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● Agents keep a track of a belief state, 
and generating a plan to act under every 
possible situation.

Previous Implementations



Previous Implementations

● Problems:
○ Logical Agent must consider every 

logically possible explanation
○ A correct contingency plan can grow 

arbitrarily large
○ Sometimes, no plan to achieve goal but 

agent has to act.



● Agents may need to handle 
uncertainty, whether due to partial 
observability, nondeterminism, or a 
combination of both.

Previous Implementations



What is Uncertainty?

● How early should I leave my house to reach my meeting?
● Should I take this road? is it going to be crowded?
● Should I play this card? What if he has a better card?
● I don’t know what to do… but I have to do something.



What is Uncertainty?

● Consider an automated Taxi-Driver, that has a plan A90 to leave the 
house 90 minutes before the departure and driving at a reasonable 
speed.

● Even if the airport is 5km away from the house, the agent cannot 
guarantee that it will reach on time.

● The plan’s success cannot be inferred, leading to a qualification 
problem: no complete solution within logic.



Uncertain Reasoning
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● Toothache ⇒ Cavity
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Uncertain Reasoning

Example of Uncertain Reasoning:

● Toothache ⇒ Cavity (Fails)
● Toothache ⇒ Cavity V GumProblem V Abscess (Fails)
● Cavity ⇒ Toothache (Fails)

Reasons of Failure:
● Laziness: too many antecedents or consequents.
● Theoretical Ignorance: no complete theory for domain.
● Practical Ignorance: not all tests can or have been run.



Uncertain Reasoning

Example of Uncertain Reasoning:

● Toothache ⇒ Cavity (Fails)
● Toothache ⇒ Cavity V GumProblem V Abscess (Fails)
● Cavity ⇒ Toothache (Fails)

There is no logical consequence between Toothache in either 
direction. Same applies for ‘judgemental domains’ including: Business, 
Law, Design, Auto Repair etc…



Acting Under Uncertainty

The Agent’s knowledge provides only a Degree of Belief.

The best way to deal with degrees of belief: Probability Theory.
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Acting Under Uncertainty

The ontological commitments used previously are the same, but the 
epistemological commitments are different:

- A Logical Agent believes a sentence is either True or False

- A Probabilistic Agent has a degree of belief between 0 and 1
(0 = False, 1 = True)



Acting Under Uncertainty

“Probability provides a way of summarizing the 
uncertainty that comes from our laziness and ignorance, 
thereby solving the qualification problem.”
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One confusing point: At the time of diagnosis, there is no uncertainty in 
the real world. The patient either has cavity (1), or does not (0).

Probability statements are made with respect to a knowledge state, 
not to the real world it self.
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Acting Under Uncertainty

Probability statements are made with respect to a knowledge state, 
not to the real world it self.

Example:

➔ Let’s say statistics say that 80% of patients with toothache have a 
cavity (Probability is 0.8)
◆ A: The probability that the patient has a cavity, given that she has a 

toothache, is 0.8.
◆ B: The probability that the patient has a cavity, given that she has a 

toothache and a history of gum disease, is 0.4.
◆ C: The probability that the patient has a cavity, given all we know, is 0



Uncertainty and Rational Decisions
● Consider A90, and suppose it gives us a 97% chance of catching 

our flight. 
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Uncertainty and Rational Decisions
● Consider A90, and suppose it gives us a 97% chance of catching 

our flight. 
○ Rational? Not necessarily. 

● Consider A1440  (Leaving 24 hours before the flight)
○ Not necessarily a good choice because very long wait and 

possibly very bad diet of airport food.
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between possible outcomes of the plans.
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Uncertainty and Rational Decisions
● To make such choices, an agent must first have preferences, 

between possible outcomes of the plans.
● We use the utility theory to represent and reason with “preference”

Decision Theory = Probability Theory + Utility Theory



■ Preference: options, choices, what is more preferred.
■ Outcome: Completely specified state, including such factors as 

whether the agent arrives on time and the length of the wait at the 
airport. 

■ Utility Theory: “The quality of being useful” - theory says that 
every state has a degree of usefulness, or utility, to an agent and 
that the agent will prefer states with higher utility.

Uncertainty and Rational Decisions



Uncertainty and Rational Decisions

Maximum Expected Utility (MEU): an agent is rational iff it chooses 
an action that yields the highest expected utility, averaged over all the 
possible outcomes of the action.



Basic Probability Notation



Basic Probability Notation
● Sample Space: in probability theory, the set of all possible worlds. 

(all possible outcomes) 
● Notation: 

○ Ω - Sample Space
○ ω - An element in the sample space
○ ϕ - An event or a proposition

■ An event (ϕ) is a subset of sample space (Ω): ϕ ⊆ Ω
■ Example: Two Dice adding up to 11 is an event

● ϕ = { (5,6) , (6,5) }



Probability Model
● A probability model associates a numerical probability P(ω) with 

each possible world:
○ Every possible world must have a probability between 0 and 1
○ Total probability of the set of all possible worlds is 1

● When we say P(H) in a coin flip we refer to the probability of heads 
in a coin flip.

● P(H) = 0.5



Mutually Exclusive
● Mutually Exclusive: No two events have the same outcome

○ Mutually Exclusive:  A ∩ B = Ø



Exhaustive
● Exhaustive: at least one of the events must occur

○ Exhaustive: A ∪ B = Ω



Unconditional Probability
● Unconditional Probability is when you don’t consider any other 

information 
● Example:

○ Two dice: Blue, Red
○ You only consider the red die



Conditional Probability
● In Conditional Probability we have evidence (extra information) 

already revealed for example when rolling two dice if we know that 
the first die is a 6 then we know that the sum of the two die cannot 
be 5

● Conditional Probability: P(A | B) = P(A∩B) / P(B)
● Product Rule: P(A ∧ B) = P(A | B) P(B) 



Conditional Probability Example

● Events
○ A = {6}
○ B = {5}
○ P(A ∩ B) = 0
○ P(B) = ⅙
○ P(A | B) = P(A ∩ B) / P(B)
○ P(A | B) = 0 / ⅙
○ P(A | B) = 0



Random Variables
● Variables in Probability are called Random Variables and begin 

with an uppercase letter. 
● Every Random Variable has a domain - a set of possible values 

that it can take. Domains usually start with a lowercase letter.
● For example, lets say we have the random variable Total that 

calculates the sum of two dice:
○ Then the domain is the set {2, …, 12} and Total(2) = 1/36

● A boolean random variable has the domain {True, False}



Probability Distribution
● A probability distribution is when we want to talk about all the 

possible values of a random variable. Usually indicated by a bold P.
● A Discrete Random Variable is a random variable that takes a 

finite number of distinct values
● P(Faircoin) = <0.5, 0.5>



Probability Density Function
● A Continuous Random Variable is a random variable that takes 

an infinite number of distinct values.
● Example:

○ P(NoonTemp = x) = Uniform[18C, 26C](x)  expresses that the 
temperature at noon is distributed uniformly between 18 and 26 
degrees. 

○ This is called a probability density function. 



Joint Distribution

● The probabilities of all combinations of the values of the 
random variables

● Full joint probability distribution 



Basic Axioms of Probability



Inclusion-exclusion principle
● P(A ∪ B) = P(A)+P(B) - P(A ∩ B)
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● Consider the previous example:
○ P(Toothache,Catch,Cavity,Weather)

How are they related?
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Independence

● Consider the previous example:
○ P(Toothache,Catch,Cavity,Weather)

How are they related?

P(toothache,catch,cavity,cloudy) = 

P(cloudy|toothache,catch,cavity) P(toothache,catch,cavity)

→ P(cloudy)



Independence

Cavity

Toothache   Catch

Weather



Independence

Cavity
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Cavity

Toothache   Catch

Weather



Independence

P(a | b) = P(a)
 or 

P(b | a)=P(b) 
or 

P(a /\ b) = P(a) P(b)



Baye’s Rule 

● Product Rule
○ P(A ∧ B) = P(A | B) P(B)
○ P(A ∧ B) = P(B | A) P(A)

● Baye’s Rule
○ P(B | A) = P(A | B) P(B) / P(A) 



Applying Bayes Rule



Conditional Independence

● Conditional Independence of two variable X and Y, given a third 
variable Z, is
○ P(X, Y | Z) = P(X | Z) P(Y | Z)
○ P(X | Y, Z) = P(X | Z) and P(Y | X, Z) = P(Y | Z)

● P(Toothache, Catch, Cavity)
○ = P(Toothache, Catch | Cavity) P(Cavity)
○ = P(Toothache | Cavity) P(Catch | Cavity) P(Cavity)



Inference Using Full Joint Distribution
● Full Joint Probability Distribution: The joint distribution for all of the 

random variables. 
○ Example: we have 3 random variables: Cavity, Toothache, and 

Weather. The table that shows all the probabilities of P(Cavity, 
Toothache, Weather) is the full joint probability distribution. 



Inference Using Full Joint Distribution
● Marginal Probability:

○ The sum of all probabilities for each possible value of the other 
variables of Z

○ Z is all the variables except Y.



Inference Using Full Joint Distribution
● Examples (from figure 13.3):



Inference Using Full Joint Distribution
● Normalization: is the process of scaling (by alpha scalar) some 

probabilities to add up to 1.

○ Notice that: P(toothache)=0.108+0.012+0.016+0.064=0.2



Wumpus World Revisited



Probabilistic Reasoning
Building network models to reason under uncertainty 

according to the laws of probability theory



Probabilistic Reasoning

● Chapter 14: Introduces a systematic way to represent 
independence and conditional independence relationships explicitly 
in the form of Bayesian Networks.
○ 14.1: Syntax of Bayesian Networks
○ 14.2: Semantics of Bayesian Networks



Representing Knowledge in Uncertain Domains

● Revisiting some definitions:
○ Independence: 2 events, A & B, are independents if they are 

unrelated to each other. That is, knowing one is true does not 
affect the other. (e.g. (A=Raining, B=Hungry))
■ i.e. P(A|B)=P(A) or P(B|A)=P(B)

○ Conditional Independence: A & B are independents, given C is 
true. (i.e. P(A|B,C)=P(A|C) or P(B|A,C)=P(B|C))

○ Joint probability distribution: The probabilities of all 
combinations of the values of all Random Variables (events). (i.
e. P(X1,....,Xn))



● Network = Nodes + links (connections or directed arrows)
● Bayesian Network: 

○ Represents any full joint probability distribution
○ Directed graph in which each node is is annotated with 

quantitative probability information.

Representing Knowledge in Uncertain Domains



Representing Knowledge in Uncertain Domains

● Specification of Bayesian Network:
○ Node = Random Variable
○ Directed Arrows

■ Directed Acyclic Graph (DAG)
■ X → Y

● X is a parent of Y
● X has a direct influence on Y
● X (cause) causes Y(effect)

○ Each node Xi has a conditional probability distribution P(Xi| 
Parents(Xi))



Representing Knowledge in Uncertain Domains

● Two types of Bayesian Networks:
○ Simple: Contains nodes and links (Helpful to view conditional 

relationships)
○ Typical: Simple Bayesian Network + conditional probability 

table (Good to represent joint probability distribution)



Representing Knowledge in Uncertain Domains



Now consider the following example, which is just a little more complex. You 
have a new burglar alarm installed at home. it is fairly reliable at detecting a 
burglary, but also responds on occasion to minor earthquakes. (This example is 
due to Judea Pearl, a resident of Los Angeles—hence the acute interest in 
earthquakes.) You also have two neighbors, John and Mary, who have 
promised to call you at work when they hear the alarm. John nearly always 
calls when he hears the alarm, but sometimes confuses the telephone ringing 
with the alarm and calls then, too. Mary, on the other hand, likes rather loud 
music and often misses the alarm altogether. Given the evidence of who has or 
has not called, we would like to estimate the probability of a burglary.

Burglary Example
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Burglary Example



Semantics of Bayesian Network

● Two ways to view a Bayesian Network:
○ A representation of the Joint Probability Distribution

■ Helpful in understanding how to construct networks
○ Encoding a collection of Conditional Independence statements 

■ Helpful in designing inference procedures
● The generic entry in the joint distribution is P(X1=x1, .., Xn=xn)

○ Example: The probability the Alarm has sounded; neither a 
burglary nor an earthquake has occurred; both J & M call.



Rewriting the entries in the joint distribution in terms of conditional 
probability (using product rule):

Constructing Bayesian Networks 



Constructing Bayesian Networks 
1. Nodes: First determine the set of variables that are required to model the 
domain. Now order them, {Xi, Xn}. Any order will work, but the resulting network 
will be more compact if the variables are ordered such that causes precede 
effects.

2. Links: For i = 1 to n do;

● Choose, from {X1,... , X i -1} , a minimal set of parents for Xi, such that 
Equation (14.3) is satisfied. 

● For each parent insert a link from the parent to Xi _ 
● CPTs: Write down the conditional probability table, P(Xi | Parents (Xi)). 



Constructing Bayesian Networks 

● Conditional Independence relations in Bayesian Networks:
○ A node is conditionally independent of its other predecessors, 

given its parents
○ Each variable is conditionally independent of its non-

descendants, given its parents 
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