 is much less than b ~ d

e Search from start and goal
e Check if the frontiers of the two

57

Bidirectional search

e Can be useful when the goal state is clear
e Difficult for abstract problems like 8-queens

58

29

59

Next time: informed search

Informed search
* The search strategy has some more information about the problem
e Estimation of the direct distance of a city to Bucharest

Coming up:
* Homework 1
e Quiz1l

30

