
BigInsights Text Analytics

Tutorial

© 2010 IBM CorporationFebruary 8, 2014

Search & Analytics Group

IBM Research - Almaden

Introduction to Text Analytics and BigInsights

capabilities

� Introduction
– What is text analytics?
– Example text analytics applications and data sources
– Critical success factors
– Previous approaches

� BigInsights Text Analytics Overview

© 2010 IBM Corporation2

� BigInsights Text Analytics Overview
– Architecture
– Key advantages

� Tutorial Overview

What is Text Analytics ?

Text AnalyticsText Analytics

Parsing Facts
Deep

understanding
of text

© 2010 IBM Corporation3

Social
media

Call center
records

Logs SEC filings

Verticals and Horizontals using Text Analytics

� Verticals
– Financial: financial events, company earnings, key players, etc.
– Healthcare: drugs / diseases, patient history, chemical compounds
– General: named entities (person, organization, location, phone, URL, email)

� Horizontals
– CRM Analytics

• Voice of customer
• Product / Services gap analysis and in combination with Social Media

© 2010 IBM Corporation4

• Product / Services gap analysis and in combination with Social Media
predicting churn etc.

– Social Media Analytics
• Retail applications such as intent identification and customer churn
• Reputational Risk applications such timeliness of response

– Digital Piracy
• Illegal broadcast of streaming and video content
• Illegal dissemination of copyrighted digital material

– Log Analytics
• Log parsing into fields, IP addresses, exception stack trace

– Data Redaction
• Identify sensitive information (people names, DOB, SSN)

– Regulatory Compliance

SentimentSentiment

SocialSocial--mediamedia

packagepackage
Churn, comparisons, intentsChurn, comparisons, intents

CallCall--center center

packagepackage

Building Applications on top of BigInsights

Text Analytics: A Conceptual View

© 2010 IBM Corporation5

AQL / SystemTAQL / SystemT

Deep ParseDeep Parse
Applications Applications

on top of AQLon top of AQL

SentimentSentiment

Data Sources for Text Analytics are Highly

Heterogeneous
� Variations in content quality: from formal to informal (noisy)

– Formal: news reports, financial reports, patent applications

– Informal: email, blogs, Twitter/Facebook posts

� Variations in structure: from unstructured to semi-structured
– Unstructured: news reports

– Semi-structured: system/application logs, web pages, financial reports

© 2010 IBM Corporation6

– Semi-structured: system/application logs, web pages, financial reports

(SEC)

� Variations in size: from very small to very large
– Small (bytes): Twitter posts

– Medium (Kilobytes): email, blogs, news reports

– Large (Megabytes): financial reports, patents

Critical Success Factors

� Quality: Drives effectiveness of entire application
– Need high accuracy and coverage

� Performance: Dominant cost is CPU
– Process large documents and large number of documents

with high throughput

© 2010 IBM Corporation7

� Explainability
– Determine the cause of errors and fix it without affecting the

remaining correct results

� Reusability: easily adaptable for a different domain
– The development platform must enable layers of abstractions to be built

and easily reused in a different domain

Previous Approaches to Text Analytics

� Statistical (Machine Learning)
– Labeled data required to train a model

– Model must be retrained for each domain

– The model is opaque

� Rule-based
– No unified formal language

© 2010 IBM Corporation8

– No unified formal language

– Performance and expressivity limitations

Outline

� Introduction
– What is text analytics?

– Example text analytics applications and data sources

– Critical success factors

– Previous approaches

© 2010 IBM Corporation9

� BigInsights Text Analytics Overview
– Architecture

– Key advantages

� Tutorial Overview

BigInsights Text Analytics Architecture

AQL Language

Optimizer

Compiled

Specify extractor

semantics declaratively

Choose efficient

execution plan that

implements semantics

© 2010 IBM Corporation10

Compiled

Plan

BigInsights
Cluster

Input
Document

Extracted
objects

Input
Document

Extracted
objects

implements semantics

Input
Document

Extracted
objects

BigInsights Text Analytics Components

AQL Language

Optimizer

� Eclipse Tools
– Develop and maintain extractors in AQL

� Pre-compiled extractor library
– Western languages: Named Entities

(person, organization, location, phone,

URL, email, date/time) and financial

events (merger, acquisition, company

earnings)

© 2010 IBM Corporation11

Compiled

Plan

earnings)

– Chinese/Japanese: Named Entities

(Person, Organization, Location)

� Jaql Text Analytics module
– Execute extractors on the

cluster from Jaql

� Text Analytics Java API
– Invoke Text Analytics directly

from your application

BigInsights
Cluster

Input
Document

Extracted
objects

AQL: A Declarative Language to Specify

Extraction Patterns

create view FirstCaps as

select CombineSpans(F.name, C.name) as name

<First> <Caps>

0 tokens

© 2010 IBM Corporation12

Choice of SQL-like syntax for AQL motivated by wider adoption of SQL

select CombineSpans(F.name, C.name) as name

from First F, Caps C

where FollowsTok(F.name, C.name, 0, 0);

The Expressivity of AQL

� Feature Extraction primitives
– Regular Expressions
– Dictionary

� Text-specific primitives
– Span-based predicates
– Multi-lingual support

• Tokenization: Arabic, Chinese, Czech, Danish, Dutch, English, German, Greek,
Spanish, French, Italian, Japanese, Korean, Finnish, Norwegian (Nynorsk and

© 2010 IBM Corporation13

Spanish, French, Italian, Japanese, Korean, Finnish, Norwegian (Nynorsk and
Bokmal), Polish, Portuguese, Russian, Swedish

• Parts-of-speech: Chinese, English, German, Japanese, Spanish, French

� Set-level primitives
– Join
– Block
– Consolidation
– Group By

� AQL Reference in Info Center
http://publib.boulder.ibm.com/infocenter/bigins/v1r3/topic/com.ibm.swg.im.in
fosphere.biginsights.doc/doc/biginsights_aqlref_con_aql-overview.html

Why “Declarative” Language ?

� Semantics are separate from execution

– The developer expresses “what” to extract

– The system determines “how”

� Advantages

– Explainability

• Easy to understand and debug

© 2010 IBM Corporation14

• Easy to understand and debug

– Global optimization
• The system can determine an efficient execution plan

• The developer does not worry about performance

Scalability of BigInsights Text Analytics

1. Better throughput via query optimization

2. Massive scale-out on BigInsights

© 2010 IBM Corporation15

Scalability: Flavor of Optimization

First Caps

(followed within 0 tokens)Plan A
Join

© 2010 IBM Corporation16

First

Identify Caps starting

within 0 tokens

Caps

Identify First ending

within 0 tokens

Extract text to the right Extract text to the left

Plan B Plan C

JAQL Function Wrapper
Input Record Output Record

Document

encoded as

JSON record.

Scaling Up on BigInsights Clusters

Jaql runtime coordinates

a multi-stage map-

reduce flow.

© 2010 IBM Corporation17

SystemT

Runtime

Input

Adapter

Output

Adapter

{

label: “http://www.ibm ...”,

text: “<html>\n<head> …”

}

{

label: “http://www.ibm ...”,

text: “<html>\n<head> …”

Person:

[

{ firstName: [10, 15],

lastName: [16, 25] },

…

{ firstName: [1042, 1045],

lastName: [1046, 1050] }

],

Hyperlink:

[

{ anchorText: [25, 33] },

…

{ anchorText: [990, 997] }

],

H1: …

}

Input Record Output Record

AQL Optimizer
Compiled

Plan Annotations added as

additional attributes to

JSON record.

Eclipse Tools Overview

Ease of
Programming

AQL Editor

Explain

Result Viewer

AQL Editor: syntax highlighting, auto-complete,

hyperlink navigation

Result Viewer: visualize/compare/evaluate

Explain: show how each result was generated

Workflow UI: enable novice users to become

experts in a short time

© 2010 IBM Corporation18

Performance
Tuning

Automatic
Discovery

Pattern Discovery

Regex Learner

Pattern Discovery: identify patterns in the data

Regex Generator: generate regular expressions

from examples

Profiler: identify performance bottlenecks to be

hand tuned

Key Advantages of BigInsights Text Analytics

� Quality: Drives effectiveness of entire application
– Highly expressive AQL language � Easy to express complex

concepts and to improve quality

� Performance: Dominant cost in text analytics is CPU
– Optimizer � Developers don’t need to worry about performance

© 2010 IBM Corporation19

� Ease of Development, Explainability and Reusability
– Looks like SQL � Low learning curve
– Declarative language � Output can be explained by automatic tools
– Eclipse Development Tools � Rule editing/discovery

Best of rule-based and statistical approaches!

� Rule-based at Runtime � quality and performance
� Statistical approaches for building rules � ease of development

Outline

� Introduction
– What is text analytics?

– Example text analytics applications and data sources

– Critical success factors

– Previous approaches

© 2010 IBM Corporation20

� BigInsights Text Analytics Overview
– Architecture

– Key advantages

� Tutorial Overview

Developing an Extractor with AQL

� Combinations of syntactic patterns using regular expressions,

dictionaries, span operations, relational operators and

consolidate
– Virtually everything you would need is exposed in the language

– Material covered in Days 1 and 2

� Different domain � the extractor must be customized

© 2010 IBM Corporation21

� Different domain � the extractor must be customized
– Domain adaptation guidelines in place

– Material covered in Day 3

� Different language � the extractor must be customized
– Language adaptation process worked out with business partner

Existing AQL Extractor Library

� We developed many extractors by writing AQL rules
– Combinations of syntactic patterns using regular expressions, dictionaries,
span operations, relational operators and consolidate

– Examples:
• Simple entities: numbers, IP addresses, error messages, :
• Complex entities: person, organization, location
• Names of drugs, diseases, chemical compounds,:
• Financial facts: merger/acquisition, earnings, key players,:

� Adapted some of the extractors for:

© 2010 IBM Corporation22

� Adapted some of the extractors for:
– Multiple industry verticals: financial, healthcare
– Multiple data sources: news, email, blogs, log records
– Multiple languages:

• Named Entities (person, location, organization): Western languages (DE, EN, ES,
FR, IT) , Chinese, Japanese

� Developed tooling for writing and customizing AQL
– Generate regular expressions and discover dictionaries
– Explain rule output and help fix mistakes
– Organize complex rule sets

� Material covered in Days 1-2, and partly Day 3

Fact Extraction versus Deeper Understanding

� A large percentage of use cases can be addressed by using

syntactic patterns, building dictionaries, span operations,

relational operators and consolidate
– Extraction of facts

� But there is also a need for deeper, semantic, extraction
– Involves deeper understanding of linguistics and meaning of text

© 2010 IBM Corporation23

– Involves deeper understanding of linguistics and meaning of text

– BigInsights Text Analytics is sufficiently powerful for such analysis, but

the rules and domain adaptation will be complex, BUT can be learned

� Need to hide the complexity
– We are building higher levels of abstraction for semantic extraction

• Deep parsing layer built using AQL

• Sentiment layer built on top of deep parsing layer

– Working on guidelines for domain adaptation of the two layers
• Introduction to this material will be given on Day 3

SentimentSentiment

SocialSocial--mediamedia

packagepackage
Churn, comparisons, intentsChurn, comparisons, intents

CallCall--center center

packagepackage

Building Applications on top of BigInsights

Text Analytics:

A Conceptual View

© 2010 IBM Corporation24

AQL / SystemTAQL / SystemT

Deep ParseDeep Parse
Applications Applications

on top of AQLon top of AQL

SentimentSentiment

References (1/2) – Peer-reviewed Publications
� Overview

– Rajasekar Krishnamurthy, Sriram Raghavan, and Huaiyu Zhu: "Evolution of Rule-Based Information
Extraction: From Grammars to Algebra", Tutorial given at CIKM 2008.

– Laura Chiticariu, Yunyao Li, Sriram Raghavan, and Frederick Reiss: "Enterprise Information
Extraction: Recent Developments and Open Challenges". SIGMOD 2010 (tutorial)

� Runtime Engine and Extractor Library
– Frederick Reiss, Sriram Raghavan, Rajasekar Krishnamurthy, Huaiyu Zhu, Shivakumar

Vaithyanathan: "An Algebraic Approach to Rule-Based Information Extraction". ICDE 2008: 933-942
– Rajasekar Krishnamurthy, Yunyao Li, Sriram Raghavan, Frederick Reiss, Shivakumar

Vaithyanathan, Huaiyu Zhu: "SystemT: a system for declarative information extraction". SIGMOD
Record 37(4):7-13 (2008)

– Eirinaios Michelakis, Rajasekar Krishnamurthy, Peter J. Haas, Shivakumar Vaithyanathan:
"Uncertainty management in rule-based information extraction systems". SIGMOD Conference 2009:
101-114

© 2010 IBM Corporation25

101-114
– Laura Chiticariu, Rajasekar Krishnamurthy, Yunyao Li, Sriram Raghavan, Frederick Reiss,

Shivakumar Vaithyanathan: "SystemT: An Algebraic Approach to Declarative Information Extraction".
ACL 2010.

– Laura Chiticariu, Rajasekar Krishnamurthy, Yunyao Li, Frederick Reiss, Shivakumar Vaithyanathan:
"Domain Adaptation of Rule-based Annotators for Named-Entity Recognition Tasks". EMNLP 2010.

– Daisy Zhe Wang, Long Wei, Yunyao Li, Frederick Reiss and Shivakumar Vaithyanathan. Selectivity
Estimation for Extraction Operators over Text Data. ICDE 2011

� Tooling
– Yunyao Li, Rajasekar Krishnamurthy, Sriram Raghavan, Shivakumar Vaithyanathan, H. V. Jagadish:

"Regular Expression Learning for Information Extraction". EMNLP 2008: 21-30
– Bin Liu, Laura Chiticariu, Vivian Chu, H.V. Jagadish, Frederick Reiss: "Automatic Rule Refinement

for Information Extraction". PVLDB 2010.
– Yunyao Li, Vivian Chu, Sebastian Blohm, Huaiyu Zhu, Howard Ho. “Facilitating Pattern Discovery for

Relation Extraction with Semantic-Signature-based Clustering”. CIKM 2011

References (2/2) – US Patents

� Runtime Engine
– US Patent Publication 20090198646: "Systems, Methods and

Computer Program Products for an Algebraic approach to Rule-
based Information Extraction"

– US Patent Publication 20100174718: "Indexing for Regular
Expressions in Text-Centric Applications"

– US Patent Application 12/788,142: "An Extensible System for
Information Extraction in a Data Processing System"

� Tooling

© 2010 IBM Corporation26

� Tooling
– US Patent Application 12/269,216: "User-Guided Regular

Expression Learning"
– US Patent Application 12/788,407: "Method for Automatic

Refinement of Information Extraction Rules",
– US Patent Application 13/117,570: "A Semantic-Signature-based

Method for Contextual Clue Pattern Discovery of Information
Extraction"

Introducing Big SQL for

BigInsights

IBM’s SQL Query Interface for

© 2010 IBM CorporationFebruary 8, 2014

IBM’s SQL Query Interface for

Hadoop

<<Speaker Name Here>>

<<Speaker Title Here>>

<<For questions about this presentation contact Speaker Name speaker@us.ibm.com>

Executive Summary

� What is Big SQL?
– Industry-standard SQL query interface for BigInsights data

� Why Big SQL?
– Easy on-ramp to Hadoop for SQL professionals

– Support familiar SQL tools / applications (via JDBC and ODBC drivers)

© 2010 IBM Corporation28

� What SQL operations are supported?
– Create tables (and, optionally, HBase indexes)

– Load data into tables (from local files, distributed files, RDBMSs)

– Query data (project, restrict, join, union, sub-queries)

� What Hadoop-based storage mechanisms are supported?
– Hive

– HBase

– Distributed file system

Agenda

� Big SQL: motivation and architecture

� Using Big SQL
– Invocation options

– Creating tables

– Populating tables with data

– Querying data

© 2010 IBM Corporation29

– Querying data

– Developing applications and working with tools

– . . . And a peek at some additional topics

� What RDBMS professionals should know about Big SQL

Agenda

� Big SQL: motivation and architecture

� Using Big SQL
– Invocation options

– Creating tables

– Populating tables with data

– Querying data

© 2010 IBM Corporation30

– Querying data

– Developing applications and working with tools

– . . . And a peek at some additional topics

� What RDBMS professionals should know about Big SQL

SQL Access for Hadoop: Why?

� Data warehouse augmentation is
a leading Hadoop use case

Pre-Processing Hub Query-able Archive Exploratory Analysis

Information
Integration

Streams
Real-time
processing

BigInsights
Landing zone
for all data

BigInsights Can combine
with

unstructured
information

1 2 3

© 2010 IBM Corporation31

� Hadoop often perceived as difficult
– MapReduce Java API requires programming expertise

– Unfamiliar languages (such as Pig) also require special skills

� SQL support opens the data to a much wider audience
– Familiar, widely known syntax

– Common catalog for identifying data and structure

© 2013 IBM Corporation31

Data WarehouseData Warehouse Data Warehouse

Big SQL Architecture and Feature Overview

� Standard SQL syntax and data types
– Joins, unions, aggregates . . .

– VARCHAR, decimal, TIMESTAMP, . . .

� JDBC/ODBC drivers
– Prepared statements

– Cancel support

– Database metadata API support

– Secure socket connections (SSL)

� Optimization

© 2010 IBM Corporation32

� Optimization
– MapReduce parallelism

orD

– “Local” access for low-latency queries

� Varied storage mechanisms

appropriate for Hadoop ecosystem

� Integration
– Eclipse tools

– DB2, Netezza, Teradata (via LOAD)

– Cognos Business Intelligence

– , , ,

© 2013 IBM Corporation32

Agenda

� Big SQL: motivation and architecture

� Using Big SQL
– Invocation options

– Creating tables

– Populating tables with data

– Querying data

© 2010 IBM Corporation33

– Querying data

– Developing applications and working with tools

– . . . And a peek at some additional topics

� What RDBMS professionals should know about Big SQL

Invocation options provided with BigInsights

� Command-line interface (JSqsh shell)

� Web-based interface (BigInsights web console)

� Eclipse (BigInsights plug-in)

© 2010 IBM Corporation34

Creating a Big SQL Table

� BigSQL supports CREATE TABLE and many data types

including varchar, decimals, etc. Non-ISO standard clauses

leverage Hadoop ecosystem
CREATE TABLE TPCH.CUSTOMER (C_CUSTKEY INTEGER, C_NAME VARCHAR(25),
C_ADDRESS VARCHAR(40), C_NATIONKEY INTEGER, C_PHONE CHAR(15), C_ACCTBAL

FLOAT, C_MKTSEGMENT CHAR(10), C_COMMENT VARCHAR(117))
row format delimited fields terminated by '|'

stored as textfile;

© 2010 IBM Corporation35

� Hive does not support data types like varchar and decimal*

CREATE TABLE TPCH.CUSTOMER (C_CUSTKEY INTEGER, C_NAME VARCHAR(25),
C_ADDRESS VARCHAR(40), C_NATIONKEY INTEGER, C_PHONE CHAR(15),
C_ACCTBAL FLOAT, C_MKTSEGMENT CHAR(10), C_COMMENT VARCHAR(117))

row format delimited fields terminated by '|'
stored as textfile;

© 2013 IBM Corporation35

*Hive 0.11 added
DECIMAL

Results from CREATE TABLE . . .

� Table
– Subdirectory created in warehouse directory

/biginsights/hive/warehouse/tablename/

– External tables may have their data stored

anywhere in the DFS

– Populated tables contain 1 or more data files

© 2010 IBM Corporation36

� Schema (or database)
– Tables may be organized by schemas

– Schema is just a collection of tables

– Creating a schema creates a subdirectory in the

warehouse to hold the tables
/biginsights/hive/warehouse/schema.db/

tablename/

� Catalog data (more later)

Big SQL Extensions to CREATE TABLE

� Additional data types: BINARY(N), VARCHAR(N),

DECIMAL(P,S)

� NULL/NOT NULL indicators
– These are advisory only – not enforced

– Big SQL query re-write software takes advantage of this info

© 2010 IBM Corporation37

� Table hints
– Certain optimizer hints can be attached to tables

– Hint will automatically apply when the table is used in a query

� Explicit syntax for HBase tables (column mappings, column

create table offices
(

office_id int not null,
name string not null

)
...

with hints (tablesize=‘small’)

Populating Tables

� Data can be LOADed from . . .
– Local file system

– Distributed file system

– Remote Netezza, DB2, or Teradata RDBMS

� Example
CREATE TABLE EMPLOYEE (EMPNO INT, NAME STRING, AGE INT) . . . ;

// Overwrite any existing data with new data from a local file

LOAD HIVE DATA LOCAL INPATH '/home/user1/employee.data' OVERWRITE INTO TABLE EMPLOYEE;

© 2010 IBM Corporation38

LOAD HIVE DATA LOCAL INPATH '/home/user1/employee.data' OVERWRITE INTO TABLE EMPLOYEE;

// Append new data from a file in HDFS to the table

LOAD HIVE DATA INPATH '/user/biadmin/employee.data‘ INTO TABLE EMPLOYEE;

� What LOAD does:
– Copies or moves the data, but doesn’t manipulate it

– Format of the input file must match the format of the table

� HBase notes:
– Similar LOAD syntax (LOAD HBASE A.). Composite keys, indexes,

column encoding handled.

– A single row INSERT may be used against HBase table

Querying data: Overview of SQL Support

� Projection
SELECT col1, col2 FROM t1

� Restriction
SELECT * FROM t1 WHERE col1 > 5

� Union
SELECT EMPNO FROM EMPLOYEE WHERE WORKDEPT LIKE 'E%'

© 2010 IBM Corporation39

SELECT EMPNO FROM EMPLOYEE WHERE WORKDEPT LIKE 'E%'

UNION

SELECT EMPNO FROM ACTIVITIES WHERE PROJNO IN('MA2100', 'MA2110', 'MA2112')

� Difference (EXCEPT)
(SELECT * FROM T1) EXCEPT ALL (SELECT * FROM T2)

� Intersection
(SELECT * FROM T1) INTERSECT (SELECT * FROM T2)

� Joins

� Subqueries

� Built-in functions

SQL Support - Joins

� Big SQL supports both common and ANSI join syntax
select ...

from tpch.orders, tpch.lineitem
where o_orderkey = l_orderkey

select ...
from tpch.orders join

tpch.lineitem
on o_orderkey =
l_orderkey

© 2010 IBM Corporation40

� Hive supports joins via ANSI join syntax onlyselect ...
from tpch.orders, tpch.lineitem
where o_orderkey = l_orderkey

select ...
from tpch.orders join

tpch.lineitem
on o_orderkey =
l_orderkey

© 2013 IBM Corporation40

SQL Support – Subqueries

� Big SQL supports subqueries

� Hive does not support subqueries

select c1,
(select count(*) from t2)

from t1
...

select c1
from t1

where c2 > (select ...)

© 2010 IBM Corporation41

select c1,
(select count(*) from t2)

from t1
...

select c1
from t1

where c2 > (select ...)

© 2013 IBM Corporation41

SQL Support – Aggregates

� Big SQL supports windowed aggregates

SELECT EXTRACT(YEAR FROM CAST(CAST (order_day_key AS varchar(100)) AS
timestamp)) AS year,

SUM (sale_total) AS total_sales,
RANK () OVER (ORDER BY SUM (sale_total) DESC) AS ranked_sales

FROM gosalesdw.sls_sales_fact
GROUP BY EXTRACT(YEAR FROM CAST(CAST (order_day_key AS varchar(100))

AS timestamp))

© 2010 IBM Corporation42

� Hive does not support windowed aggregates

© 2013 IBM Corporation42

SELECT EXTRACT(YEAR FROM CAST(CAST (order_day_key AS varchar(100)) AS
timestamp)) AS year,

SUM (sale_total) AS total_sales,
RANK () OVER (ORDER BY SUM (sale_total) DESC) AS ranked_sales

FROM gosalesdw.sls_sales_fact
GROUP BY EXTRACT(YEAR FROM CAST(CAST (order_day_key AS varchar(100))

AS timestamp))

SQL Support – Functions (partial list)
� Wide variety of built-in functions

– Numeric

– Trigonometric

– Date

abs ceil floor ln log10

mod power sqrt sign width_bucket

cos sin tan acos asin

atan cosh sinh tanh

© 2010 IBM Corporation43

– Date

– String

– Aggregates, etc.

_add_days _add_months _add_years localtimestamp _age

_day_of_week _day_of_year _week_of_year _days_between _months_between

_years_between _ymdint_between _first_of_month _last_of_month extract

char_length bit_length octet_length upper lower

substring position index translate trim

json_get_object

Catalog Tables (HCatalog)

[localhost][foo] 1> select * from syscat.tables where tablename='users';
+------------+-----------+
| schemaname | tablename |
+------------+-----------+
| default | users |
+------------+-----------+
1 row in results(first row: 0.14s; total: 0.15s)

[localhost][foo] 1> select * from syscat.columns where tablename='users';

+------------+-----------+-----------+--------+-----------+-------+

© 2010 IBM Corporation44

+------------+-----------+-----------+--------+-----------+-------+
| schemaname | tablename | name | type | precision | scale |
+------------+-----------+-----------+--------+-----------+-------+
default	users	id	INT	10	0
default	users	office_id	INT	10	0
default	users	name	STRING	0	0
default	users	children	ARRAY	0	0
+------------+-----------+-----------+--------+-----------+-------+
4 rows in results(first row: 0.19s; total: 0.21s)

Other BigInsights catalog tables track index and schema information

Using Existing Standard SQL Tools: Eclipse

© 2010 IBM Corporation45 © 2013 IBM Corporation45

Using Existing Standard SQL Tools: SQuirreL SQL

© 2010 IBM Corporation46 © 2013 IBM Corporation46

Cognos Business Intelligence

© 2010 IBM Corporation47 © 2013 IBM Corporation47

MicroStrategy use of Big SQL

© 2010 IBM Corporation48

MS Excel: Big SQL integration via ODBC

© 2010 IBM Corporation49 © 2013 IBM Corporation49

A word about . . . SerDes

� Custom serializers / deserializers (SerDes)
– Read / write complex or “unusual” data formats (e.g., JSON)

– Commonly used with Hive, HBase

– Developed by user or available from open source community

� Using SerDes with Big SQL
– Add the SerDe .jar file to $BIGSQL_HOME/userlib and

$HIVE_HOME/lib

© 2010 IBM Corporation50

$HIVE_HOME/lib

– Stop / restart Big SQL service

– Specify SerDe class name (not .jar file name) when creating table

� Example
/* Create a table for JSON data. Use open source hive-json-serde-0.2.jar SerDe */

create table socialmedia-json (Country String, FeedInfo String, . . .)

row format serde 'org.apache.hadoop.hive.contrib.serde2.JsonSerde'

stored as textfile;

load hive data inpath '</hdfs_path>/WatsonBlogsData.json' overwrite into table

socialmedia-json;

select * from socialmedia-json;

Sample JSON input for previous example

© 2010 IBM Corporation51

JSON-based social media data to load into Big SQL Table socialmedia-json defined with SerDe

Sample Big SQL query output for JSON data

© 2010 IBM Corporation52

Sample output: Select * from socialmedia-json

A word about . . . performance

� Tuning options
– Table design (e.g., storage formats for Hive, key & column family

definitions for HBase)

– Hints in queries

– Hints in table definition

– Secondary indexes (HBase tables only)

– MapReduce job properties

– . . . � Query hints provided in comments: /*+ name=value [, …] +*/

© 2010 IBM Corporation53

– . . . � Query hints provided in comments: /*+ name=value [, …] +*/

� Access mode hint
– Causes query to be executed in the Big SQL server
– HBase indexed queries can return extremely rapidly
– Local access can be forced on for your entire session

select * from foo /*+ accessmode=‘local’ +*/ where c1 < 1000;

Agenda

� Big SQL: motivation and architecture

� Using Big SQL
– Invocation options

– Creating tables

– Populating tables with data

– Querying data

© 2010 IBM Corporation54

– Querying data

– Developing applications and working with tools

– . . . And a peek at some additional topics

� What RDBMS professionals should know about Big SQL

Big SQL – what RDBMS experts should know
� Big SQL provides industry-standard query support for

Hadoop-based storage managers
– Exploits Hadoop environment

– Includes Hadoop-specific extensions

– Introduces Hadoop-specific concepts

– Copes with “unconventional” data structures and formats (e.g., JSON) via SerDes, other

features

� RDBMS = more than query & storage management

© 2010 IBM Corporation55

� RDBMS = more than query & storage management
– Transaction management

– Views

– Stored procedures

– INSERT / UPDATE / DELETE

– GRANT / REVOKE

– 3GL language support (e.g., COBOL)

– Rich catalog statistics and decades of cost-based optimization development

� Bottom line: Big SQL provides SQL experts with on-ramp to

Hadoop, but doesn’t turn Hadoop into one big relational

database

Want to learn more?

� Big SQL tutorial (product Information Center)

� Videos , articles, downloads, etc.
– Technical portal at http://tinyurl.com/biginsights

© 2010 IBM Corporation56

Big SQL JDBC driver definition (Eclipse)

� A JDBC driver for Big SQL 2.1 is created automatically when
BigInsights server is added

� New driver can be added and customized from Preference.

� Window� Preferences� Data Management � Connectivity�

Driver Definition � “AddA”

© 2010 IBM Corporation57

JSqsh – Big SQL’s CLI

� JSqsh (“jay-skwish” – Java SQL Shell)
– Open source command line JDBC client

(http://jsqsh.wiki.sourceforge.net)

– Works with any JDBC driver, not just Big SQL

� It can be started with
$BIGSQL_HOME/bin/jsqsh$ $BIGSQL_HOME/bin/jsqsh --driver=bigsql --user=biadmin --password=biadmin

JSqsh Release 1.5-ibm, Copyright (C) 2007-2013, Scott C. Gray
Type \help for available help topics. Using JLine.

© 2010 IBM Corporation58

JSqsh Release 1.5-ibm, Copyright (C) 2007-2013, Scott C. Gray
Type \help for available help topics. Using JLine.
[localhost][biadmin] 1> select * from syscat.tables;

+------------+--------------+
| schemaname | tablename |
+------------+--------------+
syscat	columns
syscat	tables
syscat	schemas
syscat	indexcolumns
system	dual
system	integers
+------------+--------------+

BigInsights Web Console

� In Quick Links, select to run Big SQL queries from the console

� Type in query, or cut and paste from SQL script. Hit Run.

© 2010 IBM Corporation59

Tableau: Big SQL integration via ODBC

© 2010 IBM Corporation60 © 2013 IBM Corporation60

Lotus Symphony: Big SQL integration via JDBC

© 2010 IBM Corporation61 © 2013 IBM Corporation61

More about SerDes

� SerDe (Serializer/Deserializer)
– A Hive concept

– A java class responsible for converting a record produced by an

InputFormat into a Hive row, based upon the table definition

– The Hive LazySimpleSerDe
• Expects records from a TextInputFormat – a record is just a single line of

text

• The SerDe parses the line of text using delimiters

© 2010 IBM Corporation62

• The SerDe parses the line of text using delimiters

• The table definition indicates which columns are to be converted to which

data types

� Storage Handler
– A Hive concept

– A java class that interacts with an external data source

– Contains an InputFormat and SerDe to communicate data

– Is presented with query projection and predicates to optimize data

access

– HBase is currently the only Storage Handler

101101

001010

010011

100111

111001

010011

010111

011101

0

data file InputFormat

(records)

SerDe

(rows)

Hive at a Glance

� Open source data warehouse framework for Hadoop

� Data stored in DFS files, but programmers create / query tables

� Provides SQL-like interface (Hive Query Language, HQL)
– Language constructs cover a subset of commercial SQL

– Queries run as MapReduce jobs under the covers

© 2010 IBM Corporation63

– Queries run as MapReduce jobs under the covers

– Programmers can create custom Mappers, Reducers

� From Hive wiki:
Hive is not designed for OLTP workloads and does not offer real-time

queries or row-level updates. It is best used for batch jobs over large

sets of append-only data (like web logs)

Hive storage

� Warehouse directory in DFS
– Specified by “hive.metastore.warehouse.dir” in hive-site.xml

– /biginsights/hive/warehouse the default location for BigInsights

� One can think tables, partitions and buckets as directories,

subdirectories and files respectively

Hive Entity Sample Sample location in DSF

© 2010 IBM Corporation64

Hive Entity Sample Sample location in DSF

database test $WH/test.db

table T $WH[/test.db]/T

partition date=‘01012013’ $WH/T/date=01012013

bucketing
column

userid $WH/T/date=01012013/000000_0
; ;
$WH/T/date=01012013/000032_0

Partitioned Tables

� All tables except HBase can be partitioned

� Partitioning is on one or more columns

� Each unique value becomes a partition

� Query predicates can be used to eliminated scanned partitions
CREATE TABLE demo.sales (

part_id int,
part_name string,

qty int,

biginsights

hive

warehouse

© 2010 IBM Corporation65

qty int,
cost double
)

PARTITIONED BY (
state char(2)

)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '|';

warehouse

demo.db

part_tab

state=AL

state=AR

state=CA

state=NY

data1.csv

data1.csv
data2.csv

data1.csvselect *
from demo.sales

where state in ('AL', 'CA');

Why Another Data Warehousing System?

A perspective from Facebook

� Problem: Data, data and more data
– 200GB per day in March 2008

– 2+TB(compressed) raw data per day today

� The Hadoop Experiment
– Superior to availability/scalability/manageability of commercial DBs

– Efficiency not that great, but throw more hardware

– Partial Availability/resilience/scale more important than ACID

© 2010 IBM Corporation66

� Problem: Programmability and Metadata
– Map-reduce hard to program (users know sql/bash/python)

– Need to publish data in well known schemas

� Solution: HIVE

Excerpt from 2008 presentation by Facebook

HBase at a Glance

� Open source key-value data store for Hadoop
– Based on Google’s Bigtable paper [2006]

– Implemented as a sparse, consistent, distributed, multi-dimensional,

persistent, sorted map

– Key and value are byte arrays

� Strengths

© 2010 IBM Corporation67

� Strengths
– Efficient read/write access using row key, small range scan

– Very good for “sparse data” (no fixed columns)

– Highly scalable

– Rich set of Java APIs and extensible frameworks

� Different from relational databases
– No types: all data is stored as bytes

– No schema: Rows can have different set of columns

– No native SQL support

– No multi-row transactions

– Not optimized for N-way joins scanning large portions of data set

HBase Data Model

� Table
– Contains column-families

� Column family
– Logical and physical grouping of

columns

� Column
– Exists only when inserted

HBTABLE

Row key Value

11111 cf_data:
{‘cq_name’: ‘name1’,
‘cq_val’: 1111}
cf_info:
{‘cq_desc’: ‘desc11111’}

© 2010 IBM Corporation68

– Exists only when inserted

– Can have multiple versions

– Each row can have different set of

columns

– Each column identified by it’s key

� Row key
– Implicit primary key

– Used for storing ordered rows

– Efficient queries using row key

{‘cq_desc’: ‘desc11111’}

22222 cf_data:
{‘cq_name’: ‘name2’,
‘cq_val’: 2013 @ ts = 2013,
‘cq_val’: 2012 @ ts = 2012
}

HFileHFileHFile

11111 cf_data cq_name name1 @ ts1
11111 cf_data cq_val 1111 @ ts1
22222 cf_data cq_name name2 @ ts1
22222 cf_data cq_val 2013 @ ts1
22222 cf_data cq_val 2012 @ ts 2

HFile

11111 cf_info cq_desc desc11111 @ ts1

HBase Support

� Robust HBase support is a major Big SQL focus

� HBase is different than most other data sources in Hadoop
– Client/server database

• Fetching rows/columns requires a network hop

– Efficiently querying HBase requires pushing as much to the server(s) as

possible
• Pushing down query predicates as filters to region servers

© 2010 IBM Corporation69

• Pushing down query predicates as filters to region servers

• Fetching only columns needed by the query

– All HBase tables are ordered and accessed by primary key
• Big SQL leverages this

Creating HBase Tables
� Hive syntax for HBase tables is cumbersome

– Difficult to read

– Cannot express composite keys and columns

� Big SQL provides explicit syntax for defining tables in

Hive create hbase table sales(
prod_id int not null,
sales_date int not null,
quantity int not null,
price double not null

© 2010 IBM Corporation70

price double not null
)

column mapping
(

key mapped by (prod_id, sales_date) encoding binary,
cf1:sales_data mapped by

(quantity, price) separator '|' encoding string
)

column family options
cf1 compression gz, bloom filter none, in memory

hbase table name ‘PROD_SALES’
default encoding binary

default column family options compression none

HBase Hints

� rowcachesize (default=2000)
– Used as scan cache setting

– Also used to determine number of get requests to batch in index

lookups

� colbatchsize (default=100)

© 2010 IBM Corporation71

� useindex (‘false’ to avoid index usage)

select o_orderkey from orders /*+ rowcachesize=10000 +*/ where o_custkey>5000
go -m discard
1450136 rows in results(first row: 22.67s; total: 27.46s)

HBase scan details:{... , caching=10000, ...}

� rowcachesize can also be set using the set command:
– set hbase.client.scanner.caching=10000;

Log

HCatalog

� API’s to read/write data directly from Hive “tables”

� Tools for manipulating metadata (create/drop/alter tables)

� Provide enhanced HBase support for use cases beyond Hive

Hive Runtime

HCatalog Client Program
(e.g. Pig, Jaql)

© 2010 IBM Corporation72

Hive Storage Handlers

HCatalog API

Hive MetaStore Client API

Delimited
File HBaseSequence

File

Metastore

(RDBMS, flat file, etc.)

RCFile Hyper-
Table

?
HCatalog Handlers

HBase

HCat CLI

Dynamic Query Optimization

� During query execution Big SQL dynamically re-evaluates its

options
– Queries that cannot be assisted by MapReduce run in the server

– If a given step (e.g. GROUP or SORT) involves only "small" data, the

step is executed in the server

– If all tables are small, the whole query will be run in-server

SELECT c1, c2 FROM T1

© 2010 IBM Corporation73

– If all tables are small, the whole query will be run in-server

– If one table is large and one or more are small, a memory (hash) join is

performed
101101

001010

010011

100111

111001

010011

010111

011101

0

1
1 map

2 map

2

employees

101101

001010

010011

110011

1011

1

depts

depts

depts

results

results

Performance and Tuning

� Big SQL will dynamically adjust query strategies

– Execute steps in the server

– Automatically choose memory joins vs. redistribution join
� Server config settings can adjust how decisions are made

– And can be adjust at the session level using SET command
� Query join order (in the FROM clause) can impact performance

– Order you provide is honored

– Most selective data sets should be first

© 2010 IBM Corporation74

– Most selective data sets should be first
� Query hints and be used to fine-tune performance

– Table hints can adjust join strategy for specific tables

– Table access hints and fine-tune access to specific data sources (e.g.

HBase row fetch sizes)

– Specific joins can be forced to execute locally (in-server) vs.

MapReduce

Developing, publishing and

deploying your first Big SQL

application with InfoSphere

BigInsights

© 2010 IBM CorporationFebruary 8, 2014

< insert your name here>

Big Data Application Ecosystem

Data integration scenario:

Pre-defined work flows
simplify loading data from

various sources

•Work flows can be
configured, deployed,

executed and scheduled

Application scenarios (web

© 2010 IBM Corporation76

Eclipse

App library

MapReduce, >

Text Analytics

Query

App Development
• Code application program, and generate

associated App
• Deploy Apps to Enterprise ManagerApp

Development

Publish

Development tooling:

•Text analytics

•MapReduce

•Query languages

• . . .

Application scenarios (web
log, email, social media, �):

• Samples provide starting
point, speed time to value

Big Data Web Console

BigInsights Applications Catalog (Web Console)

� Browse available applications

� Manage and deploy applications (administrators only)

� Execute (or schedule execution of) a deployed application

� Monitor job (application) status

� Link or chain applications for sequential execution

© 2010 IBM Corporation77

Overview of Application Development Lifecycle

� Configure your Eclipse environment (one-time set up)

� Develop your application using BigInsights tools

� Test your application

� Package and publish your application

� Deploy your application on the cluster

© 2010 IBM Corporation78

Configure your Eclipse environment

� One-time set up

� Download and install BigInsights tools (Eclipse plug-ins)
– Welcome tab of BigInsights Web console includes pre-req info,

download & installation instructions

© 2010 IBM Corporation79

Develop your application – Big SQL example

� Open the BigInsights perspective in Eclipse

� Create a BigInsights project

© 2010 IBM Corporation80

Develop your application – Big SQL example

(cont’d)

� Create a BigInsights program with a SQL script (file)

© 2010 IBM Corporation81

Develop your application – Big SQL example

(cont’d)

� Create (or select) a Big SQL connection

© 2010 IBM Corporation82

Develop your application – SQL example (cont’d)

� Populate your SQL file with the desired code

create table if not exists media_csv
(id integer not null,
name varchar(50),

url varchar(50),
contactdate string)

row format delimited
fields terminated by ','

stored as textfile;

© 2010 IBM Corporation83

stored as textfile;

load hive data local inpath
'/home/biadmin/sampleData/DBMS/RDBMS_data.csv

'
-- overwrite

into table media_csv;

Test your application

� Run your application from Eclipse

© 2010 IBM Corporation84

Publish your application to the BigInsights catalog

� Package and publish your application from Eclipse

� Specify application name, workflow requirements, etc.

© 2010 IBM Corporation85

Deploy your application on the cluster

� Access the Applications tab of the Web console
� “Manage” the published applications
� Locate your new application and deploy it
� Create credentials store file in DFS (if needed) -- see next chart
� Optionally, execute the application after it’s been deployed

© 2010 IBM Corporation86

Simple credential store properties file

© 2010 IBM Corporation87

Run your Big SQL application on the cluster

© 2010 IBM Corporation88

Upgrade your application (optional)

� Satisfy evolving business requirements, improve flexibility
– Example: add input parm(s)

� Modify code and re-package, re-publish, re-deploy

create table if not exists $TABLE
(id integer not null,
name varchar(50),

url varchar(50),
contactdate string)

© 2010 IBM Corporation89

contactdate string)
row format delimited

fields terminated by ','
stored as textfile;

load hive data local inpath
'/home/biadmin/sampleData/DBMS/RDBMS_data.csv'

-- overwrite
into table $TABLE;

Upgrade your application (con’td)

� Re-publish your application from Eclipse

� Adjust workflow specs for input parm

© 2010 IBM Corporation90

Summary

� Eclipse tools simplify big data application development for

BigInsights
– Wizards

– Context-sensitive help

– Oozie workflow generation

– Built-in test environment

– Etc.

© 2010 IBM Corporation91

– Etc.

� Application catalog provides easy way to locate and launch

apps of interest
– Developers use Eclipse tools to package/publish their applications to

this catalog

– Application upgrades easily managed

