Practice sheet #4: The Periodic Table of Elements, Ions and the Ionic Bond.

 Periodic table and periodic properties of elem
--

a. Rank the following species according to their properties. (1 = highest, 4 lowest)

	Se ²⁻	Н	Se	С
Radius				
Ionization Energy				
Electron Affinity				
Electronegativity				

2. Assign to every atom of the following <u>ionic compounds</u> its formal charge.

	Ca ₂ C		AMI4		IVIN ₃ P ₇
3.	Write two	possible compounds for t	he following pai	rs of elements.	
Sn;	0		W; F		
4.	Calculate tl	he lattice energy of the fo	ollowing crystals:	:	
	i.	2.5g of Cesium Chloride	(CsCl)		
	ii.	14.6g of rutile (TiO₂)			

- 5. Fill the table below in, with the missing electron configurations and give an explanation for the trends in the first Ionization Energy; possible trends are :
- a. Z increases
- b. Electron –electron repulsion

- c. New shell
- d. I increases or Z_{eff} decreases (shielding)

Atom	Z	Electron configuration	$\frac{\mathbf{IE_1}}{mol}$	Trends in IE ₁ Explanation	lons	$\frac{kJ}{mol}$
He	2	1s²	2373		He ⁺ 1s ¹	5248
Li	3	1s ² 2s ¹	520		Li ⁺ 1s ²	7300
Be	4	1s ² 2s ²	899		Be⁺ 1s²2s¹	1757
В	5	$1s^2 2s^2 2p_x^1$	801		B ⁺	2430
С	6	$1s^2 2s^2 2p_x^1 2p_y^1$	1086		C^+ $1s^2 2s^2 2p_x^1$	2350
N	7		1400		N^+ $1s^2 2s^2 2p_x^1 2p_y^1$	2860
0	8		1314		$0^{+} \\ 1s^{2}2s^{2}2p_{x}^{1}2p_{y}^{1}2p_{z}^{1}$	3390
F	9	$1s^2 2s^2 2p_x^2 2p_y^2 2p_z^1$	1680		F ⁺	3370
Ne	10		2080		Ne ⁺ $1s^2 2s^2 2p_x^2 2p_y^2 2p_z^1$	3950
Na	11		496		Na ⁺ $1s^2 2s^2 2p_x^2 2p_y^2 2p_z^2$	4560
Mg	12		738		Mg ⁺ [<i>Ne</i>]3 <i>s</i> ¹	1450
Al	13	$[Ne]3s^23p_x^1$	578		Al ⁺	1820

6. Fill the blank boxes of the pictures below with the appropriate descriptor for the relative curve:

7.	The percent ionic character of a bond can be approximated by the formula $16\Delta\chi+3.5\Delta\chi^2$, where $\Delta\chi$ is the difference between the Pauling electronegativity values of the two elements. Calculate the % ionic character of the following molecules and give a qualitative explanation (in words) of why that makes sense according to the electron configuration of the atoms/ions.
	HF
	HCI
	HBr
	н
	CsF
8.	Given the following information:

Calculate the net change in energy for the following reaction:

Energy of sublimation of Li(s) = 166 kJ/mol

Ionization energy of Li(g) = 520. kJ/mol

Bond energy of HCl = 427 kJ/mol

2Li (s) + 2HCl (g)
$$\rightarrow$$
 2LiCl (s) + H₂(g)

Electron affinity of Cl (g) = -349 kJ/mol

Lattice Energy of LiCl(s) = -829 kJ/mol

Bond Energy of $H_2 = 432 \text{ kJ/mol}$