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Dynamic Bayesian
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Some figures and tables are from Russell and Norvig

Temporal models representation

Time slices
X, : set of state variables at time t (unobservable)

E, : set of evidence variables at time t (observable)

P(X | X.,) : transition probability

- Markov assumption: the transition depends only on the
immediately previous state

P(E; | X)) : sensor model

- Sensor Markov assumption: the reading of evidence variables
(e.g., sensors) depends only on the current state

Inference in temporal models

* Filtering

- Compute the posterior distribution over the most
recent state, given all evidence to date:
P(X.| Ei, E,, ..., E)

* Prediction

- Compute the posterion distribution over the future
state, given all evidence to date:
P(Xi1 | Ei, By, ...y, EY)

Inference in temporal models

* Smoothing

- Compute the posterior distribution over a past state,
given all evidence to date:
P(X., | E1, E2, ..., E)

» Most likely explanation

- Find the sequence of states that most likely
generated a given sequence of observations:
2 X | En By .y EY)
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Dynamic Bayesian Networks

e P(X,) : prior distribution over the state variables
e P(X,; | X) : transition model

e P(E; | X)) : sensor model

Example: Rain and umbrella
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Example: Battery-operated robot
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Inference in DBNSs

» Exact inference: unrolling
 We can use the variable elimination method

» Problem: exponential growth of probability
tables
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Approximate inference

 Particle filtering: simulate the behavior of the
network using N samples

» Complexity linear in N and linear in the number
of time steps

* Higher N = more accurate estimation

Particle filtering

« Get N samples from the prior distribution P(X,)

» For each subsequent time step:

- Propagate each sample using the transition model
P(Xus [ X))

- Weight each sample by the likelihood it assigns to
new evidence P(E,,;, X,)

- Resample the population proportionally to the
weights, then remove the weights
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Particle filtering
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