Advanced algorithms

Freely using the textbook by Cormen, Leiserson, Rivest, Stein

Péter Gacs

Computer Science Department
Boston University

Spring 2014

The class structure

See the course homepage.
In the notes, section numbers and titles generally refer to the book:
CLSR: Algorithms, third edition.

For us, a vector is always given by a finite sequence of numbers. Row
vectors, column vectors, matrices.
Notation:

o Z: integers,

o Q: rationals,

o R: reals,

o C: complex numbers,

@ F,: residues modulo the prime number p.

Q. R, C, F, are ficlds (allowing division as well as multiplication).
(We may get to see also some other fields later.)

Addition: componentwise. Over a field, multiplication of a vector by
a field element is also defined (componentwise).

Linear combination.

Vector spaces

Vector space over a field: a set M of vectors closed under linear

combination.
Elements of the field will be also called scalars.

o The set C of complex numbers is a vector space over the field R
of real numbers (2 dimensional, see later).

o It is also a vector space over the complex numbers (1
dimensional).

o {(x,y,2):x+y+z=0}.

o {(2t+u,u,t—u):t,Lue R}

Linear dependence

Subspace. Generated subspace.
Two equivalent criteria of dependence:

@ one of them depends on the others (is in the subspace generated
by the others)

@ a nontrivial linear combination is 0.

e {(1,2),(3,6)}. Two vectors are dependent when one is a scalar
multiple of the other.

° {(1’07 1)9 (O’ 1’ O)’ (1’ 1, 1)}'
Basis in a subspace M: a maximal lin. indep. set.

WEUEN] A set is a basis iff it is a minimal generating set.

e Abasisof {(x,y,z) : x+y+2z=0}is{(0,1,—-1),(1,0,—1)}.
o Abasisof { (2t +u,u,t —u) : t,y € R}is {(2,0,1),(1,1,-1)}.

All bases have the same number of elements.

Proof. Via the . O

of a vector space: this number.

The set of all n-tuples of real numbers with the property
that the sum of their elements is 0 has dimension n — 1.

Let M be a vector space. If b; is an n-element basis, then each vector
x in M in has a unique expression as

x =x1by +---+x,b,.
The x; are called the of x with respect to this basis.

If M is the set R" of all n-tuples of real numbers then the
n-tuples of form e; = (0,...,1,...,0) (only position i has 1) form a
basis. Then (x1,...,X,) = x(e1 + - - + Xp€p.

If A is the set of all n-tuples whose sum is 0 then the

n — 1 vectors

(1’ _13 0’
(0, 19 _1a 0,

(o, o, 0, 0O,

form a basis of A (prove it!).

0)
0)

Matrices

@ (aij). Dimensions. m X n

e Diagonal matrix diag(ai,. ..,ann)

o Identity matrix.

o Triangular (unit triangular) matrices.
o Permutation matrix.

o Transpose A”. Symmetric matrix.

Matrix representing a linear map

A p X g matrix A can represent a lincar map R? — R? as follows:

X1=auy1 + - + diglq

.X'p = aplyl 5P 000 b apqu

With column vectors x = (x;), y = (y;) and matrix A = (a;;), this can
be written as

x = Ay.

This is taken as the definition of matrix-vector product,

General definition of a linear transformation F : V. — W. Every such
transformation can be represented by a matrix, after we fix bases in
Vand W.

Matrix multiplication

Let us also have

yi=buzi+- +biyzy

Yq= bqlzl toees F bqrzr
writeable as y = Bz. Then it can be computed that

x =Cz where C = (Cik),

Cik =apbig+- -+ +aighgr (i=1,....p, k=1,...,r).

We define the matrix product
AB=C

from above, which makes sense only for matrices (p X q
and g X r). Then

x = Ay = A(Bz) = Cz = (AB)z.

From this we can infer also that matrix multiplication is

For A= (%), B=(%)) we have AB # BA.

Transpose of product
Easy to check: (AB)T = BTAT.
Inner product

If a = (a;), b = (b;) are vectors of the same dimension n taken as
column vectors then

a'h=ab, +-+ayb,

is called their : it is a scalar. The
() of a vector v is defined as

VoTo = (S

The (less frequently used) makes sense for any two
column vectors of dimensions p, g, and is the p X ¢ matrix

abT = (aibj).

Inverse, rank

(AB)"! =B~ !AL

(AT)—l — (A—l)T.

A square matrix with no inverse is called singular. Nonsingular
matrices are also called regular.

2l The matrix (1) is singular.

Im(A) = set of image vectors of A. If the colums of matrix A are
ai,...,a,, then the product Ax can also be written as

Ax = x1a1 + -+ + xpay.

This shows that Im(A) is generated by the column vectors of the
matrix, moreover

1 0
0 1
0|, and so on.

aj=Aej, withel = 0 , €2 =

(=}
(=}

Ker(A) = the set of vectors x with Ax = 0.
The sets Im(A) and Ker(A) are subspaces.
of a matrix: non-0 element of the kernel.

IfA:V — W then

dim Ker(A) + dimIm(A) = dim(V).

A square matrix A is singular iff KerA # {0}.

More generally, a non-square matrix A will be called singular, if
KerA # {0}.

o The of a set of vectors: the dimension of the space they
generate.

@ The column rank of a matrix A is dim(ImA).

@ The row rank is the dimension of the vector space of linear
functions over ImA (the of ImA).

QEUOU] The two ranks are the same (in general, the dual of a
vector space V has the same dimension as V). Also, rank(A) is the
smallest r such that there is an m X r matrix B and an r X n matrix C
with A = BC.

Interpretation: going through spaces with dimensions m — r — n.
We will see later a proof based on computation.

A special case is easy:

A triangular matrix with only r rows (or only r
columns) and all non-0 diagonal elements in those rows, has row
rank and column rank r.

The outer product A = be” of two vectors has rank 1,
and this product is the decomposition.

The following is immediate:

A square matrix is nonsingular iff it has full rank.

@ A permutation: an invertible map o : {1,...,n} - {1,...,n}.

o The product of two permutations o, 7 is their consecutive
application: (o7)(x) = o(z(x)).

@ A transposition is a permutation that interchanges just two
elements.

@ An inversion in a permutation: a pair of numbers i<j with
o(i)>o(j). We denote by Inv(o) the number of inversions in o.

@ A permutation o is ¢ven or odd depending on whether Inv(o) is
even or odd.

@ A transposition is always an odd permutation.
O Inv(o7) = Inv(o) + Inv(r) (mod 2).

It follows from these that multiplying a permutation with a
transposition always changes its parity.

Let A = (a;j) an n X n matrix. Then

det(4) = > (-1™Va150)200) - Ano(n)- (1)

o

Geometrical interpretation the absolute value of the determinant of
a matrix A over R with column vectors ay,. . ., a, is the volume
of the parallelepiped spanned by these vectors in n-space.

Recursive formula Let A;; be the submatrix () obtained by
deleting the ith row and jth column. Then

det(A) = Z(—l)”jaij det(A,;).
J

Computing det(A) using this formula is just as inefficient as
using the original definition (1).

o detA = det(AT).
o det(vy,vy,...,0,)is multilinear, that is linear in each argument
separately. For example, in the first argument:

det(au + fv,v,,. .. ,v,) = adet(u,v,,...,v,) + fdet(v,v,,...,0,).

Hence det(0,v,,...,v,) = 0.

e Antisymmetric: changes sign at the swapping of any two
arguments. For example for the first two arguments:

det(vy,v1,...,0,) = —det(vy,vz,...,0,).

Hence det(u,u,v,,...,v,) = 0.

It follows that any multiple of one row (or column) can be added to
another without changing the determinant. From this it follows:

A square matrix is singular iff its determinant is 0.
The following is also known.

det(AB) = det(A) det(B).

Positive definite matrices

An n X n matrix A = (a;;) is symmetric if a;; = aj; (thatis, A = AT).
To each symmetric matrix, we associate a function R” — R called a
quadratic form and defined by

x> xTAx = Z a;jXix;.
ij

The matrix A is positive definite if xTAx > 0 for all x and equality
holds only with x = 0.

For example, if B is a nonsingular matrix then A = BT B is always
positive definite. Indeed,

x"B"Bx = (Bx)T(Bx),

the squared length of the vector Bx, and since B is nonsingular, this
is 0 only if x is 0.

Ais positive definite iff A = BT B for some nonsingular
B.

Divide and conquer

Polynomial multiplication

We will illustrate here the algebraic divide-and-conquer method. The
problem is similar for integers, but is slightly simpler for
polynomials.

n-1

f=f) =) ax',
i=0
n-1

g=flx)=) bix,
i=0
2n-2

FE)9() = htx) = Y exxt,

k=0
where ¢ = agby + a1bg_1 + - + agby.

Let M(n) be the minimal number of

needed to compute the product of two polynomials of length n. The
school method shows

M(n) < n®.

Can we do better?

Divide and conquer

For simplicity, assume n is a power of 2 (otherwise, we pick n’>n that
is a power of 2). Let m = n/2, then

f)=ap+ - +am1x™ 4+ x™(am + -+ agmo1x™)

= fo(x) + x" fi(x).

Similarly for g(x). So,

9= fogo + x™(fogs + figo) + x*™ figs.

In order to compute fg, we need to compute

ﬁ)gOsﬁ)gl + flgO’flgl-

How many multiplications does this need? If we compute f;g;
separately for i,j = 0,1 this would just give the recursion

M(2m) < 4M(m)

which suggests that we really need n? multiplications.

Trick that saves us a (polynomial) multiplication:

fog1 + figo = (fo + f1)(go + 1) = fofi — Gogn. ()

We found M(2m) < 3M(m). This trick saves us a lot more when we
apply it recursively.

M(2%) < 3¥M(1) = 3%.
So, if n = 2%, then k = logn,
M(n)<310gn — 210g n-log3 _ nlog3'

log4 = 2, so log 3<2, so n!°83 is a smaller power of n than n?.
(It is actually possible to do much better than this.)

Let L(n) be the complexity of multiplication when additions of

constants are also counted. The addition of two polynomials of
length n takes at most n additions of constants. Taking this into
account, the above trick gives the following new estimate:

L(2m) < 3L(m) + 10m.
Let us show from here, by induction, that L(n) = O(n'°¢3).

) < 3L(m) + 10m,
L(4m) < 9L(m) + 10m(2 + 3),

) < 27L(m) + 10m(2% + 2 - 3 + 3%),
L(2¥) < 3KL(1) + 102K 1 + 2572 .3 4 ... 4 3K
<3k 410351 (14 2/3+(2/3)% + -+).

Here is a trick to prove L(n) = O(n%) with less calculation, where

a =log3: Try to prove L(n) < ¢ - n% — dn by mathematical induction.
Here, c,d>0 will be calculated to fit the needs of the proof. Again, we
only use induction for n of the form 2*.

L(3m) < 3L(m) + 10m < 3(cm® — dm) + 10m
=c(2m)* — 2m(3d/2 - 5).

The last term is d - (2m) if 3d/2 — 5 = d, that is d = 10. In this case,
the induction step is valid.

Base step: L(1) =1 < ¢ - 1% — 10 - 1 will work with ¢ = 11. We got
L(n) < 11n%* — 10n. This bound has worse constants than by the other
method, but was easier to prove. (It can be improved somewhat by
starting from a larger n as the base case.)

o As we see, counting also the additions did not change the upper
bound substantially. The reason is that even when counting only
multiplications, we already had to deal with the most important
issue: the number of recursive calls when doing
divide-and-conquer.

o The best-known algorithm for multiplying polynomials or
integers requires of the order of nlog nloglog n operations.
(Surprisingly, it uses a kind of “Fourier transform”.)

Faster matrix multiplication

For matrix multiplication, there is a trick similar to the one seen for
polynomial multiplication. Let

a b e f
A=e o=)
C=AB= (r s) :
t u
Thenr = ae + bg, s = af + bh,t = ce +dg, u = cf + dh. The naive way
to compute these requires 8 multiplications. We will find a way to
compute them using only 7.

Let

Then

Pl = a(f - h)9

Pz = (a + b)h,

P; = (c + d)e,
Py=d(g—e),

Ps = (a+d)e+h),
Pg=(b—-d)g+h),
Py =(a=c)e+f).

r = —Py + Py + P5 + P,
s=P; + Py,
t = P3+ Py,
u=P, —P;+P5—Py.

In all products P;, the elements of A are on the left, and the elements
of B on the right. Therefore the calculations leading to (3) do not use
commutativity, so they are also valid when a,b,- - - , g, h are matrices.
If M(n) is the number of multiplications needed to multiply n X n
matrices, then this leads (for n a power of 2) to

M(n) < n'°87,
Taking also additions into account:
T(2n) < 7T(n) + O(n?).

Read Section 4 of CLRS to recall how to prove from here
T(n) = O(n'°87).

o The currently best known matrix multiplication algorithm has an
exponent substantially lower than log 7, but still greater than 2.

o There is a great difference between the applicability of fast
polynomial multiplication and fast matrix multiplication.

o The former is practical and is used much, in computing products of
large polynomials and numbers (for example in cryptography).

e On the other hand, fast matrix multiplication is an (important)
theoretical result, but with serious obstacles to its practical
application. First, there are problems with its numerical stability,
due to all the subtractions, whose effect may magnify round-off
errors. Second, and more importantly, large matrices in practice are
frequently sparse, with much fewer than n? elements. Strassen’s
algorithm does not exploit this.

Let A(x) = agp + a;x + - -+ + a,_1x" ! be a polynomial, over the
complex numbers, and let &, &, . ., &,-1 be n different numbers.
Then from the n numbers A(&), A(¢1),. . .,A(E,—1) we can determine
the n coefficients ag, as,. . . ,a,—1 uniquely. Indeed, if two different
polynomials A and A’ of degree n — 1 would give the same values,
then A(x) — A’(x) would have n different roots. But a nonzero
polynomial of degree n — 1 can have at most n — 1 roots. Viewing the
array a = (agp,. . .,a,—1) as an n-dimensional vector, the new vector
b = (bo,...,by,_1) where by = A(&%) is obtained by a linear
transformation from a: as we have just seen, this transformation is
invertible.

Let A(x) = ag + a;x + apx?, and & = 2, {; = 3, & = 4. This
expresses by linearly from ay,a;,ay, for example by = aq + 2a; + 2%a,.

What does it cost to compute the n numbers A(&y),. .., A(,-1)? If we
compute them one-by-one, then each one takes O(n) operations, so
the whole will take O(n?). It turns out that, at least in some cases, we
can do it much cheaper. We make a particular choice of

&0, &1, ., Eq—1: let they be all nth , that is all n numbers
& with the property " = 1.

For n = 2 these are 1, —1.
For n = 3 they are 1, —% + i‘/Tg, —% = i‘/Tg.

For n = 4, they are 1,i,—1,—i.

Here is a formula for all n:

. 2k 21k
eka/n:COS_+i-sin—, k=0,1,...,n—1.
n n

To obtain an array, we need to order the nth roots of unity somehow.
We will order them as 1,¢,€2,...,e" 1, where we chose ¢ as a
root of unity: has the property that all these powers are
distinct (for example & = e?7/™),
If we consider just the array a = (ag,ay, . . . a,—1) then the array
b = (by,bs,. .. ,b,_1) where by = A(e¥) is called the (discrete)
of the array a:

bk = A(gk) =aqy + alfk + a252k b+ an_lg(n—l)k’

Note that the order of its elements depends on our choice of the
primitive root €.

We will compute the Fourier transform by a divide-and-conquer
trick, in O(nlog n) operations.

As earlier, we will assume n = 2" for some r.

If m = n/2 then, for any nth root of unity #:
— 2 2m-1
A(n) =ag+ain+ap” + -+ + asm-11
=ao+asn? +agnt +---+n(a; +asn® +aspt +...)

= A(n®) + nAs(n®).

where Ay, A; are polynomials of degree m — 1. Now if 7 is a 2mth
root of unity then 7? is an mth root of unity, since (y?)™ = p?™ = 1.
We reduced computing the Fourier transform of A to the same
problem for the m — 1-degree polynomials A, A;, further 4m extra
operations (one multiplication, one addition for j = 0,...,2m — 1).
Let L(n) be the number of operations needed to compute the Fourier
transform of an n — 1-degree polynomial, then we found

L(2m) < 2L(m) + 4m.

Repeated application shows L(n) < 4nlogn.

Inverting the Fourier transform

The linear transformation that is the Fourier transform has a very
simple inverse: it is also almost a Fourier transform, just using the
primitive root ¢!, and a multiplicative constant n. Let us show this
by calculation. The calculation uses the following important fact
about a root of unity n:

We have 1+ +n+---+n" ! =nifp = 1, and 0 otherwise.

This can be seen by the formula for the geometric series.

Now if B(x) = by + byx +--- + bn 1x"! then let us compute B(g_k),

where by definition b, = Y72 ae?.
n-1
S, z S g
=0 q=0
=il n-1
- p(g=Fk)
“Sa, 3w,
q=0 p=0

The last sum can be written as Z;;Ol n?P where n = e, By the above
fact, thisis n if p = k and 0 otherwise. So

B(¢7%) = nay.

It follows that inverting the Fourier transform takes also only
O(nlog n) operations.

Here is a fast way to multiply two polynomials f(x) and g(x) of
degree n — 1, using Fourier transform. As h(x) = f(x)g(x) has degree
2n — 2, we will use Fourier transform of degree 2n.

@ Choose a 2nth root of unity ¢, and compute the Fourier
transforms

(f(1), f(e),....f(e*"71)) and (g(1),g(e)s . . . ,g(e*" 7).
@ Compute the products
h(e®) = F(eF)g(e), k=0,1,...,2n—1.

© By the inverse Fourier transform, compute the coefficients of
the polynomial h(x).

The first and the last step takes O(nlog n) operations. The middle
step takes only 2n multiplications.

What does this say about the multiplication of large

integers? Or even for polynomials in terms of ?

Nothing immediately, since we counted each exact multiplication
and addition of complex numbers as just one operation.
Two possible ways to proceed, each needs more work:

o Analyze the approximate computations.

o Compute exactly, but not with complex numbers but with
integers modulo some large number, where there are also roots of
unity.

Linear equations

Informal treatment first

apXi+--+ + aipXp = by,

Am1X1 +°** + GmpXn = by,

How many solutions? Undetermined and overdetermined systems.

For simplicity, let us count just multiplications again.
: eliminating first x;, then x;, and so on.

n-n-(n+(n—1)+---)=n/2.
: eliminating x only from equations
k + 1,k +2,.... Then solving a triangular set of equations.
Elimination:
nn-1)+m-1)n-2)+---=n’/3.

Triangular set of equations:

1+2+---+(n—1)~n?/2.

Sparsity and fill-in

A sparse system that fills in.

X1+ Xg+ X3+ Xg+ X5+ Xg=4,

X1 + 6x3 =5,
X1 + 6Xx3 =5,
X1 + 6x4 =5,
X1 + 6x5 =5,
X1 + 6x¢ = 5.

Eliminating x; fills in everything. There are some guidelines that
direct us to eliminate x, first, which leads to no such fill-in.

(Possibly changing the order of equations and variables.)
o Contradiction: no solution.
o Triangular system with nonzero diagonal: 1 solution.

o Triangular system with k lines: the solution contains n — k
Xk+1s+++5Xn-

anxy + - + a1, k+1Xk+1 t 00+ A1pXp = b1,
A22X2 + - - + a2 k+1Xk+1 T2+ A2pXp = b,
ARkXk +°°* + Ak k+1Xk+1 +°*° + QknXp = by,

where ay1,...,axx # 0. Then dimKer(A) = n — k, dimIm(A) = k.

o The operations performed do not change row and colum rank, so
we find (row rank) = (column rank) = k.

The original system has no solution if and only if a certain other
system has solution. This other system is the one we obtain trying to
form a contradiction from the original one, via a linear combination
with coefficients yy,. .., ym:

Y1+ anXy+ -0+ AipXp = b
+ Y2l G21X1 + -+ AapXp =

|
S
)

+ Ym |@m1X1 + 0+ AmnXn = b
= O-x;+---+ 0-x,= b (£0)

We can always make b’ = 1 by scaling the coefficients y; accordingly.

This gives the equations

anyi+- + amym =0,

Apy1+ -+ AmpYm =0,
b1y1+"' + bmymzl-

Concisely: Ax = b is unsolvable if and only if (y*A = 0, y;b = 1) is
solvable.

Gives an easy way to that the system is unsolvable. The set of
coefficients y; can be called a , Or of the
unsolvability of the original system.

Why is this true? If the equation is unsolvable, Gaussian elimination
produces an equation “0 = b’” where b’ # 0. And it only combines
equations linearly.

LUP decomposition

Permutation matrix. PA interchanges the rows, AP the columns.

The following matrix represents the permutation (2,3, 1)
since its rows are obtained by this permutation from the unit matrix:

0 0 1
1 0 0
010

of matrix A:
PA=LU
Using for equation solution:
Pb = PAx = LUx.

From here, forward and back substitution.

Computing the LU decomposition

Zeroing out one column

The following operation adds A; times row 2 to rows 3,4,... of A:
1 0 0 0 O 0
0 1 0 0 O 0
L,A=|0 A3 1 0 0 0fA.
0 A& 010 0
1 0 00 0 ... O
6 1 0 O0O0 ... O
L;'=0 % 100 ... 0
0 -4 0 1 0 ... 0

Similarly, a matrix L; might add multiples of row 1 to rows 2,3,. ...

Repeating:

B; = L,'L{'A,

1 0
Ay 1

A=LL,B; = 43 13

Ay g

S = O O

= o O O

S © O O

apix 4dpz dis

o @

0 ay ay
(2)

0 0 g
o o0 da?

If

then setting

10 B 1 0
L = s L = ’
! (U/au In—l) ! (—0/1111 In—l)

we have Ll_lA = B,, A = LB, where

B, = al wT
27 \o A -vwl/ay)"

The matrix Ay = A’ — vw’ /ay; is the of A.
If A, is singular then so is A (look at row rank).

Positive (semi)definite matrix

oT

A’)' Positive
definiteness implies a;;>0, positive semidefiniteness implies aj; > 0.
Moreover, it implies that if a;; = 0 then a;; = aj; = 0 for all j

(exercise!). Assuming a;;>0, with U; = LlT

. .. . a
If A is symmetric, it can be written as A = (;l

_ _ a 0 _ _ 0
L11AU11=(0 Az), Ay = (0 In_l)LllAUll(In_l),

with Schur’s complement A, = A” — v’ Jay;.

If A is positive (semi)definite then A, = A’ — vv' /ay,

is also.

Proof. We have y' Ayy = xT Ax, with

1(O
x =U; ! (In_l)y =: Myy.

If y is a witness for A, not being positive (semi)definite by yT A,y < 0
then x = M,y is a witness for A not being positive (semi)definite. O

Let A, = (a)2)7
(2)

i j=> Suppose it is positive semidefinite. This implies

> 0. Take the first i with a()>0 Then all rows and columns of A,
Wlth indices <i are 0. Continuing the decomposition using a()

either arrive at A = LDLT with diagonal D > 0 or get a w1tness
against positive semidefiniteness.

Passing through a permutation

Suppose that having A = L;L;B; = LBs, we want to permute the
rows 3,4,. .. using a permutation s before applying some L; Tto
L' A (say because position (3,3) in this matrix is 0). Let P be the
permutation matrix belonging to 7:

PL'A = L;B,,
PA = PLP 'L;B, = LL;B, where
1 0 0 0 0
Ay 1 0 0 0
L=PLP ! = |43 Haxz 1 0 of,
0 1 0

An@)y Hn(a)

assuming L; was formed with A5,1s,. .., and L, with us, pg,

Organizing the computation: In the kth step, we have a
representation

PA = LBy,

where the first k columns of By, are 0 below the diagonal.

During the computation, only one permutation 7 needs to be
maintained, in an array.

Pivoting (see later).
Positive definite matrices do not require it (see later).

Putting it all in a single matrix: Figure 28.1 of CLRS.

LUP decomposition, in a single matrix

fori=1tondo n[i] « i

fork =1tondo
p«0
fori=ktondo
if |a;i|>p then
p < lairl
k" i
if p = 0 then error “singular matrix”

exchange 7[k]| & x[k’]
for i = 1 to n do exchange ay; & ay/;

fori=k+1tondo

aix < aik/akk
forj=k+1tondoa;j < a;; — a;rax;

o What if there is no pivot in some column?

o General form:
PAQ = LU, PA=LUQ".
o Using for equation solution:
Pb = PAx = LUQ 'x.

Find Pb by permutation via P, then Q ~'x by forward and
backward substitution, then x by permutation via Q.

For an n X n matrix A, the row rank is the same as the
column rank.

Proof. Let PAQ = LU. If U has only r rows then L needs to have
only r columns, and vice versa, so L: n X r and U: r X n.

Let us see that r is the row rank of A. Indeed, A has a column rank r
since U maps onto R” and the image of L is also r-dimensional. By
transposition, the same is true for AT = UTLT, and hence the row
rank is the same as the colum rank. O

Inverting matrices

o Computing matrix inverse from an LUP decomposition: solving
equations

AX,-=e,-, i=1,...,n.

dp)t=(d; ..., d0h).

o Inverting a matrix L = (£ (gg)(1 0):Wehave

'cr
o I 0 B! o0
“\-bp7'c 1/\ 0 !
(%

o Inverting a diagonal matrix: (dy,. . .

D
B! 0
D~ -D-'cB™' D7)
U=

e For an upper trlangular matrix S) we get similarly

1 B! —B~lcD™!
u- _(o D!)

Multiplication is no harder than inversion.

Proof. Let
I 0 0 I 0 0\(I O
D = L1L2 =|A I 0|]=|A I O 0 I
0 B I 0 0 I)J\0 B

Its inverse is

D'=L'L;' =

S O M~
~
(=]
|
>
~
[=]
I
|
>

_~ o O

Inversion is no harder than multiplication.

Let n be power of 2. Assume first that A is symmetric, positive
definite, A = (B CDT) Trying a block version of the LU

decomposition:
I 0)\(B c’
A= -1 -1~T| -
CB I)\o D-CB°C

Define Q = B~!C7, and define the asS =D -CQ.
We will see later that it is positive definite, so it has an inverse.

We have A = (QIT (}) (B CST) . By the inversion of triangular

matrices learned before:
B c’\"' (B -B'c’s™'\ (B! -Qs7!
0 S “lo s1 1o st)

a1 0 B -0s'\ (B'+Qs'QT -Qs!
- _QT I 0 S—l - _S—IQT S—l 0

4 multiplications of size n/2 matrices
Q=B7'c’, Q'c’, s7'Q", o(s7'o"),
further 2 inversions and ¢ - n® additions:

I(2n) < 2I(n) + 4M(n) + cin® = 2I(n) + F(n),
I(4n) < 4I(n) + F(2n) + 2F(n),
12%) < 2F1(1) + F(2*~Y) + 2F(25 %) + - - + 2K71F(1).

Assume F(n) < c,n® with b>1. Then
F(2K~1)2F < cyabk=bivi = gbky=(b=1)i

So,

1(2%) < 2F1(1) + 255 D(1 4 270071 4 p=206-D) L.

<2k 4+ ¢y280=1) y(1 = g=(b-1))

Inverting an arbitrary matrix: A™! = (ATA)71AT.

Least squares approximation (reading)

Data: (xlayl), . e s(xmaJ/m)~
Fitting F(x) = ¢ fi(x) + - - - + cp fu(x).
It is reasonable to choose n much smaller than m (noise).

filtk)) fole) o falxr)
i) falxa) ... fulx2)

fiGm) fGm) er falom)

Equation Ac =y, generally unsolvable in the variable c. We want to
minimize the error 1 = Ac — y. Look at the subspace V of vectors of
the form Ac. In V, we want to find ¢ for which Ac is closest to y.

Then Ac is the projection of y to to V, with the property that Ac — y
is orthogonal to every vector of the form Ax:

(Ac —y)TAx =0 for all x, so
(Ac-y)TA=0
Al(Ac-y)=0
The equation AT Ac = ATy is called the , solvable by

LU decomposition.

Explicit solution: Assume that A has full column rank, then AT A is
positive definite.

c = (ATA)"1ATy. Here (ATA)"1AT is called the of A.

Computing the determinant exactly

Computing the determinant of an integer matrix is a task that can
stand for many similar ones, like the LU decomposition, inversion or
equation solution. The following considerations apply to all.

o How large is the determinant? Interpretation as volume: if matrix
T al then
yee @y,

A has rows a;
detA < |ay] ++|ay| = l‘l(Z a2,

i=1 j=1

This is known as Hadamard's inequality.

Working with exact fractions

@ A single addition or subtraction may double the number of digits
needed, even if the size of the numbers does not grow.

ad + be
bd

c
+_
d

Sl

o If we are lucky, we can simplify the fraction.

o It turns out that with Gaussian elimination, we will be lucky
enough.

Assume that Gaussian elimination on an integer matrix
A succeeds without pivoting. Every intermediate term in the
Gaussian elimination is a fraction whose numerator and
denominator are some subdeterminants of the original matrix.

(By the Hadamard inequality, these are not too large.)
More precisely, let

o A = be the matrix after k stages of the elimination.

o D'® = the minor determined by the first k rows and columns of
A

° D(i;() =, for k + 1 < i,j < n, the minor determined by the first k
rows and the ith row and the first k columns and the jth column.

(k) _ det D(i]]c.)

ij 7 detD®)"

Then for i, j>k we have a

Proof. In the process of Gaussian elimination, the determinants of
the matrices D'® and D(;) do not change: they are the same for AX)

as for A. But in A®), both matrices are upper triangular. Denoting
the elements on their main diagonal by dj,. . .,d k+1,a(l.f), we have

detD® = d, - - dp.q,
detD\Y =d; -+ dyuy - .

Divide these two equations by each other. O

o The theorem shows that if we always cancel (using the Euclidean
algorithm) our algorithm is polynomial.

@ There is a cheaper way than doing complete cancellation (see
exact-Gauss.pdf).

o There is also a way to avoid working with fractions altogether:
. Se for example the Lovasz lecture notes.

When rounding is unavoidable (reading)

Floating point: 0.235 - 10° (3 digits precision)

Complete pivoting: experts generally do not advise it. Considerations
of fill-in are typically given preference over considerations of
round-off errors, since if the matrix is huge and sparse, we may not
be able to carry out the computations at all if there is too much fill-in.

0.0001x+ y=1
0.5x+0.5y =1

Eliminate x : —4999.5y = —4999.
Rounding to 3 significant digits:

—5000y = —5000
y= 1
X = 0

True solution: y = 0.999899, rounds to 1, x = 1000.1, rounds to 1. We
get the true solution by choosing the second equation for pivoting,
rather than the first equation.

: comparing the solution with the true
solution.
We can make our solutions look better introducing
: showing that our solution solves precisely a system that
differs only a little from the original.

Frequently, (choosing the pivot element just in the
k-th column) is sufficient to find a good solution in terms of forward
error analysis. However:

x + 10,000y = 10,000 5)
0.5x + 0.5y = 1

Choosing the first equation for pivoting seems OK. Eliminate x from
the second eq:

—5000.5y = —4,999
y= 1 after rounding
x= 0

This is wrong even if we do backward error analysis: every system

apix +apy = 10,000
azi1x + azy = 1

satisfied by x = 0, y = 1 must have ay; = 1.

The problem is that our system is not . and

E rl-a,-jijj = r,-b,-

ij
where r;,s; are powers of 10. : we can always achieve
0.1<max|r;a;js;| < 1,
J

0.1<max |r;a;;s;| < 1.
L

In (5), let r; = 107*, all other coeffs are 1: We get
back (4), which we solve by partial pivoting as before.

Sometimes, like here, there are several ways to scale, and not all are

good.

Choose s, = 1074, all other coeffs 1:

X+ vy’ =10,000
0.5x + 0.00005y" = 1

(We could have gotten this system to start with. . ..) Eliminate x from
the second equation:

—0.49995y" = —4999
y’ = 10000 after rounding
x = 0

so, we again got the bad solution.

Fortunately, such pathological systems are rare in practice.

Linear programming

Problem definition

How about solving a system of linear inequalities?
Ax < b.

We will try to solve a seemingly more general problem:

maximize ¢’x

subjectto Ax <b.

This optimization problem is called a lincar program. (Not program
in the computer programming sense.)

@ Objective function, constraints, feasible solution, optimal
solution.

e Unbounded: if the optimal objective value is infinite.

o A feasible solution makes a constraint tight if satisfies it with
equality.

Three voting districts: urban, suburban, rural.
Votes needed: 50,000, 100,000, 25,000.
Issues: build roads, gun control, farm subsidies, gasoline tax.

Votes gained, if you spend $ 1000 on advertising on any of these

issues:
adv. spent | policy urban | suburban | rural
x1 | build roads -2 5 3
X | gun control 8 2 -5
x3 | farm subsidies 0 0 10
x4 | gasoline tax 10 0 =
votes needed 50,000 100,000 | 25,000

Minimize the advertising budget (x; + - - - + x4) - 1000.

The linear programming problem:

minimize X1+ Xo+ X3+ Xy
subjectto —2x; + 8x; + 10x4 = 50,000
5x1 + 2x3 > 100,000
3x, — 5x5 + 10x3 — 2x4 > 25,000
Implicit inequalities: x; > 0.
@ Solutions form a that is
o A is a feasible solution that is the unique solution of the
sytem of equations obtained from the constraints that it makes
(equality).
° of the polyhedron: points that are not the middle

of any segment of positive length that is in in the polyhedron.

o Homework: the extremal points are the vertices, (and vice versa).

Solution idea

Two-dimensional example

maximize X1+ X

subjectto 4x;— x2< 8
2x1 + x2< 10
5x1 — 2x3 2 -2
X1, xp2 0

Graphical representation, see book.

The simplex algorithm: moving from a vertex to a nearby one
(changing only two inequalities) in such a way that the objective
function keeps increasing.

Worry: there may be too many vertices. For example, the set of 2n
inequalities

0<x; <1, i=1,...,n

has 2" extremal points.

Formulating problems as linear programs

Maximum error minimization

Solving an unsolvable system of equations Ax = b, we have seen that
we can minimize Ax — b in a least-square sense. Another possibility
is to minimize the maximum difference:

min max |a! x — bj.
X 1
Linear programming can solve this:

minimize y
T
1

subjectto -y<ajx-b;<y,i=1,...,m.

Single-source shortest paths

(Maximization is counter-intuitive, but correct.)

maximize d[t]
subject to d[v] < d[u] + w(u,v) for each edge (u,v)
d[s] = 0

Capacity c¢(u,v) > 0.

maximize Y, f(s,v)

subject to fu,v) < c(u,v)
fww)=-f,u)
2o fwv)= 0 forueV —{s,t}
The matching problem.

Given m workers and n jobs, and a graph connecting each worker
with some jobs he is capable of performing. Goal: to connect the
maximum number of workers with distinct jobs.

This can be reduced to a maximum flow problem (see homework and
book). Using the fact that if the capacities are integer then there is an
integer optimal solution to the flow problem.

Minimum-cost flow
Edge cost a(u,v). Send d units of flow from s to t and minimize the
total cost

Z a(u,v) f (u,v).

u,v

Multicommodity flow

k different commodities K; = (s;,t;,d;), where d; is the demand. The
capacities constrain the aggregate flow. There is nothing to optimize:
just determine the feasibility.

Games

A zero-sum two-person game is played between player 1 and player
2 and defined by an m X n matrix A. We say that if player 1 chooses a
pure strategy i € {1,...,m} and player 2 chooses pure strategy

Jj €{1,...,n} then there is payofi: player 2 pays amount a;; to player
1.

m = n = 2, pure strategies {1,2} are called “attack left”,
“attack right” for player 1 and “defend left”, “defend right” for player
2. The matrix is

Player 1 can achieve max; min; a;;. Player 2 can achieve
min; max; a;;. Clearly, max; min; a;; < min; max; a;;. Typically the
inequality is strict.

Both players may improve their achievable values by randomization.
: a probability distribution over pure strategies.
p = (p1,...,pm) for player 1 and q = (qy, . . . ,qm) for player 2.

: 2ij aijpiq;j- Can be viewed as extension of both sets
of strategies to the infinite sets of distributions p,q. The big result
will be that now max, ming = ming max,.

Translation into linear programming: If player 1 knows the mixed
strategy q of player 2, he will want to achieve

fnax ZPi Z 4ijqj = max Z 4ijqj
i

J J
since a pure strategy always achieves the maximum. Player 2 wants

to minimize this and can indeed achieve

minmaxz aijq;.
q i :
J

Rewritten as a linear programming problem:

minimize ¢
subject to t> 2 aijq;
qj > 0,

i=1,...,m

ji=1,...

Standard and slack form

Standard form

maximize c¢°x
subjectto Ax

Nonnegativity constraints. Unbounded: if the optimal objective value
is infinite.
Converting into standard form:

o
xj = x; — x}, subject to x},x}" > 0.

Handling equality constraints.

Slack form
In the slack form, the only inequality constraints are nonnegativity

constraints. For this, we introduce on the left:
n
Xn+i = bi - Z aijXj.
=1
In this form, they are also called . The objective

function does not depend on the basic variables. We denote its value
by z.

Example for the slack form notation:

A= 2x1 — 3x2 + 3x3
X4= 7— X1— X2+ X3
Xs=—=7+ X1+ Xy— X3
Xe= 4— X1+ 2xy— 2x3

More generally: B = set of indices of basic variables, |B| = m.
N = set of indices of nonbasic variables, |[N| = n,
BUN ={1,...,m+ n}. The slack form is given by (N, B, A,b, c,v):

Z= v+ Yjen CjXj
X,‘Ibi—ZjeNainj for i € B.

Note that these equations are always independent.

The simplex algorithm

Slack form. Example:

A= 3x1 + X9 + 2x3
X4=30— X1 — x2—3x3
x5=24—2x1—2x2—5x3
x6=36—4x1— .‘X'Z—ZX3

@ A basic solution: set each nonbasic variable to 0. Since all b; are
positive, the basic solution is feasible here.

@ lteration step: Increase x; until one of the constraints becomes
tight: now, this is x¢ since b;/a;; is minimal for i = 6.

e Pivot operation: exchange x4 for x.
X1 =9—x2/4—x3/2 — x¢/4

Here, x; is the entering variable, x4 the lcaving variable.

o If not possible, are we done? See later.

In general:

The slack form is uniquely determined by the set of basic
variables.

Proof. Simple, using the uniqueness of linear forms. O

This is useful, since the matrix is therefore only needed for deciding
how to continue. We might have other ways to decide this.

@ Assume that there is a basic feasible solution. See later how to
find one.

Rewrite all other equations, substituting this x;:

z2=27+ x2/4+ x3/2—3x¢/4
xX1= 9— x3/4— x3/2— x4/4
x4 =21 —3x3/4 —5x3/2 + x¢/4
Xs= 6—3x5/2— 4x3+ x¢/2

Formal pivot algorithm: no surprise.

@ When can we not pivot?
o unbounded case
o optimality
@ The problem of cycling
Can be solved, though you will not encounter it in practice.
e Perturbation, or “ ”: choose variable with the smallest
index. (No proof here that this terminates.)
o Geometric meaning: walking around a fixed extremal point, trying

different edges on which we can leave it while increasing the
objective.

Initial basic feasible solution

Solve the following auxiliary problem, with an additional variable xo:

minimize X0
bj Ty —xo<b; i=1
subject to a;x —xo < b; i=1,...,m,
x, X922 0

If the optimal xy is 0 then the optimal basic feasible solution is a basic
feasible solution to the original problem.

Slack form:

zZ= = Xo,
— n .
xn+i_bi+x0_2jzlaijx]‘ i=1,...,m.

The basic solution for this basis is not feasible (otherwise we would
not need xo). Still, perform the operation of bringing x, into the
basis, using an i with smallest b;. Assuming b; is this:

— n
Z= by — Zj:l ai1jXj — Xn+1,
— n
Xo = —by + Zj:l a1jXj + Xn+1,
= n o _
Xp+i = (b; — by) — Zj:l(aij - alj)xj + Xpe1, [=2,...,m.

The basic solution of this system is feasible. Carry out the simplex
method starting from it. Eventually (if the optimum is xy = 0), the
last step can bring out xy from the basis again. After this, the basis is
a basis of the original problem, with a feasible basic solution.

Complexity of the simplex method

e Each pivot step takes O(mn) algebraic operations.

o How many pivot steps? Can be exponential.
Does not occur in practice, where the number of needed
iterations is rarely higher than 3 max(m,n). Does not occur on
‘random” problems, but mathematically random problems are
not typical in practice.

o Spielman-Teng: on a small random perturbation of a linear
program (a certain version of) the simplex algorithm terminates
in polynomial time (on average).

Polynomial algorithm

Is there a polynomial algorithm for linear programming? Two ways
to make the question precise:

o Is there an algorithm with number of algebraic operations and
comparisons polynomial in m + n? The answer is not known.

o Is there an algorithm with number of bit operations polynomial
in the length of input (measured in bits)? The answer is yes. We
will see such an algorithm; however, it is rarely competitive in
practice.

Primal (standard form): maximize ¢’ x subject to Ax < b and x > 0.
Value of the optimum (if feasible): z*. Dual:

Aly>c yTA>cT
y>0 y'= 0
min bTy min yTh

Value of the optimum if feasible: t*.

SCSTINNEEISEV Y 2+ < +*, moreover for every pair of

feasible solutions x, y of the primal and dual:

c'x <yTAx <y"b=b"y. (6)

Use of duality. If somebody offers you a feasible solution to the dual,
you can use it to upperbound the optimum of the primal (and for
example decide that it is not worth continuing the simplex iterations).

Interpretation:

o b; = the total amount of i that you have (kinds of
workers, land, machines).

@ a;; = the amount of resource i needed for activity j.

@ c; =the from a unit of activity j.

@ x; = amount of activity j.
Ax < b says that you can use only the resources you have.
Primal problem: maximize the income ¢’ x achievable with the given
resources.

Dual problem: Suppose that you can buy lacking resources and sell
unused resources.

Resource i has price y;. Total income:
L(x,y) = cTx + yT(b - Ax) = (cT — yTA)x + yb.
Let

fx) = ;r;fo L(x,y) < L(X,y) < sup L(x,y) = ().

x>0

Then f(x)> — oo needs Ax < b. Hence if the primal is feasible then
for the optimal x* (choosing y to make y’(b — Ax*) = 0) we have

sup f(x) = c'x* = 2"
X

Similarly g(y)<oco needs ¢’ < yT A, hence if the dual is feasible then
we have

Z* <infg(y) = (y)'h = t".
y

yIb-Ax)=0, (yTA-chHx=o.

Equality of the primal and dual optima implies
complementary slackness.

Interpretation:
o Inactive constraints have shadow price y; = 0.

o Activities that do not yield the income required by shadow prices
have level x; = 0.

LD VCIa e lENYE The primal problem has an optimum if

and only if the dual is feasible, and we have
z* =maxclx = miny’h = t*.
This surprising theorem says that there is a set of prices (called

) which will force you to use your resources optimally.
Many interesting uses and interpretations, and many proofs.

Our proof of strong duality uses the following result of the analysis
of the simplex algorithm.

If there is an optimum v then there is a basis
B c {1,...,m+ n} belonging to a basic feasible solution, and
coefficients ¢; < 0 such that

cTx=v+eélx,
is an identity for the variable x, where ¢; = 0 for i € B.

For the proof, define the nonnegative variables

Vi = —Cn+i i=1,...,m.

For any x, the following transformation holds, where i = 1,...,m,
j=1,...,n

Cixj=v+ D> EXj+) CneiXnai
Sem=ve Sim
=v+2cjx, Z(Fbi =) aix))

J

=0 - Z bl_Vl Z(Cj Z l]yl)x]

This is an identity for x, so the coefficients of the two sides must
match: 0 =v — }}; b;y;, and also ¢; = ¢; + 3; a;jyi.

Optimality implies ¢; < 0, which implies that y; is a feasible solution
of the dual.

Linear programming and linear inequalities

Any feasible solution of the set of inequalities

Ax <b
ATy>c
cTx - bly=0
x, y=0

gives an optimal solution to the original linear programming
problem.

Theory of alternatives

Theorem (Farkas Lemma, not as in the book) [NSRS LI N5 T

Ax < b is unsolvable if and only if a positive linear combination
gives a contradiction: there is a solution y > 0 to the inequalities

yTA =0,
y'b =1.

For proof, translate the problem to finding an initial feasible solution
to standard linear programming.

We use the homework allowing variables without nonnegativity
constraints:

maximize z)
subjectto Ax+z-e<b
Here, e is the vector consisting of all 1’s. The dual is
minimize ~ y'h
subjectto yTA=0 ®)
yTe =1
yI>o0

The original problem has no feasible solution if and only if max z<0
in (7). In this case, min y”bh<0 in (8). Condition y”e = 1 is not
needed. If we drop it then we can scale y to have y'b = —1.

Vectors uy,. . .,uy, in an n-dimensional space. Let L be the set of
convex linear combinations of these points: v is in L if

Zyﬂh':v, Zyizl, y = 0.
J i

Using matrix U with rows ul.T:
y'Uu=0o, Zyl—l y>0. 9)

If v ¢ L then we can put between L and v a with equation
d'v=c. Writing x in place of d and z in place of c, this says that the
following set of inequalities has a solution for x, z:

ul-Tx <z (i=1,...,m), vlx>z.

Can be derived from the Farkas Lemma.

Complementary slackness, geometrically

Assume that the hyperplane d” v = ¢ actually touches the set L, that

is c is as small as possible (supporting hyperplane). Then there are
d,y,c with the properties

T<c

d u;
dT(Z yiu;) = ¢,
Z}’i =1,
y = 0.

Then for all those constraints d” u; < ¢ that are not tight, the
coeflicient y; is 0. In other words, the optimal solution is already a
convex combination of those extremal elements of L that are on the
hyperplane d"v = c.

Application to games

Primal, with dual variables written in parentheses at end of lines:
minimize ¢
subjectto t—3;a;q;>0 i=1,....m (p;)

2jqi=1, (2)
q;=0, j=1,...,n

Dual:

maximize z
subject to Xipi =
- 2iaijpi+z<0, j=1,...,n
pi =z J

Dual for max-flow: min-cut

maximize Y, ,cv f(s,0)

subject to fu,v) < c(u,v), u,v eV,
fw,v) =-f(,u), u,v eV,
Zoev f(u,0) = 0, ueV\{st}

Two variables associated with each edge, f(u,v) and f(v,u). Simplify.
Order the points arbitrarily, but starting with s and ending with ¢.
Leave f(u,v) when u<v: whenever f(v,u) appears with u<uv, replace
with — f(u,v).

maximize Y. f(s,0)
subject to f(u,v)
—f(u,v)

Zu>u f(u,v) - Zv<u f(v,u)

Some constraints disappeared but others appeared, since in case of
u<uv the constraint f(v,u) < c(v,u) is written now — f(u,v) < c(u,v).
A dual variable for each constraint. For f(u,v) < c(u,v), call it y(u,v),
for — f(u,v) < c(v,u), call it y(v,u). For

D faw =) fou)=0

v>u v<u

c(u,v), u<v,
c(v,u), u<v,
0, u€eV\{s,t}

[[/ANR/N

call it y(u).

Dual constraint for each primal variable f(u,v), u<v. Since f(u,v) is
not restricted by sign, the dual constraint is an equation. If u,v # s
then f(u,v) has coefficient 0 in the objective function. The equation
foru # s,v # tis y(u,v) — y(,u) + y(u) — y() = 0.

Foru =s,v # t: y(s,v) — y(v,s) — y(v) = 1.

Foru # sbutv =t, y(u,t) — y(t,u) + y(u) = 0.

Foru = s,v = t: y(s,t) — y(t,s) = 1.

Setting y(s) = —1, y(t) = 0, all these equations can be summarized in

y(u.v) = y@,u) = y©) - y(w).

The objective function to minimize is ., c(u,v)y(u,v)

= > y.u)e(wv) + c(v.u)) + e(w)(y() - y(w)

u<v

= Z y(u,0)(c(u,0) + c,w)) + ¢, u)(y(u) - y©)).

u<v

For each u<v, minimize the corresponding term while keeping
y(©) — y(u) fixed. If y(v) > y(u) then making y(v,u) = 0 still leaves
y(u,v) > 0. The term becomes c(u,v)(y(v) — y(u)).

If y(v)<y(u) then make y(u,v) = 0 to get c(v,u)(y(u) — y(v)). The
objective becomes

> cw)ly®) - yw)l*

u+v

where |x|" = max(x,0), subject to y(s) = —1 y(t) = 0. Require
y(s) = 0, y(t) = 1 instead; the problem remains the same.

There is an optimal solution in which each y(u) is 0 or 1.

Proof. Assume that there is an y(u) that is not 0 or 1. If it is outside
the interval [0, 1] then moving it towards this interval decreases the
objective function, so assume they are all inside. If there are some
variables y(u) inside this interval then move them all by the same
amount either up or down until one of them hits 0 or 1. One of these
two possible moves will not increase the objective function. Repeat
these actions until each y(u) is 0 or 1. O

Let y be an optimal solution in which each y(u) is either 0 or 1. Let

S={u:yw)=0}, T={u:yu)=1}.

Then s € S, t € T. The objective function is

Z c(u,v).

ueS,veT

This is the value of the “cut” (S, T). So the dual problem is about
finding a minimum cut, and the duality theorem implies the
max-flow/min-cut theorem.

Bipartite graph with left set A, right set B and edges E C A X B.
Interpretation: elements of A are workers, elements of B are jobs.
(a,b) € E means that worker a has the skill to perform job b. Two
edges are if both of their endpoints differ. :aset M
of disjoint edges. : a maximum-size assignment
of workerst to jobs.

C C AU B: a set with the property that for each edge
(a,b) e Ewehaveae Corb € C.
Clearly, the size of each matching is < the size of each covering set.

WD The size of a maximum matching is equal to the size of a
minimum covering set.

There is a proof by reduction to the flow problem and using the
max-flow min-cut theorem.

(10pts) Show an example of a polyhedron determined by

the set of linear inequalitites Ax < b where A is an m X n matrix, and

rad " a T «1 * 1 1 1 rad 1 * 1 1 " 1 (T

The ellipsoid algorithm

The problem

@ The simplex algorithm may take an exponential number of steps,
as a function of m + n.

@ Consider just the problem of deciding the feasibility of a set of
inequalities

T 9
a;x<b;, i=1,....m

for x € R"™. If each entry has at most k digits then the size of the
input is

L=m-n-k.

We want a decision in a number of steps polynomial in L, that is
O(L®) for some constant c.

Ellipsoids

In space R", for all r>0 the set

Ble,r)={x:(x—¢c)l(x—¢c) <r?}

is a ball with center ¢ and radius r. A nonsingular linear
transformation L transforms B(0,1) into an ellipsoid

E={Lx:x'x<1}= {y: yTA ly<1},

where A = LTL is positive definite. A general ellipsoid E(c,A) with
center ¢ has the form

{x:(x-¢c)TA Y (x-¢c) <1}

where A is positive definite.

Though we will not use it substantially, the following theorem shows
that ellipsoids can always be brought to a simple form. A basis
b1,...,b, of the vector space R" is called ifbl-Tbj =0
fori # jand 1fori=j.

W OURIEUIEIR ST et E be an ellipsoid with center 0.

Then there is an orthonormal basis such that if vectors are expressed
with coordinates in this basis then

E={x:xTA2x <1},

where A is a diagonal matrix with positive elements ay,. . .,a, on the
diagonal.
x

xZ
In other words, E = {x : S+ <1}

ol

In 2 dimensions this gives the familiar equation of the ellipse

2 2
x_ + ‘y_ = 1
a? b?
The numbers a, b are the lengths of the of the ellipse,
measured from the center. When they are all equal, we get the
equation of a circle (sphere in n dimensions).

Volume of an ellipsoid

Let V,, be the volume of a unit ball in n dimensions. It is easy to see
that the volume of the ellipsoid
2 2
X1 Xn
-t + 5 <1 }
1 n

E= g
{x:—

is VOl(E) = Va4, - - - a,. More generally, if
E={x:x"(AAT)"'x < 1} then Vol(E) = V,, det A.

Bounding the set of solutions

The set of solutions is a (possibly empty) polyhedron P. Let
1)

N =ntfiotkn, §o = o
2mN 10kn

b =b;+6.

In preparation, we will show

Theorem

@ There is a ball E; of radius < N+/n and center 0 with the
property that if there is a solution then there is a solution in E;.

@ Ax < bis solvable if and only if Ax < b’ is solvable and its set of
solutions of contains a cube of size 2¢.

Consider the upper bound first. We have seen in homework the
following:

If there is a solution that is a vertex then there is one with
Ixj| < N for all j.

Now, suppose there is a solution z. For each j, if z; > 0 let us
introduce a new constraint x; > 0, while if z;<0 then introduce a
constraint x; < 0. It is easy to see that this new system has a solution
that is a vertex.

Now for the lower bound. One of your homeworks has a problem
showing the following:

If Ax < b has no solution then defining b} = b; + 6, the
system Ax < b’ has no solution either.

The following clearly implies @ of the theorem:

If Ax < b’ is solvable then its set of solutions contains a
cube of size 2¢.

Proof. If Ax < b’ is solvable then so is Ax < b. Let x be a solution of
Ax < b. Then changing each x; by any amount of absolute value at
most ¢ changes

n
T - P .

=1

by at most 10Xne < &, so each inequality al.Tx < bj still holds. O

The algorithm

o The algorithm will go through a series xV,x®, ... of trial
solutions, and in step t learn P C E; where our wraps Eq,E,,. ..
are ellipsoids.

e We start with x(= 0, the center of our ball. Is it a solution? If
not, there is an i with aiTx(1)>b,~. Then P is contained in the
half-ball

H =E Nn{x:alx < a; TxMy,

1

Shrinking rate

To keep our wraps simple, we enclose H; into an ellipsoid E; of
possibly small volume.

There is an ellipsoid E;
containing H; with
Vol(E;) < e‘ﬁVOI(El). This is true
even if E; was also an ellipsoid.

1

_1
Note e 2n ~1-5-.

Assume without loss of generality
o E;istheunitball E; = {x:xTx <1},
@ a; = —ey, b;<0.
Then the half-ball to consider is { x € E; : x; > 0 }. The best

ellipsoid’s center has the form (d,0,. . ., 0). The axes will be
(1-4d),b,b,...,b,so

E, = +b~ x4
2= {x (1 - d)z ;
It touches the ball E; at the circle x; = 0, } >, sz. =1:

d2

-2 _
m‘l‘b =1.

Hence

b2 1 ¢ 1-2d
T (1-d)? 1-2d+d¥
b—1+—Usmg1+z e*
n-1)d? n+
Vol(Ey) = V(1 =)b} < Ve ™54 = Ve 450"

Choose d = D) +1) to make the numerator 1/2, then this is Ve~ =
This proves the Lemma for the case when E; is a ball. When E; is an
ellipsoid, transform it linearly into a ball, apply the lemma and then
transform back. The transformation takes ellipsoids into ellipsoids
and does not change the ratio of volumes.

Now the algorithm constructs Es from E; in the same way, and so on.
If no solution is found, then r steps diminish the volume by a factor

We know Vol(E;) < V,(N+/n)", while if there is a solution then the
set of solutions contains a ball of volume > V,¢". But if r is so large
that

_r & "
o <(N«/ﬁ)
then Vol(E,,;) is smaller than the volume of this small ball, so there
is no solution.
It is easy to see from here that r can be chosen to be polynomial in
m,n,k.

Swept under the rug

Formula for computing the ellipsoids: Let By be the matrix of the kth
ellipsoid Ej, with center x(%):

Er ={x:(x-x"®)TB;(x - x¥) < 1}. Let alx < b; be the
violated constraint. Define

by = —DKAi LD ok, b

T b n+1,
1/ainoti

nz 2 T
By = By — bb).
s nz—l(k n+1 ok

It can be shown that this formula is sufficient to compute with a
precision that does not ruin the polynomiality of the algorithm.

Even if an exact solution exists, we only found an approximate
solution. To find an exact solution (if exists) in polynomial time, ask
one-by-one about each of the constraints whether it can be tight
(introduce the opposite inequality), until a vertex is found (add
possibly some more of constraints, of the type x; > 0, x; < 0). Then
solve the equations.

Convex programming

Convexity

Many methods and results of linear programming generalize to the
case when the set of feasible solutions is convex and there is a
convex function to minimize.

A function f : R" — R is convex if the set
{(x,y) : f(x) < y}isconvex. It is concave if —f(x) is convex.

Equivalently, f is convex if
f(Ala+ (1 -21)b) < Af(a)+ (1 - A)f(b)

holds forall0 < A < 1.

o Each linear function a’x + b is convex.

o If a matrix A is positive semidefinite then the quadratic function
xT Ax is convex.

o If f(x), g(x) are convex and a, > 0 then a f(x) + fg(x) is also
convex.

If f(x) is convex then for every constant ¢ the set {x : f(x) <c}isa
convex set.

A is an optimization problem of the
form

min f(x)
subject to fi(x) < O0fori=1,...,m,

where all functions f; for i = 0,...,m are convex.
More generally, we also allow constraints of the form

x €H

for any convex set H given in some way.

@ Vectors uy,. .., uy represent persons known to have ADD
(attention deficit disorder). u;; = measurement value of the jth
psychological or medical test of person i. vy,...,v; € R"?
represent persons known to have ADD.

@ Separate the two groups, if possible, by a linear test: find vectors
z,x<y with

zTu,-<xfori:1,...,k,

zTv; > yfori=1,...,1L
e For z,x,y to maximize the width of the gap ﬁ, solve the
convex program:

maximize y-—x
subject to

N WV A

For the definition of “given in an effective way”, take clue from the
ellipsoid algorithm:

@ We were looking for a solution to a system of linear inequalities

aix<b;, i=1,...,n

O
1

A trial solution x(*) was always the center of some ellipsoid E;. If
it violated the conditions, it violated one of these: al.Tx(t)>bi. We

could then use this to cut the ellipsoid E; in half and to enclose it
into a smaller ellipsoid E;.1.

o Now we are looking for an element of an arbitrary convex set H.
Assume again, that at step t, it is enclosed in an ellipsoid E;, and
we are checking the condition x'¥) € H. How to imitate the
ellipsoid algorithm further?

Leta: Q" - Q" b: Q" — Q be functions computable
in polynomial time and H € R" a (convex) set. These are a

for H if for all x € R", with a = a(x),
b = b(x) we have:

o Ifx € Hthena=0.
o If x ¢ Hthena # 0, further a’y < bforally € Hand a’x > b.

20 For the unit ball H = {x : x”x < 1}, the functions
a=x-|xTx—1|",and b = xTx|xTx — 1|* give a separation oracle.
To find a separation oracle for an ellipsoid, transform it into a ball
first.

Suppose that the convex set H allows a separation oracle (a(-), b(-)).
If the goal is to find an element of H then we can proceed with the
ellipsoid algorithm, enclosing the convex set H into ellipsoids of
smaller and smaller volume. This sometimes leads to good
approximation algorithms.

Semidefinite programs

o If A, B are symmetric matrices then A < B denotes that B — A is
positive semidefinite, and A < B denotes that B — A is positive
definite.

@ Let the variables x;; be arranged in an n X n symmetric matrix
X = (x;j). The set of positive semidefinite matrices

{X:X>0}
is convex. Indeed, it is defined by the set of linear inequalities

a’Xa > 0, that is Z(aiaj)xij =0
ij

where a runs through all vectors in R".

Example: maximum cut

Recall the maximum cut problem in a graph G = (V,E,w(-)) where w,
is the weight of edge e.
New idea:

@ Assign a unit vector u; € R" to each vertex i € V of the graph.

@ Choose a random direction through 0, that is a random unit
vector z. The sign of the projection on z determines the cut:

S={i:z"u; <0}.
o The probability that z cuts u; and u; is
arccos(uiTuj)/ﬂ'

(draw a picture!).

Let o ~ 0.87856 be the largest value with
arccos(y)/r =z a(1 —y)/2, -1<y<1.

Instead of maximizing ;. ; w;; arccos(u; u;)/x, we will just
maximize its lower bound

(04 Z w,-j(l - ul-Tuj)/Z.
i#j

This is at least « times the value of the max cut, since if (S,T) is a cut,
then setting u; = e for i € S and u; = —e for i € T we get exactly the
value

Z U)ij(l - uiTuj)/Z.

i#]j

minimize };4; wijulu;
subject to ul.Tul-:l, i=1,...,n.

It is more convenient to work with the variables x;; = uiTu ;- The
matrix X = (x;;) is positive semidefinite, with x;; = 1, if and only if it
can be represented as x;; = uiTu ;. We arrive at the semidefinite
program:

minimize ;. ; wi;X;;
subject to xi;=1,i=1,...,n,
X >0.

Please look up the the LU decomposition algorithm in these notes,
when applied to positive semidefinite matrices A (Cholesky
decomposition). We structured it in such a way that when it fails it
gives a witness z with }’;; z;z;a;;<0. The vector (:/:,-zj)zj=1 is the
direction of the hyperplane separating the matrix A from the positive
semidefinite ones. Indeed, for any positive semidefinite matrix B we
have }’;;z;iz;b;; > 0.

Warning: All this is inexact without the estimation of the effect of
roundoff errors and degree of approximation, in the precise analysis
of the ellipsoid algorithm, in the context of convex optimization
problems.

NP problems

@ Shortest vs. longest simple paths
o Euler tour vs. Hamiltonian cycle

@ 2-SAT vs. 3-SAT. Satisfiability for circuits and for conjunctive
normal form (SAT). Reducing sastisfiability for circuits to 3-SAT.
Use of reduction in this course: proving hardness.

@ Ultrasound test of sex of fetus.

vs. vs. problems.

Given a graph G.

Decision Given k, does G have an independent subset of size > k?
Optimization What is the size of the largest independent set?
Search Given k, give an independent set of size k (if there is one).

Optimization+search Give a maximum size independent set.

Random access machine

Memory: one-way infinite tape: cell i contains natural number T[i]
of arbitrary size.

Program: a sequence of instructions, in the “program store”: a
(potentially) infinite sequence of labeled registers containing
instructions. A program counter.

Instruction types:

T[T[i]] = T[T[]] random access

T[i] = T[j] = T[k] addition

if T[0]>0 then jump tos conditional branching
The cost of an operation will be taken to be proportional to the total
length of the numbers participating in it. This keeps the cost realistic

despite the arbitrary size of numbers in the registers.

Polynomial time

Abstract problems
Instance. Solution.

Encodings

Concrete problems: encoded into strings.

Polynomial-time computable functions, polynomial-time decidable
sets.

Polynomially related encodings.

Language: a set of strings. Deciding a language.

Polynomial-time verification

Hamiltonian cycles.

@ An NP problem is defined with the help of a function
V(x,w)

with yes/no values that verifies, for a given input x and witness
(certificate) w whether w is indeed witness for x.

o It is required that V(x,w) is computable as a function of the
length of x. This implies that the length of the witnesses w (taken
into account) is bounded polynomially in the length of x.

The same decision problem may belong to very different verification
functions (search problems).

2@ BB Let the decision problem be the

question whether a number x is composite (nonprime). The obvious
verifiable property is

Vilx,w) © (1<w<x) A (w|x).

There is also a very different verifiable property V,(x,w) for
compositeness such that, for a certain polynomial-time computable
b(x), if x is composite then at least half of the numbers 1 < w < b(x)
are witnesses. This can be used for probabilistic prime number tests.

Satisfiability

o Let us use Boolean variables x; € {0,1}, where 0 stands for false,
1 for true. A logic expression is formed using the connectives
A, V,—: for example

F(x1,%72,%3,%4) = (x1 V 7x3) A (x2 V =3 V xy).

Other connectives: say x = y = —x V y.

@ An assignment (say x; = 0, x, = 0, x3 = 1, x4 = 0) allows to
compute a value (in our example, F(0,0,1,0) = 0).

o An assignment (aj,daz,as,aq) satistics F, if F(ay,az,as,as) = 1. The
formula is satisfiable if it has some satisfying assignment.

e Satisfiability problem: given a formula F(x,...,x,) decide
whether it is satisfiable.

Special cases:

o A F(xi,...,x,)=Ci A---ANCy
where each C; is a , with the form C; = x;, V--- V x;, . Here
each x; is either x; or —x;, and is called a

: the satisfiability problem for conjunctive normal forms.

o A is a conjunctive normal form in which each clause

contains at most 3 literals—gives rise to

° : as seen in class, this is solvable in polynomial time.

Logic formulas, can be generalized to

@ Acyclic directed graph, where some nodes and edges have
Nodes with no incoming edges are , each labeled by
some logic variable x1,. .., x,.

Nodes with no outgoing edges are

@ Some edges have labels —. Non-input nodes are labeled V or A.

@ Assume just one output node: the circuit C defines some Boolean
function fe(xy,...,xp). is the question of
satisfiability of this function.

o Assume also that every non-input node has exactly two incoming
edges.

Reducibility, completeness

Reduction of problem A; to problem A; in terms of the verification
functions V;, V; and a reduction (translation) function z:

AwVi(x,w) & FuVy(r(x),u).

Reducing linear programming to linear programming in
standard form.

NP-hardness.
NP-completeness.

Circuit satisfiability is NP-complete.

Consider a verification function V(x,w). For an x of length n, to a
random access machine program computing V(x,w), in cost ¢,
construct a circuit C(x) of polynomial size in n,t, that computes
V(x,w) from any input string w. (We translated x to C(x).) Now there
is a witness w if and only if C(x) is satisfiable.

3-SAT is NP-complete.

Translating a circuit’s local rules into a 3-CNF.
INDEPENDENT SET is NP-complete.

Reducing SAT to it.

o Integer linear programming, in particular solving Ax = b, where
the m X n matrix A > 0 and the vector b consist of integers, and
Xj € {0, 1}.

Case m = 1 is the subset sum problem.

@ Reducing 3SAT to solving Ax = b.

o Reducing Ax = b to a’x = b (subset sum).

Set cover > vertex cover ~ independent set.

@ Definition of the class: L is in Co-NP if its complement is
in NP. Example: logical tautologies.

@ The class NPNCo-NP. Examples: duality theorems.

o Example of a class that is in NPNCo-NP, and not known to be in
P: derived from the factorization problem.
Let L be the set of those pairs of integers x>y>0 for which there
is an integer 1<w<y with w|x. This is clearly in NP. But the
complement is also in NP. A witness that there is no w with the
given properties is a complete factorization

— % 95
x_pl ...pk

of x, along with witnesses of the primality of py,. . .,pk. The latter
are known to exist, by an old—nontrivial—theorem that primality
is in NP.

Approximations

The setting

In case of NP-complete problems, maybe something can be said
about how well we can approximate a solution. We will formulate
the question only for problems, where we maximize a positive
function. For object function f(x,y) for x,y € {0,1}", the optimum is

M(x) = T fx,)

where y runs over the possible “witnesses”.
For 0<A, an algorithm A(x) is a A-approximation if

f(x,A(x))>M(x)/A.

For minimization problems, with minimum m(x), we require

f(x, A(x))<m(x)A.

Greedy algorithms

Try local improvements as long as you can.

Example (Maximum cut) Graph G = (V,E),cut SCV,S=V\S.
Find cut S that maximizes the number of edges in the cut:

{{uv}€E:ueSveS}.

Greedy algorithm:

Repeat: find a point on one side of the cut whose moving
to the other side increases the cutsize.

If you cannot improve anymore with this algorithm then
you are within a factor 2 of the optimum.

The unimprovable cut contains at least half of all edges.

Randomized algorithms

Generalize maximum cut for the case where edges e have weights w,,
that is maximize

o Question The greedy algorithm brings within factor 2 of the
optimum also in the weighted case. But does it take a polynomial
number of steps?

o New idea: decide each “v € S?” question by tossing a coin. The
cxpected weight of the cutis §), we, since each edge is in the
cut with probability 1/2.

o We will do better with semidefinite programming.

Less greed is sometimes better

What does the greedy algorithm for vertex cover say?
Better performance guarantee by a less greedy algorithm:
Approz_Vertez_Cover(G):

C«0
E’ « E[G]
while E’ # 0 do
let (u,v) be an arbitrary edge in E’
C « CU{u,v}
remove from E’ every edge incident on either u or v
return C

Approz_Vertez_Cover has a ratio bound of 2.

Proof. The points of C are endpoints of a matching. Any optimum
vertex cover must contain half of them. O

More general vertex cover problem for G = (V,E), with weight w; in
vertex i. Let x; = 1 if vertex x is selected. Linear programming
problem without the integrality condition:

T

minimize w'x
subjectto x; +x; > 1, (i,j) € E,
x20.

Let the optimal solution be x*. Choose x; = 1if x} > 1/2 and 0
otherwise.

Solution x has approximation ratio 2.

Proof. We increased each x; by at most a factor of 2. O

The set-covering problem

Given (X, F): a set X and a family F of subsets of X, find a min-size
subset of F covering X.

Example: Smallest committee with people covering all skills.
Generalization: Set S has weight w(S)>0. We want a
minimum-weight set cover.

The algorithm Greedy_Set_Cover(X,F):

U<X
C<0
while U # 0 do
select an S € F that maximizes |S N U|/w(S)
U<U\S
C < CU{S}
return C
Then we

If element e was covered by set S then let price(e) = | SmU|
cover each element at minimum price (at the moment).
Note that the total final weight is 3._, price(ex).

Let Hn)=1+1/2+---+1/n(= Inn).

Greedy_Set_Cower has a ratio bound maxger H(|S|).

For all S in F we have). price(e) < w(S)H(|S)).

Proof. Lete € SNS;\ Uj<;Sj,and V; = S\ ;<; S; be the remaining
part of S before e will be covered in the greedy cover. By the greedy
property,

price(e) < w(S)/|Vi.

Let ey,. .., e be a list of elements of S in the order in which they are
covered (ties are broken arbitrarily), with ey the earliest element
covered along with eg. The above inequality gives

wS) _ ()

i = i i < XX o
price(ex) = price(ej)) SR 1 S P—k+1

Summing for all k proves the lemma. O

Proof of the theorem. Let C, be the optimal set cover and C the
cover returned by the algorithm.

Zprlce(e) Z Zprlce(e) Z w(S)H(|S]) < H(IS]) Z w(S)

SeC, ecS SeC, SeC.

where S* is the largest set. O

Is this the best possible factor for set cover?

The answer is not known.

Primal-dual schema

Let us look at the same algorithm and analysis from a different point
of view. Primal (a generalized “covering problem”):

minimize X cx;
subject to ZJ 1aijxj2bi,i=1,....m,

=2
x;j2 0, j=1,...,n.
Dual (a “packing problem”):

maximize)7, b;y;
subjectto X7 a;jyi

For some «, 8 > 1, formally relax the complementary slackness:
(x>0 = Cj/OC < Zj ajyi < ¢cj.
:yi>0 = b; < Zja,-jxj < Bb;.

If the primal and dual feasible solutions satisfy these

conditions, then

c’x < aﬁbTy.

Proof straightforward.

The primal-dual schema:
o Start from an infeasible integer primal and a feasible dual
(typically x = 0, y = 0).
o Keep improving the feasibility of the primal, keeping it integral,
and the optimality of the dual.
The primal guides the improvements of the dual and vice versa.

Application to set cover

Set cover problem, without integrality condition. Set system S,
universe U.

minimize Y g c(S)xs
subject to Yssexs=1l,eeU,
xs>0,SeSs,

Dual with variables y., e € U:

maximize) .cy Ve
subjectto Y .csVe <c(S), SES,
Ve= 0,ecU.

Primal complementary slackness conditions for each S, with factor
a=1x5#0= Y .csVe = c(S).
Set S is tight when this holds. Plan: use only tight sets.

The algorithm

@ Start withx =0,y =0.

@ Repeat, until all elements are covered:
Pick uncovered element e, raise y. until some set S goes tight.
Add S to the set cover.

Since the relaxed complementary slackness conditions hold at the
end, we achieved the approximation factor aff = 1.

Sl As opposed to the simplex method, the successive
improvements were not accompanied by any linear transformations
accompanying a basis change.

Fully approximable version of knapsack

The knapsack problem is defined as follows.
Given: integers b > a; > ... > ap, and integer weights
Wy > Wy

maximize w!x

subjectto a’x < b,

x;=0,1,i=1,...,n.

:For1 <k <n,
Ar(p) =min{ a’x : wlx > p, xpo1 = =x,=0}.

If the set is empty the minimum is oo, and set Ax(x) = 0 for x < 0.
Letw = wy + - - - + wy,. The vector (Ag.1(0),...,Ar,1(w)) can be
computed by a simple recursion from (Ax(0),. ..,Ax(w)).

Ak+1(P) = min{ Ak(P),akﬂ + Ak(P - wk+1) }

The optimum is max{p : A,(p) < b}.
Complexity: roughly O(nw) steps.
Why is this not a polynomial algorithm?

Idea for approximation: break each w; into a smaller number of big
chunks, and use dynamic programming. Let >0, w; = |w;/r].

maximize (w’)Tx
subject to a’x< b,

For the optimal solution x” of the changed problem, estimate
T T,/
T = ot We have
w'x'/r> W) x> W) x> (w/r)'x —n,
wlx’ > OPT - r-n = OPT — ewy,

where we set r = ew; /n. This gives

T,
(w)' x - £wq
OPT OPT

>1—c.
With w = }}; w;, the amount of time is of the order of
nw/r = n*w/(we) < nJe,

which is polynomial in n,(1/¢).

An is an algorithm that for every ¢, gives an
(1 + ¢)-approximation, computable in polynomial time, if ¢ is fixed.

@ A problem is if it has a polynomial-time
approximation scheme.
Example: see a version KNAPSACK below.

o Itis if there is a lower bound on the
achievable approximation ratio.
Example: MAXIMUM CUT, VERTEX COVER, MAX-SAT.

o Itis if even this cannot be achieved.
Example: INDEPENDENT SET (deep result). The approximation
status of this problem is different from VERTEX COVER, despite
the close equivalence between the two problems.

Approximability depends much on which function is chosen to
optimize. Examples:

o Special case of knapsack, with w; = a;. Equivalent to minimizing
b — 3 ; a’ x. The minimization is inapproximable, since the
question whether the optimum is 0 is NP-complete.

@ Maximum independent set is inapproximable. If k is the size of a
maximum independent set, then n — k is the size of a minimum
vertex cover, which is partly approximable. And it indeed might
happen that k = n'/? and we only find n'/3. The quotient is

n—nl/3
n—nl/2

unbounded, while — lasn — oo.

Counting problems: the class # P

Function f is in #P if there is a polynomial-time

(verifier) predicate V(x,y) and polynomial p(n) such that for all x we
have

fG) =Ry vl < plxl) AVEe,y) 3.

Reduction among #P problems. The #P-complete problems are all
obviously NP-hard.

How to aproximate a #P function?

Repeated independent tests will work only if the probability of
success is not tiny. More formally, if it is not tiny compared to the
standard deviation. Look at Chebysev’s inequality, say. Let
Xi,...,Xy be iid. random variables with variance o and expected
value p. Then the inequality says

IP[|ZX,-/N — pl>to] < t72/N.

Suppose we want to estimate p within a factor of 2, so let to = /2,
then t = u/(20),

Pl) Xi/N — pl>p/2] < (1/N)@o /).

This will converge slowly if o/u is large.

X; = 1 with probability p and 0 otherwise. Then
o? = p(1 — p), our bound is 4(1 — p)/(pN), so we need N>1/p if p is
small.

DNF satisfaction

Suppose we want to find the number of satisfying assignments of a
disjunctive normal form

CiV -V Cy.
More generally, suppose we need to estimate |S| where
S=S5U---US,.

Suppose that
@ We can generate uniformly the elements of S; for each i.
@ We know (can compute in polynomial time) |S;|.

@ For each element x, we know
c(x)=Hi:x€S; }H.

Then we know M = Y, |S;|, but we want to know |S].

Pick I € {1,...,m} such that P[I = i] = |S;|/M. Pick an element
X € Sy uniformly. Then for each x we have

PlX=x]= > BlI=iB[X=xl=i]=) %Is_ll — s
Siox Siox L

Let Y = M/c(X), then
E(Y) = ZE;S % P[X = x] = |S].

On the other hand, 0 < Y < M, so 0 < M < m|S|, therefore o/p < m,
so sampling will converge fast.

We found a (fully polynomial randomized approximation
scheme) for counting the DNF solutions.

	Introduction
	Linear algebra
	Matrices and vectors
	Vector spaces
	Linear dependence
	Matrices
	Inverse, rank
	Determinant
	Positive definite matrices

	Divide and conquer
	Polynomial multiplication
	Faster matrix multiplication
	Fourier transform

	Linear equations
	Elimination
	LUP decomposition

	Inverting matrices
	Least squares approximation
	Issues of rounding
	Determinant exactly
	Pivoting and scaling

	Linear Programming
	Problem definition
	Solution idea
	Formulating problems as linear programs
	Standard and slack form
	The simplex algorithm
	Duality
	Alternatives
	Applications of duality

	The ellipsoid algorithm
	The problem
	Ellipsoids
	Upper and lower bounds
	The algorithm
	Shrinking rate
	Bounding the number of iterations
	Swept under the rug

	Convex programming
	Convexity
	Separation oracle
	Semidefinite programs

	NP-completeness
	Polynomial time
	Polynomial-time verification
	Satisfiability
	Reducibility, completeness

	Approximations
	Greedy algorithms
	The set-covering problem
	Primal-dual schema
	Approximation schemes
	Counting
	Repeated tests

