
PureData Ecosystem

© 2013 IBM Corporation August 7, 2013

Introduction to Hadoop

PureData Ecosystem

© 2013 IBM Corporation 2

Agenda

§ Introduction
 What is distributed computing?

§ What is Hadoop?
� Comparison with RDBMS

� Installation requirements and best practices

§ Hadoop architecture
� MapReduce

� HDFS

� Hadoop Common

� Ecosystem of related projects
� Pig, Hive, Jaql

� Other projects

IBM Big Data Fundamentals Bootcamp Coursebook page 39 of 260.

PureData Ecosystem

© 2013 IBM Corporation 3

What is Distributed Computing?

§ Multiple computers appear as one super computer, communicate with

each other by message passing, operate together to achieve a common

goal

§ Challenges
� Heterogeneity

� Openness

� Security

� Scalability

� Concurrency

� Fault tolerance

� Transparency

§ Biggest challenge: abstract details and complexities, present users with a

unified interface to manage the system

PureData Ecosystem

© 2013 IBM Corporation 4

What is Hadoop?

§ Apache open source software framework for reliable, scalable, distributed

computing of massive amount of data
§ Hides underlying system details and complexities from user

§ Developed in Java

§ Consists of 3 sub projects:
 MapReduce

 Hadoop Distributed File System a.k.a. HDFS

 Hadoop Common

§ Supported by several Hadoop-related projects
§ HBase

§ Zookeeper

§ Avro

§ Etc.

§ Meant for heterogeneous commodity hardware

IBM Big Data Fundamentals Bootcamp Coursebook page 40 of 260.

PureData Ecosystem

© 2013 IBM Corporation 5

Hadoop is not for all types of work

§ Not to process transactions (random access)

§ Not good when work cannot be parallelized

§ Not good for low latency data access

§ Not good for processing lots of small files

§ Not good for intensive calculations with little data

PureData Ecosystem

© 2013 IBM Corporation 6

Who uses Hadoop?

IBM Big Data Fundamentals Bootcamp Coursebook page 41 of 260.

PureData Ecosystem

© 2013 IBM Corporation 7

RDBMS vs Hadoop

RDBMS Hadoop

Data

sources
Structured data with known schemas Unstructured and structured

Data type Records, long fields, objects, XML Files

Data

Updates
Updates allowed Only inserts and deletes

Language SQL & XQuery Pig (Pig Latin), Hive (HiveQL), Jaql

Processing

type
Quick response, random access Batch processing

Data

integrity
Data loss is not acceptable Data loss can happen sometimes

Security Security and auditing Partial

Compress Sophisticated data compression Simple file compression

Hardware Enterprise hardware Commodity hardware

Data

access
Random access (indexing) Access files only (streaming)

History ~40 years of innovation < 5 years old

Community Widely used, abundant resources Not widely adopted yet

PureData Ecosystem

© 2013 IBM Corporation 8

Warehouse vs Hadoop

Data Warehouse Hadoop

Data

sources

Structured, high value data. Pre -

Processed
Unstructured and structured

Data type Records, long fields, objects, XML Files

Data

Updates
Updates allowed Only inserts and deletes

Language Vendor specific Pig (Pig Latin), Hive (HiveQL), Jaql

Processing

type
Batch Processing Batch processing

Data

integrity
Data loss is not acceptable Data loss can happen sometimes

Security Security and auditing Partial

Compress Sophisticated data compression Simple file compression

Hardware Enterprise hardware Commodity hardware

Data

access
Random access (indexing) Access files only (streaming)

History ~20 years of innovation < 5 years old

Community Widely used, abundant resources Not widely adopted yet

IBM Big Data Fundamentals Bootcamp Coursebook page 42 of 260.

PureData Ecosystem

© 2013 IBM Corporation 9

Hadoop � Installation Requirements

§ Installation types:
� Single-node:

� simple operations
� local testing and debugging

� Multi-node cluster:
� production level operation
� thousands of nodes

§ Hardware:
� Can use commodity hardware
� Best practice:

� RAM: MapReduce jobs mostly I/O bound, plan enough RAM
� CPU: high-end CPUs are often not cost-effective
� Disks: use high capacity disks as Hadoop is storage hungry
� Network: depends on workload, consider high-end network gear for large

clusters
§ Software:

� OS:
� GNU / Linux for development and production
� Windows / Mac for development

� Java
� ssh

PureData Ecosystem

© 2013 IBM Corporation 10

Hadoop Distributed File System (HDFS)

§ Distributed, scalable, fault tolerant, high throughput

§ Data access through MapReduce

§ Files split into blocks

§ 3 replicas for each piece of data by default

§ Can create, delete, copy, but NOT update

§ Designed for streaming reads, not random access

§ Data locality: processing data on or near the physical storage to decrease

transmission of data

IBM Big Data Fundamentals Bootcamp Coursebook page 43 of 260.

PureData Ecosystem

© 2013 IBM Corporation 11

HDFS � Blocks

§ HDFS is designed to support very large files

§ Each file is split into blocks

� Hadoop default: 64MB

� BigInsights default: 128MB

§ Blocks reside on different physical DataNode

§ Behind the scenes, 1 HDFS block is supported by multiple operating

system blocks

§ If a file or a chunk of the file is smaller than the block size, only

needed space is used. E.g.: a 210MB file is split as

64 MB HDFS blocks

OS blocks

64 MB 64 MB 64 MB 18 MB

PureData Ecosystem

© 2013 IBM Corporation 12

HDFS � Replication

§ Blocks of data are replicated to multiple nodes
� Behavior is controlled by replication factor, configurable per file

� Default is 3 replicas

Common case:

§ one replica on one node in the

local rack

§ another on a node in a

different (remote) rack

§ and the last on a different

node in the same remote rack

This cuts inter-rack network

bandwidth, which improves

write performance

IBM Big Data Fundamentals Bootcamp Coursebook page 44 of 260.

PureData Ecosystem

© 2013 IBM Corporation 13

HDFS � Architecture

§ Master / Slave architecture

§ Master: NameNode
� manages the file system

namespace and metadata
� FsImage

� EditLog

� regulates access by files by clients

§ Slave: DataNode
� many per cluster

� manages storage attached to the

nodes

� periodically reports status to

NameNode a
a

a
b

b
b

d
d

d c c

c

File1
a
b
c
d

NameNode

DataNodes

PureData Ecosystem

© 2013 IBM Corporation 14

MapReduce

§ Distributed computing framework that takes advantage of data locality to

push the computation to the data
� Distributed computing: clusters of computers with local memory and disk

� Network intensive for big data

� Parallel computing: multiple CPUs processing over shared memory and file

system

§ By!decomposing!the!tasks!we!can!achieve!parallelism�
� Map: works independently to convert input data into key-pair values.

� Reduce: works independently on all values for a give key and transforms them

to a single output set per key

(k1,v1) => list(k2,v2)

(k2, list(v2) => list(v3)

IBM Big Data Fundamentals Bootcamp Coursebook page 45 of 260.

PureData Ecosystem

© 2013 IBM Corporation 15

MapReduce Explained

§ Hadoop computation model
� Data stored in a distributed file system spanning many inexpensive computers

� Bring function to the data

� Distribute application to the compute resources where the data is stored

§ Scalable to thousands of nodes and petabytes of data

MapReduce Application

1. Map Phase
(break job into small parts)

2. Shuffle
(transfer interim output

for final processing)

3. Reduce Phase
(boil all output down to

a single result set)

Reduce Phase - Return a

single result set

Result Set

Shuffle

public static class TokenizerMapper

 extends Mapper<Object,Text,Text,IntWritable> {

 private final static IntWritable

 one = new IntWritable(1);

 private Text word = new Text();

 public void map(Object key, Text val, Context

 StringTokenizer itr =

 new StringTokenizer(val.toString());

 while (itr.hasMoreTokens()) {

 word.set(itr.nextToken());

 context.write(word, one);

 }

 }

}

public static class IntSumReducer

 extends Reducer<Text,IntWritable,Text,IntWrita

 private IntWritable result = new IntWritable();

 public void reduce(Text key,

 Iterable<IntWritable> val, Context context){

 int sum = 0;

 for (IntWritable v : val) {

 sum += v.get();

. . .

Map Phase -

Distribute map

tasks to cluster

Hadoop Data Nodes

PureData Ecosystem

© 2013 IBM Corporation 16

MapReduce Engine

§ Master / Slave architecture

� Single master (JobTracker) controls job execution on multiple slaves

(TaskTrackers).

§ JobTracker

� Accepts MapReduce jobs submitted by clients

� Pushes map and reduce tasks out to TaskTracker nodes

� Keeps the work as physically close to data as possible

� Monitors tasks and TaskTracker status

§ TaskTracker

� Runs map and reduce tasks

� Reports status to JobTracker

� Manages storage and transmission of intermediate output

cluster

JobTracker

Computer 1

TaskTracker

Computer 2 Computer 3

TaskTracker

Computer 4

TaskTracker

Computer 5

TaskTracker

IBM Big Data Fundamentals Bootcamp Coursebook page 46 of 260.

PureData Ecosystem

© 2013 IBM Corporation 17

MapReduce Examples

§ Map
� Word Count

� Read the text from a stream of text (i.e.: files) and emit each word as a key with

 value 1.

� Inverted Index
� Read the text from a stream of documents and emit each word as a key in the

document.

� Maximum Temperature
� Read formatted data and emit year as a key with temperature as value.

� Mean Rain Precipitation
� Read daily data and emit (year/month, lat, long) as key with temperature as value.

§ Reduce
� Operations such as count, list, max, average, etc.

� Set values for each key

PureData Ecosystem

© 2013 IBM Corporation 18

MapReduce

§ Example: word count
� The map function emits each word plus an associated count of occurrences, 1

in this example

Hi IBM

Bye IBM

Hi BigInsights

Goodbye BigInsights

Hi Bigdata

Bye Bigdata

File

Hi IBM

Bye IBM

Hi BigInsights

Goodbye BigInsights

Hi Bigdata

Bye Bigdata

Node 1

Node 2

Node 3

IBM Big Data Fundamentals Bootcamp Coursebook page 47 of 260.

PureData Ecosystem

© 2013 IBM Corporation 19

MapReduce

§ Example: word count
� Map step

� The map function emits each word plus an associated count of occurrences, 1 in this

example

Hi IBM

Bye IBM

Hi BigInsights

Goodbye BigInsights

Hi Bigdata

Bye Bigdata

Node 1

Node 2

Node 3

<Hi, 1>

<IBM, 1>

<Bye, 1>

<IBM, 1>

<Hi, 1>

<BigInsights, 1>

<Goodbye, 1>

<BigInsights, 1>

<Hi, 1>

<Bigdata, 1>

<Bye, 1>

<Bigdata, 1>

PureData Ecosystem

© 2013 IBM Corporation 20

MapReduce

§ Example: word count (continued)
� Shuffle

� Locally sort the intermediary output tuples by key and aggregate values

<Bye, 1>

<Hi, 1>

<IBM, [1, 1]>

<Goodbye, 1>

<Hi, 1>

<BigInsights, [1, 1]>

<Bye, 1>

<Bigdata, [1, 1]>

<Hi, 1>

<Hi, 1>

<IBM, 1>

<Bye, 1>

<IBM, 1>

<Hi, 1>

<BigInsights, 1>

<Goodbye, 1>

<BigInsights, 1>

<Hi, 1>

<Bigdata, 1>

<Bye, 1>

<Bigdata, 1>

IBM Big Data Fundamentals Bootcamp Coursebook page 48 of 260.

PureData Ecosystem

© 2013 IBM Corporation 21

MapReduce

§ Example: word count (continued)
� Reduce

� Sums up values

<Bye, 2>

<Goodbye, 1>

<IBM, 2>

<Hi, 3>

<BigInsights, 2>

<Bigdata, 2>

<Bye, 1>

<Hi, 1>

<IBM, [1, 1]>

<Goodbye, 1>

<Hi, 1>

<BigInsights, [1, 1]>

<Bye, 1>

<Bigdata, [1, 1]>

<Hi, 1>

PureData Ecosystem

© 2013 IBM Corporation 22

MapReduce Fault Tolerance

§ If a task dies
� Retry on another node

� Map not affected because it has no dependencies.

� Reduce not affected because map outputs are stored on disk.

§ If a node dies
� Restart the current tasks on another node.

� Re-execute the maps the node previously ran.

IBM Big Data Fundamentals Bootcamp Coursebook page 49 of 260.

PureData Ecosystem

© 2013 IBM Corporation 23

How does Hadoop run MapReduce jobs?

§ Client: submits MapReduce jobs
§ JobTracker: coordinates the job run, breaks

down the job to map and reduce tasks for each
node to work on the cluster

§ TaskTracker: execute the map and reduce
functions

MapReduce
program

JobClient
1. run job

client JVM

client node

JobTracker 5. initialize job

jobtracker node

2. get new job ID

3. copy job
resources

Distributed
file system
(e.g. HDFS)

4. submit job

6. retrieve
input splits

child JVM

MapTask
or

ReduceTask

TaskTracker

Child

tasktracker node

8. retrieve
job resources

7. heartbeat
(returns task)

9. launch

10. run

PureData Ecosystem

© 2013 IBM Corporation 24

Hadoop Common

§ Formerly known as Hadoop Core

§ Contains common utilities and libraries that support the other Hadoop sub

projects
� File system

� Remote Procedure Call (RPC)

� Serialization

§ E.g. file system shell
� To interact directly with HDFS files, you need to use
 hadoop fs -<args>

hadoop fs �ls

IBM Big Data Fundamentals Bootcamp Coursebook page 50 of 260.

PureData Ecosystem

© 2013 IBM Corporation 25

Hadoop Open Source Projects

§ Hadoop is supplemented by an ecosystem of open source projects

Jaql

Oozie

PureData Ecosystem

© 2013 IBM Corporation 26

How to Analyze Large Data Sets in Hadoop

§ Although the Hadoop framework is implemented in Java, MapReduce

applications do not need to be written in Java

§ To abstract complexities of Hadoop programming model, a few application

development languages have emerged that build on top of Hadoop:
� Pig

� Hive

� Jaql

Jaql

IBM Big Data Fundamentals Bootcamp Coursebook page 51 of 260.

PureData Ecosystem

© 2013 IBM Corporation 33

Adaptive MapReduce Advantages

Other Grid

Server

Broker Engines

Each engine polls broker

~5 times per second (configurable)

Send work when

engine ready

Client

Serialize

input data

Network transport

(client to broker)

Wait for engine to poll broker
Network transport

(broker to engine)

De-serialize

Input data

Compute

Result

Serialize

result

Post result back

to broker

Time

�

Broker

Compute time

Adaptive Mapreduce is faster because:

Efficient C language routines use CDR (common data representation)

and IOCP rather than slow, heavy-weight XML data encoding)

Network transit time is reduced by avoiding text based HTTP

protocol and encoding data in more compact CDR binary format

Processing time for all Adaptive MR services is reduced by using a

native HPC C/C++ implementation for system services rather than Java

Adaptive Mapreduce has a more efficient �push model� that

avoids entirely the architectural problems with polling

Adaptive MR

Serialize

input

Network

transport

SSM Compute

time & logging

Time

Network transport

(SSM to engine)

De-serialize

�

Serialize

Network transport

(engine to SSM)

Compute result

No wait time due to polling, faster

serialization/de-serialization,

More network efficient protocol

Low-latency task scheduling, optimized middleware

PureData Ecosystem

© 2013 IBM Corporation 34 © 2013 IBM Corporation 34

Design Goals of Adaptive MapReduce

§ Balance workload across Map tasks

§ Minimize startup and scheduling costs
� Relatively high when operating on small files or splits

§ Promote greater local aggregation

§ Allow Map tasks to take on additional work until it doesn�t make sense

anymore

AdaptiveMR è One map task might process the several splits

Startup/Scheduling cost (e.g. loading reference data)

 map task processing

Traditional MR è n map tasks run consecutively on the same node/slot

Legend:

IBM Big Data Fundamentals Bootcamp Coursebook page 77 of 260.

PureData Ecosystem

© 2013 IBM Corporation 35 © 2013 IBM Corporation 35

Adaptive MapReduce Enhancements

§ Speeds up a class of jobs (e.g., jobs that process small files)

§ Accomplished by changing how certain MapReduce tasks executed

� Mappers can decide at runtime to take on more work (until it doesn�t make

sense anymore)

� Communication via ZooKeeper

§ Supported on Jaql/Java jobs (not supported on Hive or Pig jobs)

§ Off by default

� Enable on Jaql jobs with a Jaql option, or

� MapReduce job property setting

PureData Ecosystem

© 2013 IBM Corporation 36 © 2013 IBM Corporation 36

Flexible (Intelligent) Job Scheduler

§ Optimize response time for small jobs
� Available in addition to FAIR, FIFO scheduling

� Example: What if J2 is small and J1 is huge under FIFO?

J1

J2

J3

Very

High

J7

Very

Low

J5

J6

Normal

J4

High Low

IBM Big Data Fundamentals Bootcamp Coursebook page 78 of 260.

