

15-381: Artificial Intelligence

Behrang Mohit and Davide Fossati

Dynamic Bayesian Networks

Some figures and tables are from Russell and Norvig

Temporal models representation

- Time slices
- X_t : set of state variables at time t (unobservable)
- E_t : set of evidence variables at time t (observable)
- $P(X_t | X_{t-1})$: transition probability
 - Markov assumption: the transition depends only on the immediately previous state
- P(E_t | X_t) : sensor model
 - Sensor Markov assumption: the reading of evidence variables (e.g., sensors) depends only on the current state

Inference in temporal models

- Filtering
 - Compute the posterior distribution over the most recent state, given all evidence to date:
 P(X_t | E₁, E₂, ..., E_t)
- Prediction
 - Compute the posterion distribution over the future state, given all evidence to date:

 $P(X_{t+1} | E_1, E_2, ..., E_t)$

Inference in temporal models

- Smoothing
 - Compute the posterior distribution over a past state, given all evidence to date: P(X_{t-1} | E1, E2, ..., E_t)
- Most likely explanation
 - Find the sequence of states that most likely generated a given sequence of observations: argmax_[×1,x2,...,Xt](P(X₁, X₂, ..., X_t | E₁, E₂, ..., E_t))

2

Example: Rain and umbrella **Dynamic Bayesian Networks** • P(X₀) : prior distribution over the state variables $P(R_1)$ R_0 $P(R_0)$ 0.7 t 0.7 0.3 • $P(X_{t+1} | X_t)$: transition model Rain $Rain_1$ • $P(E_t | X_t)$: sensor model $P(U_1)$ R_1 0.9 t 0.2 $Umbrella_1$ 6 5 Inference in DBNs Example: Battery-operated robot • Exact inference: unrolling BMeter₁ • We can use the **variable elimination** method Battery 1 Battery₀ Problem: exponential growth of probability tables $R_0 \mid P(R_1)$ $P(R_3)$ $P(R_4)$ $P(R_0)$ $\frac{P(R_0)}{0.7}$ 0.7 0.7 0.7 0.7 t f 0.7 Rain Rain Rain Rain Rain Rain Umbrella $Umbrella_1$ Umbrella₂ (Umbrella₃

 $R_1 \mid P(U_1$

 $0.9 \\ 0.2$

 $P(U_1)$

0.9

 R_2

t

 $P(U_2)$

0.9

 R_3

 $P(U_3)$

0.9

 $P(U_4)$

0.9

Approximate inference Particle filtering • **Particle filtering**: simulate the behavior of the • Get N samples from the prior distribution $P(X_0)$ network using N samples For each subsequent time step: - **Propagate** each sample using the transition model • Complexity linear in N and linear in the number $P(X_{t+1} | X_t)$ of time steps - Weight each sample by the likelihood it assigns to new evidence $P(E_{t+1}, X_{t+1})$ Higher N = more accurate estimation - Resample the population proportionally to the weights, then remove the weights 9 10 Particle filtering $Rain_{t+1}$ $Rain_{t+1}$ $Rain_{t+1}$ Rain, 0000 true 0000 . . . 0000 false 0000 (a) Propagate (c) Resample (b) Weight