
Advanced algorithms
Freely using the textbook by Cormen, Leiserson, Rivest, Stein

Péter Gács

Computer Science Department
Boston University

Spring 2014

�e class structure

See the course homepage.
In the notes, section numbers and titles generally refer to the book:
CLSR: Algorithms, third edition.

Vectors

For us, a vector is always given by a �nite sequence of numbers. Row
vectors, column vectors, matrices.
Notation:

Z: integers,
Q: rationals,
R: reals,
C: complex numbers,
Fp : residues modulo the prime number p.

Q, R, C, Fp are �elds (allowing division as well as multiplication).
(We may get to see also some other �elds later.)
Addition: componentwise. Over a �eld, multiplication of a vector by
a �eld element is also de�ned (componentwise).
Linear combination.

Vector spaces

Vector space over a �eld: a set M of vectors closed under linear
combination.
Elements of the �eld will be also called scalars.

Examples

�e set C of complex numbers is a vector space over the �eld R
of real numbers (2 dimensional, see later).
It is also a vector space over the complex numbers (1
dimensional).
{ �x ,y ,z� : x + y + z = 0 }.
{ �2t + u,u,t − u� : t ,u ∈ R }.

Linear dependence

Subspace. Generated subspace.
Two equivalent criteria of dependence:

one of them depends on the others (is in the subspace generated
by the others)
a nontrivial linear combination is 0.

Examples

{�1,2�, �3,6�}. Two vectors are dependent when one is a scalar
multiple of the other.
{�1,0,1�, �0,1,0�, �1,1,1�}.

Basis in a subspace M : a maximal lin. indep. set.

�eorem A set is a basis i� it is a minimal generating set.

Examples

A basis of { �x ,y ,z� : x + y + z = 0 } is {�0,1,−1�, �1,0,−1�}.
A basis of { �2t + u,u,t − u� : t ,y ∈ R } is {�2,0,1�, �1,1,−1�}.

�eorem All bases have the same number of elements.

Proof. Via the exchange lemma. �

Dimension of a vector space: this number.

Example �e set of all n-tuples of real numbers with the property
that the sum of their elements is 0 has dimension n − 1.

Let M be a vector space. If bi is an n-element basis, then each vector
x in M in has a unique expression as

x = x1b1 + · · · + xnbn .

�e xi are called the coordinates of x with respect to this basis.

Example If M is the set Rn of all n-tuples of real numbers then the
n-tuples of form e i = �0, . . . ,1, . . . ,0� (only position i has 1) form a
basis. �en �x1, . . . ,xn� = x1e1 + · · · + xnen .

Example If A is the set of all n-tuples whose sum is 0 then the
n − 1 vectors

�1, −1, 0, . . . , 0�
�0, 1, −1, 0, . . . , 0�
. . .

�0, 0, 0, 0, . . . , 0, 1, −1�

form a basis of A (prove it!).

Matrices

�ai j�. Dimensions. m × n

Diagonal matrix diag�a11, . . . ,ann�

Identity matrix.
Triangular (unit triangular) matrices.
Permutation matrix.
Transpose AT . Symmetric matrix.

Matrix representing a linear map

A p × q matrix A can represent a linear map Rq → Rp as follows:

x1 = a11y1 + · · · + a1qyq
...

. . .

xp = ap1y1 + · · · + apqyq

With column vectors x = �xi�, y = �y j� and matrix A = �ai j�, this can
be wri�en as

x = Ay.

�is is taken as the de�nition of matrix-vector product.
General de�nition of a linear transformation F : V →W . Every such
transformation can be represented by a matrix, a�er we �x bases in
V andW .

Matrix multiplication

Let us also have

y1 = b11z1 + · · · + b1rzr
...

. . .

yq = bq1z1 + · · · + bqrzr

writeable as y = Bz. �en it can be computed that

x = Cz where C = �cik �,

cik = ai1b1k + · · · + aiqbqk �i = 1, . . . ,p, k = 1, . . . ,r �.

We de�ne the matrix product

AB = C

from above, which makes sense only for compatible matrices (p × q
and q × r). �en

x = Ay = A�Bz� = Cz = �AB�z.

From this we can infer also that matrix multiplication is associative.

Example For A =
(0 1

0 0
)
, B =

(0 0
1 0

)
we have AB , BA.

Transpose of product

Easy to check: �AB�T = BTAT .

Inner product

If a = �ai�, b = �bi� are vectors of the same dimension n taken as
column vectors then

aTb = a1b1 + · · · + anbn

is called their inner product: it is a scalar. �e Euclidean norm
(length) of a vector v is de�ned as√

v
T
v = �

∑
i

v
2
i �

1/2.

�e (less frequently used) outer product makes sense for any two
column vectors of dimensions p,q, and is the p × q matrix
abT = �aib j�.

Inverse, rank

Example (
1 1
1 0

)−1
=

(
0 1
1 −1

)
.

�AB�−1 = B−1A−1.
�AT �−1 = �A−1�T .
A square matrix with no inverse is called singular. Nonsingular
matrices are also called regular.

Example �e matrix
(1 0

1 0
)

is singular.

Im�A� = set of image vectors of A. If the colums of matrix A are
a1, . . . ,an , then the product Ax can also be wri�en as

Ax = x1a1 + · · · + xnan .

�is shows that Im�A� is generated by the column vectors of the
matrix, moreover

a j = Ae j , with e1 =




1
0
0
...

0



, e2 =




0
1
0
...

0



, and so on.

Ker�A� = the set of vectors x with Ax = 0.
�e sets Im�A� and Ker�A� are subspaces.
Null vector of a matrix: non-0 element of the kernel.

�eorem If A : V →W then

dim Ker�A� + dim Im�A� = dim�V �.

�eorem A square matrix A is singular i� KerA , {0}.

More generally, a non-square matrix A will be called singular, if
KerA , {0}.

�e rank of a set of vectors: the dimension of the space they
generate.
�e column rank of a matrix A is dim�ImA�.
�e row rank is the dimension of the vector space of linear
functions over ImA (the dual space of ImA).

�eorem �e two ranks are the same (in general, the dual of a
vector space V has the same dimension as V). Also, rank�A� is the
smallest r such that there is anm × r matrix B and an r × n matrix C
with A = BC .

Interpretation: going through spaces with dimensionsm → r → n.
We will see later a proof based on computation.

A special case is easy:

Proposition A triangular matrix with only r rows (or only r
columns) and all non-0 diagonal elements in those rows, has row
rank and column rank r .

Example �e outer product A = bcT of two vectors has rank 1,
and this product is the decomposition.

�e following is immediate:

Proposition A square matrix is nonsingular i� it has full rank.

Minors.

Determinant

De�nition

A permutation: an invertible map σ : {1, . . . ,n}→ {1, . . . ,n}.
�e product of two permutations σ ,τ is their consecutive
application: �στ ��x� = σ �τ �x��.
A transposition is a permutation that interchanges just two
elements.
An inversion in a permutation: a pair of numbers i<j with
σ �i�>σ �j�. We denote by Inv�σ � the number of inversions in σ .
A permutation σ is even or odd depending on whether Inv�σ � is
even or odd.

Proposition
a A transposition is always an odd permutation.
b Inv�στ � ≡ Inv�σ � + Inv�τ � �mod 2�.

It follows from these that multiplying a permutation with a
transposition always changes its parity.

De�nition Let A = �ai j� an n × n matrix. �en

det�A� =
∑
σ

�−1�Inv�σ �a1σ �1�a2σ �2� · · ·anσ �n�. (1)

Geometrical interpretation the absolute value of the determinant of
a matrix A over R with column vectors a1, . . . ,an is the volume
of the parallelepiped spanned by these vectors in n-space.

Recursive formula Let Ai j be the submatrix (minor) obtained by
deleting the ith row and jth column. �en

det�A� =
∑
j

�−1�i+jai j det�Ai j�.

Computing det�A� using this formula is just as ine�cient as
using the original de�nition (1).

Properties

detA = det�AT �.
det�v1,v2, . . . ,vn� is multilinear, that is linear in each argument
separately. For example, in the �rst argument:

det�αu + βv,v2, . . . ,vn� = α det�u,v2, . . . ,vn� + β det�v,v2, . . . ,vn�.

Hence det�0,v2, . . . ,vn� = 0.
Antisymmetric: changes sign at the swapping of any two
arguments. For example for the �rst two arguments:

det�v2,v1, . . . ,vn� = − det�v1,v2, . . . ,vn�.

Hence det�u,u,v2, . . . ,vn� = 0.

It follows that any multiple of one row (or column) can be added to
another without changing the determinant. From this it follows:

�eorem A square matrix is singular i� its determinant is 0.

�e following is also known.

�eorem det�AB� = det�A� det�B�.

Positive de�nite matrices

An n × n matrix A = �ai j� is symmetric if ai j = a ji (that is, A = AT).
To each symmetric matrix, we associate a function Rn → R called a
quadratic form and de�ned by

x 7→ xTAx =
∑
i j

ai jxix j .

�e matrix A is positive de�nite if xTAx > 0 for all x and equality
holds only with x = 0.

For example, if B is a nonsingular matrix then A = BTB is always
positive de�nite. Indeed,

xTBTBx = �Bx�T �Bx�,

the squared length of the vector Bx , and since B is nonsingular, this
is 0 only if x is 0.

�eorem A is positive de�nite i� A = BTB for some nonsingular
B.

Divide and conquer
Polynomial multiplication

We will illustrate here the algebraic divide-and-conquer method. �e
problem is similar for integers, but is slightly simpler for
polynomials.

f = f �x� =
n−1∑
i=0

aix
i ,

д = f �x� =
n−1∑
i=0

bix
i ,

f �x�д�x� = h�x� =
2n−2∑
k=0

ckx
k ,

where ck = a0bk + a1bk−1 + · · · + akb0.

Let M�n� be the minimal number of multiplications of constants
needed to compute the product of two polynomials of length n. �e
school method shows

M�n� 6 n2.

Can we do be�er?

Divide and conquer

For simplicity, assume n is a power of 2 (otherwise, we pick n′>n that
is a power of 2). Letm = n/2, then

f �x� = a0 + · · · + am−1x
m−1 + xm�am + · · · + a2m−1x

m−1�

= f0�x� + xm f1�x�.

Similarly for д�x�. So,

f д = f0д0 + xm�f0д1 + f1д0� + x2m f1д1.

In order to compute f д, we need to compute

f0д0, f0д1 + f1д0, f1д1.

How many multiplications does this need? If we compute fiдj
separately for i, j = 0,1 this would just give the recursion

M�2m� 6 4M�m�

which suggests that we really need n2 multiplications.

Trick that saves us a (polynomial) multiplication:

f0д1 + f1д0 = �f0 + f1��д0 + д1� − f0 f1 − д0д1. (2)

We found M�2m� 6 3M�m�. �is trick saves us a lot more when we
apply it recursively.

M�2k � 6 3kM�1� = 3k .

So, if n = 2k , then k = logn,

M�n�<3log n = 2log n ·log 3 = nlog 3.

log 4 = 2, so log 3<2, so nlog 3 is a smaller power of n than n2.
(It is actually possible to do much be�er than this.)

Counting also additions

Let L�n� be the complexity of multiplication when additions of
constants are also counted. �e addition of two polynomials of
length n takes at most n additions of constants. Taking this into
account, the above trick gives the following new estimate:

L�2m� 6 3L�m� + 10m.

Let us show from here, by induction, that L�n� = O�nlog 3�.

L�2m� 6 3L�m� + 10m,
L�4m� 6 9L�m� + 10m�2 + 3�,
L�8m� 6 27L�m� + 10m�22 + 2 · 3 + 32�,

L�2k � 6 3kL�1� + 10�2k−1 + 2k−2 · 3 + · · · + 3k−1�

<3k + 10 · 3k−1�1 + 2/3 + �2/3�2 + · · · �.

Here is a trick to prove L�n� = O�nα � with less calculation, where
α = log 3: Try to prove L�n� 6 c · nα − dn by mathematical induction.
Here, c,d>0 will be calculated to �t the needs of the proof. Again, we
only use induction for n of the form 2k .

L�3m� 6 3L�m� + 10m 6 3�cmα − dm� + 10m
= c�2m�α − 2m�3d/2 − 5�.

�e last term is d · �2m� if 3d/2 − 5 = d , that is d = 10. In this case,
the induction step is valid.
Base step: L�1� = 1 6 c · 1α − 10 · 1 will work with c = 11. We got
L�n� 6 11nα − 10n. �is bound has worse constants than by the other
method, but was easier to prove. (It can be improved somewhat by
starting from a larger n as the base case.)

As we see, counting also the additions did not change the upper
bound substantially. �e reason is that even when counting only
multiplications, we already had to deal with the most important
issue: the number of recursive calls when doing
divide-and-conquer.
�e best-known algorithm for multiplying polynomials or
integers requires of the order of n logn log logn operations.
(Surprisingly, it uses a kind of “Fourier transform”.)

Faster matrix multiplication

For matrix multiplication, there is a trick similar to the one seen for
polynomial multiplication. Let

A =

(
a b
c d

)
, B =

(
e f
д h

)
,

C = AB =

(
r s
t u

)
.

�en r = ae + bд, s = af + bh, t = ce + dд, u = c f + dh. �e naive way
to compute these requires 8 multiplications. We will �nd a way to
compute them using only 7.

Let

P1 = a�f − h�,

P2 = �a + b�h,

P3 = �c + d�e,

P4 = d�д − e�,

P5 = �a + d��e + h�,

P6 = �b − d��д + h�,

P7 = �a − c��e + f �.

�en
r = −P2 + P4 + P5 + P6,

s = P1 + P2,

t = P3 + P4,

u = P1 − P3 + P5 − P7.

(3)

In all products Pi , the elements of A are on the le�, and the elements
of B on the right. �erefore the calculations leading to (3) do not use
commutativity, so they are also valid when a,b, · · · ,д,h are matrices.
If M�n� is the number of multiplications needed to multiply n × n
matrices, then this leads (for n a power of 2) to

M�n� 6 nlog 7.

Taking also additions into account:

T �2n� 6 7T �n� +O�n2�.

Read Section 4 of CLRS to recall how to prove from here
T �n� = O�nlog 7�.

�e currently best known matrix multiplication algorithm has an
exponent substantially lower than log 7, but still greater than 2.
�ere is a great di�erence between the applicability of fast
polynomial multiplication and fast matrix multiplication.

�e former is practical and is used much, in computing products of
large polynomials and numbers (for example in cryptography).
On the other hand, fast matrix multiplication is an (important)
theoretical result, but with serious obstacles to its practical
application. First, there are problems with its numerical stability,
due to all the subtractions, whose e�ect may magnify round-o�
errors. Second, and more importantly, large matrices in practice are
frequently sparse, with much fewer than n2 elements. Strassen’s
algorithm does not exploit this.

Fourier transform

Let A�x� = a0 + a1x + · · · + an−1x
n−1 be a polynomial, over the

complex numbers, and let ξ0,ξ1, . . . ,ξn−1 be n di�erent numbers.
�en from the n numbers A�ξ0�,A�ξ1�, . . . ,A�ξn−1� we can determine
the n coe�cients a0,a1, . . . ,an−1 uniquely. Indeed, if two di�erent
polynomials A and A′ of degree n − 1 would give the same values,
then A�x� − A′�x� would have n di�erent roots. But a nonzero
polynomial of degree n − 1 can have at most n − 1 roots. Viewing the
array a = �a0, . . . ,an−1� as an n-dimensional vector, the new vector
b = �b0, . . . ,bn−1� where bk = A�ξk � is obtained by a linear
transformation from a: as we have just seen, this transformation is
invertible.

Example Let A�x� = a0 + a1x + a2x
2, and ξ0 = 2, ξ1 = 3, ξ2 = 4. �is

expresses bk linearly from a0,a1,a2, for example b0 = a0 + 2a1 + 22a2.

What does it cost to compute the n numbers A�ξ0�, . . . ,A�ξn−1�? If we
compute them one-by-one, then each one takes O�n� operations, so
the whole will take O�n2�. It turns out that, at least in some cases, we
can do it much cheaper. We make a particular choice of
ξ0,ξ1, . . . ,ξn−1: let they be all nth roots of unity, that is all n numbers
ε with the property εn = 1.

Example For n = 2 these are 1,−1.
For n = 3 they are 1, − 1

2 + i
√

3
2 , − 1

2 − i
√

3
2 .

For n = 4, they are 1,i,−1,−i .

Here is a formula for all n:

e2πik/n = cos 2πk
n

+ i · sin 2πk
n
, k = 0,1, . . . ,n − 1.

To obtain an array, we need to order the nth roots of unity somehow.
We will order them as 1,ε,ε2, . . . ,εn−1, where we chose ε as a
primitive root of unity: has the property that all these powers are
distinct (for example ε = e2πi/n).
If we consider just the array a = �a0,a1, . . . an−1� then the array
b = �b0,b1, . . . ,bn−1� where bk = A�εk � is called the (discrete) Fourier
transform of the array a:

bk = A�εk � = a0 + a1ε
k + a2ε

2k + · · · + an−1ε
�n−1�k ,

Note that the order of its elements depends on our choice of the
primitive root ε .
We will compute the Fourier transform by a divide-and-conquer
trick, in O�n logn� operations.
As earlier, we will assume n = 2r for some r .

Ifm = n/2 then, for any nth root of unity η:

A�η� = a0 + a1η + a2η
2 + · · · + a2m−1η

2m−1

= a0 + a2η
2 + a4η

4 + · · · + η�a1 + a3η
2 + a5η

4 + . . . �
= A0�η

2� + ηA1�η
2�.

where A0,A1 are polynomials of degreem − 1. Now if η is a 2mth
root of unity then η2 is anmth root of unity, since �η2�m = η2m = 1.
We reduced computing the Fourier transform of A to the same
problem for them − 1-degree polynomials A0,A1, further 4m extra
operations (one multiplication, one addition for j = 0, . . . ,2m − 1).
Let L�n� be the number of operations needed to compute the Fourier
transform of an n − 1-degree polynomial, then we found

L�2m� 6 2L�m� + 4m.

Repeated application shows L�n� 6 4n logn.

Inverting the Fourier transform

�e linear transformation that is the Fourier transform has a very
simple inverse: it is also almost a Fourier transform, just using the
primitive root ε−1, and a multiplicative constant n. Let us show this
by calculation. �e calculation uses the following important fact
about a root of unity η:

Fact We have 1 + η + η2 + · · · + ηn−1 = n if η = 1, and 0 otherwise.

�is can be seen by the formula for the geometric series.

Now if B�x� = b0 + b1x + · · · + bn−1x
n−1 then let us compute B�ε−k �,

where by de�nition bp =
∑n−1

q=0 aqε
pq .

n−1∑
p=0

bpε
−kp =

n−1∑
p=0

ε−kp
n−1∑
q=0

aqε
pq

=

n−1∑
q=0

aq

n−1∑
p=0

εp�q−k�.

�e last sum can be wri�en as ∑n−1
p=0 η

p where η = εp−k . By the above
fact, this is n if p = k and 0 otherwise. So

B�ε−k � = nak .

It follows that inverting the Fourier transform takes also only
O�n logn� operations.

Application to polynomial multiplication

Here is a fast way to multiply two polynomials f �x� and д�x� of
degree n − 1, using Fourier transform. As h�x� = f �x�д�x� has degree
2n − 2, we will use Fourier transform of degree 2n.

1 Choose a 2nth root of unity ε , and compute the Fourier
transforms

�f �1�, f �ε�, . . . , f �ε2n−1�� and �д�1�,д�ε�, . . . ,д�ε2n−1��.

2 Compute the products

h�εk � = f �εk �д�εk �, k = 0,1, . . . ,2n − 1.

3 By the inverse Fourier transform, compute the coe�cients of
the polynomial h�x�.

�e �rst and the last step takes O�n logn� operations. �e middle
step takes only 2n multiplications.

�estion What does this say about the multiplication of large
integers? Or even for polynomials in terms of bit complexity?

Nothing immediately, since we counted each exact multiplication
and addition of complex numbers as just one operation.
Two possible ways to proceed, each needs more work:

Analyze the approximate computations.
Compute exactly, but not with complex numbers but with
integers modulo some large number, where there are also roots of
unity.

Linear equations
Informal treatment �rst

a11x1 + · · · + a1nxn = b1,
. . .

...

am1x1 + · · · + amnxn = bm .

How many solutions? Undetermined and overdetermined systems.

For simplicity, let us count just multiplications again.
Jordan elimination: eliminating �rst x1, then x2, and so on.

n · n · �n + �n − 1� + · · · � ≈ n3/2.

Gauss elimination: eliminating xk only from equations
k + 1,k + 2, �en solving a triangular set of equations.
Elimination:

n�n − 1� + �n − 1��n − 2� + · · · ≈ n3/3.

Triangular set of equations:

1 + 2 + · · · + �n − 1� ≈ n2/2.

Sparsity and �ll-in

Example A sparse system that �lls in.

x1 + x2 + x3 + x4 + x5 + x6 = 4,
x1 + 6x2 = 5,
x1 + 6x3 = 5,
x1 + 6x4 = 5,
x1 + 6x5 = 5,
x1 + 6x6 = 5.

Eliminating x1 �lls in everything. �ere are some guidelines that
direct us to eliminate x2 �rst, which leads to no such �ll-in.

Outcomes of Gaussian elimination

(Possibly changing the order of equations and variables.)
Contradiction: no solution.
Triangular system with nonzero diagonal: 1 solution.
Triangular system with k lines: the solution contains n − k
parameters xk+1, . . . ,xn .

a11x1 + · · · + a1,k+1xk+1 + · · · + a1nxn = b1,
a22x2 + · · · + a2,k+1xk+1 + · · · + a2nxn = b2,

. . .
...

akkxk + · · · + ak,k+1xk+1 + · · · + aknxn = bk ,

where a11, . . . ,akk , 0. �en dim Ker�A� = n − k , dim Im�A� = k .
�e operations performed do not change row and colum rank, so
we �nd (row rank) = (column rank) = k .

Duality

�e original system has no solution if and only if a certain other
system has solution. �is other system is the one we obtain trying to
form a contradiction from the original one, via a linear combination
with coe�cients y1, . . . ,ym:

y1 · a11x1 + · · · + a1nxn = b1
+ y2 · a21x1 + · · · + a2nxn = b2
...

. . .
...

+ ym · am1x1 + · · · + amnxn = bm
= 0 · x1 + · · · + 0 · xn = b ′ �, 0�

We can always make b ′ = 1 by scaling the coe�cients yi accordingly.

�is gives the equations

a11y1 + · · · + am1ym = 0,
. . .

...

a1ny1 + · · · + amnym = 0,
b1y1 + · · · + bmym = 1.

Concisely: Ax = b is unsolvable if and only if (yTA = 0, yTb = 1) is
solvable.
Gives an easy way to prove that the system is unsolvable. �e set of
coe�cients yi can be called a witness, or certi�cate of the
unsolvability of the original system.
Why is this true? If the equation is unsolvable, Gaussian elimination
produces an equation “0 = b ′” where b ′ , 0. And it only combines
equations linearly.

LUP decomposition

Permutation matrix. PA interchanges the rows, AP the columns.

Example �e following matrix represents the permutation �2,3,1�
since its rows are obtained by this permutation from the unit matrix:


0 0 1
1 0 0
0 1 0




LUP decomposition of matrix A:

PA = LU

Using for equation solution:

Pb = PAx = LUx .

From here, forward and back substitution.

Computing the LU decomposition
Zeroing out one column

�e following operation adds λi times row 2 to rows 3,4, . . . of A:

L2A =




1 0 0 0 0 . . . 0
0 1 0 0 0 . . . 0
0 λ3 1 0 0 . . . 0
0 λ4 0 1 0 . . . 0
...
...
...
...
...
. . .

...



A.

L−1
2 =




1 0 0 0 0 . . . 0
0 1 0 0 0 . . . 0
0 −λ3 1 0 0 . . . 0
0 −λ4 0 1 0 . . . 0
...
...
...
...
...
. . .

...



.

Similarly, a matrix L1 might add multiples of row 1 to rows 2,3,

Repeating:

B3 = L−1
2 L−1

1 A,

A = L1L2B3 =




1 0 0 0 . . . 0
λ2 1 0 0 . . . 0
λ3 µ3 1 0 . . . 0
λ4 µ4 0 1 . . . 0
...
...
...
...
. . .

...







a11 a12 a13 . . .

0 a�1�22 a�1�23 . . .

0 0 a�2�33 . . .

0 0 a�2�43 . . .
...

...
...
. . .




If

A =

(
a11 w

T

v A′

)
then se�ing

L1 =

(
1 0

v/a11 I n−1

)
, L−1

1 =

(
1 0

−v/a11 I n−1

)
,

we have L−1
1 A = B2, A = L1B2 where

B2 =

(
a11 w

T

0 A′ − vw
T /a11

)
.

�e matrix A2 = A′ − vw
T /a11 is the Schur’s complement of A.

If A2 is singular then so is A (look at row rank).

Positive (semi)de�nite matrix

If A is symmetric, it can be wri�en as A =
(
a11 v

T

v A′

)
. Positive

de�niteness implies a11>0, positive semide�niteness implies a11 > 0.
Moreover, it implies that if a11 = 0 then a1j = a j1 = 0 for all j
(exercise!). Assuming a11>0, with U 1 = LT1

L−1
1 AU −1

1 =

(
a11 0
0 A2

)
, A2 =

(
0 I n−1

)
L−1

1 AU −1
1

(
0

I n−1

)
,

with Schur’s complement A2 = A′ − vv
T /a11.

Proposition If A is positive (semi)de�nite then A2 = A′ − vv
T /a11

is also.

Proof. We have yTA2y = xTAx , with

x = U −1
1

(
0

I n−1

)
y =: M1y.

If y is a witness for A2 not being positive (semi)de�nite by yTA2y 6 0
then x = M1y is a witness for A not being positive (semi)de�nite. �

Let A2 = �a�2�i j �
n
i, j=2, suppose it is positive semide�nite. �is implies

a�2�ii > 0. Take the �rst i with a�2�ii >0. �en all rows and columns of A2

with indices <i are 0. Continuing the decomposition using a�2�ii we
either arrive at A = LDLT with diagonal D > 0 or get a witness
against positive semide�niteness.

Passing through a permutation

Suppose that having A = L1L2B3 = LB3, we want to permute the
rows 3,4, . . . using a permutation π before applying some L−1

3 to
L−1A (say because position �3,3� in this matrix is 0). Let P be the
permutation matrix belonging to π :

PL−1A = L3B4,

PA = PLP −1L3B4 = L̂L3B4 where

L̂ = PLP −1 =




1 0 0 0 . . . 0
λ2 1 0 0 . . . 0
λπ �3� µπ �3� 1 0 . . . 0
λπ �4� µπ �4� 0 1 . . . 0
...

...
...
...
. . .

...



,

assuming L1 was formed with λ2,λ3, . . . , and L2 with µ3,µ4,

Organizing the computation: In the kth step, we have a
representation

PA = LBk+1,

where the �rst k columns of Bk+1 are 0 below the diagonal.
During the computation, only one permutation π needs to be
maintained, in an array.
Pivoting (see later).
Positive de�nite matrices do not require it (see later).
Pu�ing it all in a single matrix: Figure 28.1 of CLRS.

LUP decomposition, in a single matrix

for i = 1 to n do π �i�← i

for k = 1 to n do
p ← 0
for i = k to n do

if |aik |>p then
p ← |aik |
k ′ ← i

if p = 0 then error “singular matrix”

exchange π �k�↔ π �k ′�
for i = 1 to n do exchange aki ↔ ak ′i

for i = k + 1 to n do
aik ← aik/akk
for j = k + 1 to n do ai j ← ai j − aikakj

What if there is no pivot in some column?
General form:

PAQ = LU , PA = LUQ−1.

Using for equation solution:

Pb = PAx = LUQ−1x .

Find Pb by permutation via P , then Q−1x by forward and
backward substitution, then x by permutation via Q .

Proposition For an n × n matrix A, the row rank is the same as the
column rank.

Proof. Let PAQ = LU . If U has only r rows then L needs to have
only r columns, and vice versa, so L: n × r and U : r × n.
Let us see that r is the row rank of A. Indeed, A has a column rank r
since U maps onto Rr and the image of L is also r -dimensional. By
transposition, the same is true for AT = U TLT , and hence the row
rank is the same as the colum rank. �

Inverting matrices

Computing matrix inverse from an LUP decomposition: solving
equations

AX i = e i , i = 1, . . . ,n.

Inverting a diagonal matrix: �d1, . . . ,dn�
−1 = �d−1

1 , . . . ,d
−1
n �.

Inverting a matrix L =
(B 0
C D

)
=
(B 0
0 D

) (I 0
D−1C I

)
: We have

L−1 =

(
I 0

−D−1C I

) (
B−1 0
0 D−1

)
=

(
B−1 0

−D−1CB−1 D−1

)
.

For an upper triangular matrix U =
(B C
0 D

)
we get similarly

U −1 =
(
B−1 −B−1CD−1

0 D−1

)
.

�eorem Multiplication is no harder than inversion.

Proof. Let

D = L1L2 =



I 0 0
A I 0
0 B I


 =



I 0 0
A I 0
0 0 I





I 0 0
0 I 0
0 B I


 .

Its inverse is

D−1 = L−1
2 L−1

1 =



I 0 0
0 I 0
0 −B I





I 0 0
−A I 0
0 0 I


 =



I 0 0
−A I 0
AB −B I


 .
�

�eorem Inversion is no harder than multiplication.

Let n be power of 2. Assume �rst that A is symmetric, positive
de�nite, A =

(
B CT

C D

)
. Trying a block version of the LU

decomposition:

A =

(
I 0

CB−1 I

) (
B CT

0 D −CB−1CT

)
.

De�ne Q = B−1CT , and de�ne the Schur complement as S = D −CQ .
We will see later that it is positive de�nite, so it has an inverse.

We have A =
(I 0
QT I

) (
B CT

0 S

)
. By the inversion of triangular

matrices learned before:(
B CT

0 S

)−1
=

(
B−1 −B−1CTS−1

0 S−1

)
=

(
B−1 −QS−1

0 S−1

)
,

A−1 =

(
I 0
−QT I

) (
B−1 −QS−1

0 S−1

)
=

(
B−1 +QS−1QT −QS−1

−S−1QT S−1

)
.

4 multiplications of size n/2 matrices

Q = B−1CT , QTCT , S−1QT , Q�S−1QT �,

further 2 inversions and c · n2 additions:

I �2n� 6 2I �n� + 4M�n� + c1n
2 = 2I �n� + F �n�,

I �4n� 6 4I �n� + F �2n� + 2F �n�,
I �2k � 6 2k I �1� + F �2k−1� + 2F �2k−2� + · · · + 2k−1F �1�.

Assume F �n� 6 c2n
b with b>1. �en

F �2k−i�2i 6 c22bk−bi+i = 2bk2−�b−1�i .

So,

I �2k � 6 2k I �1� + c22b�k−1��1 + 2−�b−1� + 2−2�b−1� + · · · �
<2k + c22b�k−1�/�1 − 2−�b−1��.

Inverting an arbitrary matrix: A−1 = �ATA�−1AT .

Least squares approximation (reading)

Data: �x1,y1�, . . . , �xm,ym�.
Fi�ing F �x� = c1 f1�x� + · · · + cn fn�x�.
It is reasonable to choose n much smaller thanm (noise).

A =



f1�x1� f2�x1� . . . fn�x1�
f1�x2� f2�x2� . . . fn�x2�
...

...
. . .

...

f1�xm� f2�xm� . . . fn�xm�


 .

Equation Ac = y, generally unsolvable in the variable c . We want to
minimize the error η = Ac − y. Look at the subspace V of vectors of
the form Ac . In V , we want to �nd c for which Ac is closest to y.

�en Ac is the projection of y to to V , with the property that Ac − y
is orthogonal to every vector of the form Ax :

�Ac − y�TAx = 0 for all x , so
�Ac − y�TA = 0
AT �Ac − y� = 0

�e equation ATAc = ATy is called the normal equation, solvable by
LU decomposition.
Explicit solution: Assume that A has full column rank, then ATA is
positive de�nite.
c = �ATA�−1ATy. Here �ATA�−1AT is called the pseudo-inverse of A.

Computing the determinant exactly

Computing the determinant of an integer matrix is a task that can
stand for many similar ones, like the LU decomposition, inversion or
equation solution. �e following considerations apply to all.

How large is the determinant? Interpretation as volume: if matrix
A has rows aT1 , . . . ,aTn then

detA 6 |a1| · · · |an | =
n∏
i=1

�
n∑
j=1

a2
i j�

1/2.

�is is known as Hadamard’s inequality.

Working with exact fractions

A single addition or subtraction may double the number of digits
needed, even if the size of the numbers does not grow.

a

b
+ c

d
=
ad + bc

bd
.

If we are lucky, we can simplify the fraction.
It turns out that with Gaussian elimination, we will be lucky
enough.

�eorem Assume that Gaussian elimination on an integer matrix
A succeeds without pivoting. Every intermediate term in the
Gaussian elimination is a fraction whose numerator and
denominator are some subdeterminants of the original matrix.

(By the Hadamard inequality, these are not too large.)
More precisely, let

A�k� = be the matrix a�er k stages of the elimination.
D�k� = the minor determined by the �rst k rows and columns of
A.
D�k�
i j =, for k + 1 6 i, j 6 n, the minor determined by the �rst k

rows and the ith row and the �rst k columns and the jth column.

�en for i, j>k we have a�k�i j =
det D�k�

i j

det D�k� .

Proof. In the process of Gaussian elimination, the determinants of
the matrices D�k� and D�k�

i j do not change: they are the same for A�k�

as for A. But in A�k�, both matrices are upper triangular. Denoting
the elements on their main diagonal by d1, . . . ,dk+1,a

�k�
i j , we have

detD�k� = d1 · · ·dk+1,

detD�k�
i j = d1 · · ·dk+1 · a

�k�
i j .

Divide these two equations by each other. �

�e theorem shows that if we always cancel (using the Euclidean
algorithm) our algorithm is polynomial.
�ere is a cheaper way than doing complete cancellation (see
exact-Gauss.pdf).
�ere is also a way to avoid working with fractions altogether:
modular computation. Se for example the Lovász lecture notes.

When rounding is unavoidable (reading)

Floating point: 0.235 · 105 (3 digits precision)
Complete pivoting: experts generally do not advise it. Considerations
of �ll-in are typically given preference over considerations of
round-o� errors, since if the matrix is huge and sparse, we may not
be able to carry out the computations at all if there is too much �ll-in.

Example

0.0001x + y = 1
0.5x + 0.5y = 1 (4)

Eliminate x : −4999.5y = −4999.
Rounding to 3 signi�cant digits:

−5000y = −5000
y = 1
x = 0

True solution: y = 0.999899, rounds to 1, x = 1000.1, rounds to 1. We
get the true solution by choosing the second equation for pivoting,
rather than the �rst equation.

Forward error analysis: comparing the solution with the true
solution.
We can make our solutions look be�er introducing backward error
analysis: showing that our solution solves precisely a system that
di�ers only a li�le from the original.

Frequently, partial pivoting (choosing the pivot element just in the
k-th column) is su�cient to �nd a good solution in terms of forward
error analysis. However:

Example

x + 10,000y = 10,000
0.5x + 0.5y = 1 (5)

Choosing the �rst equation for pivoting seems OK. Eliminate x from
the second eq:

−5000.5y = −4,999
y = 1 a�er rounding
x = 0

�is is wrong even if we do backward error analysis: every system

a11x + a12y = 10,000
a21x + a22y = 1

satis�ed by x = 0, y = 1 must have a22 = 1.

�e problem is that our system is not well scaled. Row scaling and
column scaling: ∑

i j

riai js jx j = ribi

where ri ,s j are powers of 10. Equilibration: we can always achieve

0.1<max
j

|riai js j | 6 1,

0.1<max
i

|riai js j | 6 1.

Example In (5), let r1 = 10−4, all other coe�s are 1: We get
back (4), which we solve by partial pivoting as before.

Sometimes, like here, there are several ways to scale, and not all are
good.

Example Choose s2 = 10−4, all other coe�s 1:

x + y ′ = 10,000
0.5x + 0.00005y ′ = 1

(We could have go�en this system to start with. . . .) Eliminate x from
the second equation:

−0.49995y ′ = −4999
y ′ = 10000 a�er rounding
x = 0

so, we again got the bad solution.

Fortunately, such pathological systems are rare in practice.

Linear programming
Problem de�nition

How about solving a system of linear inequalities?

Ax 6 b .

We will try to solve a seemingly more general problem:

maximize cTx
subject to Ax 6 b .

�is optimization problem is called a linear program. (Not program
in the computer programming sense.)

Objective function, constraints, feasible solution, optimal
solution.
Unbounded: if the optimal objective value is in�nite.
A feasible solution makes a constraint tight if satis�es it with
equality.

Example �ree voting districts: urban, suburban, rural.
Votes needed: 50,000, 100,000, 25,000.
Issues: build roads, gun control, farm subsidies, gasoline tax.
Votes gained, if you spend $ 1000 on advertising on any of these
issues:

adv. spent policy urban suburban rural
x1 build roads −2 5 3
x2 gun control 8 2 −5
x3 farm subsidies 0 0 10
x4 gasoline tax 10 0 −2

votes needed 50,000 100,000 25,000

Minimize the advertising budget �x1 + · · · + x4� · 1000.

�e linear programming problem:

minimize x1 + x2 + x3 + x4
subject to −2x1 + 8x2 + 10x4 > 50,000

5x1 + 2x2 > 100,000
3x1 − 5x2 + 10x3 − 2x4 > 25,000

Implicit inequalities: xi > 0.

Solutions form a polyhedron that is convex.
A vertex is a feasible solution that is the unique solution of the
sytem of equations obtained from the constraints that it makes
tight (equality).
Extremal points of the polyhedron: points that are not the middle
of any segment of positive length that is in in the polyhedron.
Homework: the extremal points are the vertices, (and vice versa).

Solution idea

Two-dimensional example

maximize x1 + x2
subject to 4x1 − x2 6 8

2x1 + x2 6 10
5x1 − 2x2 > −2
x1, x2 > 0

Graphical representation, see book.
�e simplex algorithm: moving from a vertex to a nearby one
(changing only two inequalities) in such a way that the objective
function keeps increasing.

Worry: there may be too many vertices. For example, the set of 2n
inequalities

0 6 xi 6 1, i = 1, . . . ,n

has 2n extremal points.

Formulating problems as linear programs
Maximum error minimization

Solving an unsolvable system of equations Ax = b, we have seen that
we can minimize Ax − b in a least-square sense. Another possibility
is to minimize the maximum di�erence:

min
x

max
i

|aTi x − bi |.

Linear programming can solve this:

minimize y
subject to −y 6 aTi x − bi 6 y , i = 1, . . . ,m.

Single-source shortest paths

(Maximization is counter-intuitive, but correct.)

maximize d�t�
subject to d�v� 6 d�u� + w�u,v� for each edge �u,v�

d�s� > 0

Maximum �ow

Capacity c�u,v� > 0.

maximize ∑
v
f �s,v�

subject to f �u,v� 6 c�u,v�
f �u,v� = − f �v,u�∑

v
f �u,v� = 0 for u ∈ V − {s,t}

�e matching problem.
Givenm workers and n jobs, and a graph connecting each worker
with some jobs he is capable of performing. Goal: to connect the
maximum number of workers with distinct jobs.
�is can be reduced to a maximum �ow problem (see homework and
book). Using the fact that if the capacities are integer then there is an
integer optimal solution to the �ow problem.

Minimum-cost �ow
Edge cost a�u,v�. Send d units of �ow from s to t and minimize the
total cost ∑

u, v

a�u,v�f �u,v�.

Multicommodity �ow
k di�erent commodities Ki = �si ,ti ,di�, where di is the demand. �e
capacities constrain the aggregate �ow. �ere is nothing to optimize:
just determine the feasibility.

Games

A zero-sum two-person game is played between player 1 and player
2 and de�ned by anm × n matrix A. We say that if player 1 chooses a
pure strategy i ∈ {1, . . . ,m} and player 2 chooses pure strategy
j ∈ {1, . . . ,n} then there is payo�: player 2 pays amount ai j to player
1.

Example m = n = 2, pure strategies {1,2} are called “a�ack le�”,
“a�ack right” for player 1 and “defend le�”, “defend right” for player
2. �e matrix is

A =

(
−1 1
1 −1

)
.

Player 1 can achieve maxi minj ai j . Player 2 can achieve
minj maxi ai j . Clearly, maxi minj ai j 6 minj maxi ai j . Typically the
inequality is strict.

Both players may improve their achievable values by randomization.
Mixed strategy: a probability distribution over pure strategies.
p = �p1, . . . ,pm� for player 1 and q = �q1, . . . ,qm� for player 2.
Expected payo�: ∑i j ai jpiq j . Can be viewed as extension of both sets
of strategies to the in�nite sets of distributions p,q. �e big result
will be that now maxp minq = minq maxp .
Translation into linear programming: If player 1 knows the mixed
strategy q of player 2, he will want to achieve

max
p

∑
i

pi
∑
j

ai jq j = max
i

∑
j

ai jq j

since a pure strategy always achieves the maximum. Player 2 wants
to minimize this and can indeed achieve

min
q

max
i

∑
j

ai jq j .

Rewri�en as a linear programming problem:

minimize t
subject to t >

∑
j ai jq j , i = 1, . . . ,m

q j > 0, j = 1, . . . ,n∑
j q j = 1.

Standard and slack form

Standard form

maximize cTx
subject to Ax 6 b

x > 0

Nonnegativity constraints. Unbounded: if the optimal objective value
is in�nite.
Converting into standard form:

x j = x ′j − x
′′
j , subject to x ′j ,x

′′
j > 0.

Handling equality constraints.

Slack form
In the slack form, the only inequality constraints are nonnegativity
constraints. For this, we introduce slack variables on the le�:

xn+i = bi −
n∑
j=1

ai jx j .

In this form, they are also called basic variables. �e objective
function does not depend on the basic variables. We denote its value
by z.

Example for the slack form notation:

z = 2x1 − 3x2 + 3x3
x4 = 7 − x1 − x2 + x3
x5 = −7 + x1 + x2 − x3
x6 = 4 − x1 + 2x2 − 2x3

More generally: B = set of indices of basic variables, |B| =m.
N = set of indices of nonbasic variables, |N | = n,
B ∪ N = {1, . . . ,m + n}. �e slack form is given by �N ,B,A,b,c,v�:

z = v + ∑
j∈N c jx j

xi = bi −
∑

j∈N ai jx j for i ∈ B.

Note that these equations are always independent.

�e simplex algorithm
Slack form. Example:

z = 3x1 + x2 + 2x3
x4 = 30 − x1 − x2 − 3x3
x5 = 24 − 2x1 − 2x2 − 5x3
x6 = 36 − 4x1 − x2 − 2x3

A basic solution: set each nonbasic variable to 0. Since all bi are
positive, the basic solution is feasible here.
Iteration step: Increase x1 until one of the constraints becomes
tight: now, this is x6 since bi/ai1 is minimal for i = 6.
Pivot operation: exchange x6 for x1.

x1 = 9 − x2/4 − x3/2 − x6/4

Here, x1 is the entering variable, x6 the leaving variable.
If not possible, are we done? See later.

In general:

Lemma �e slack form is uniquely determined by the set of basic
variables.

Proof. Simple, using the uniqueness of linear forms. �

�is is useful, since the matrix is therefore only needed for deciding
how to continue. We might have other ways to decide this.

Assume that there is a basic feasible solution. See later how to
�nd one.

Rewrite all other equations, substituting this x1:

z = 27 + x2/4 + x3/2 − 3x6/4
x1 = 9 − x2/4 − x3/2 − x6/4
x4 = 21 − 3x2/4 − 5x3/2 + x6/4
x5 = 6 − 3x2/2 − 4x3 + x6/2

Formal pivot algorithm: no surprise.

When can we not pivot?
unbounded case
optimality

�e problem of cycling
Can be solved, though you will not encounter it in practice.

Perturbation, or “Bland’s Rule”: choose variable with the smallest
index. (No proof here that this terminates.)
Geometric meaning: walking around a �xed extremal point, trying
di�erent edges on which we can leave it while increasing the
objective.

Initial basic feasible solution

Solve the following auxiliary problem, with an additional variable x0:

minimize x0
subject to aTi x − x0 6 bi i = 1, . . . ,m,

x , x0 > 0

If the optimal x0 is 0 then the optimal basic feasible solution is a basic
feasible solution to the original problem.

Slack form:

z = − x0,
xn+i = bi + x0 −

∑n
j=1 ai jx j i = 1, . . . ,m.

�e basic solution for this basis is not feasible (otherwise we would
not need x0). Still, perform the operation of bringing x0 into the
basis, using an i with smallest bi . Assuming b1 is this:

z = b1 −
∑n

j=1 a1jx j − xn+1,

x0 = −b1 + ∑n
j=1 a1jx j + xn+1,

xn+i = �bi − b1� −
∑n

j=1�ai j − a1j�x j + xn+1, i = 2, . . . ,m.

�e basic solution of this system is feasible. Carry out the simplex
method starting from it. Eventually (if the optimum is x0 = 0), the
last step can bring out x0 from the basis again. A�er this, the basis is
a basis of the original problem, with a feasible basic solution.

Complexity of the simplex method

Each pivot step takes O�mn� algebraic operations.
How many pivot steps? Can be exponential.
Does not occur in practice, where the number of needed
iterations is rarely higher than 3 max�m,n�. Does not occur on
“random” problems, but mathematically random problems are
not typical in practice.
Spielman-Teng: on a small random perturbation of a linear
program (a certain version of) the simplex algorithm terminates
in polynomial time (on average).

Polynomial algorithm

Is there a polynomial algorithm for linear programming? Two ways
to make the question precise:

Is there an algorithm with number of algebraic operations and
comparisons polynomial inm + n? �e answer is not known.
Is there an algorithm with number of bit operations polynomial
in the length of input (measured in bits)? �e answer is yes. We
will see such an algorithm; however, it is rarely competitive in
practice.

Duality

Primal (standard form): maximize cTx subject to Ax 6 b and x > 0.
Value of the optimum (if feasible): z∗. Dual:

ATy > c yTA > cT

y > 0 yT > 0
min bTy min yTb

Value of the optimum if feasible: t∗.

Proposition (Weak duality) z∗ 6 t∗, moreover for every pair of
feasible solutions x , y of the primal and dual:

cTx 6 yTAx 6 yTb = bTy. (6)

Use of duality. If somebody o�ers you a feasible solution to the dual,
you can use it to upperbound the optimum of the primal (and for
example decide that it is not worth continuing the simplex iterations).

Interpretation:
bi = the total amount of resource i that you have (kinds of
workers, land, machines).
ai j = the amount of resource i needed for activity j.
c j = the income from a unit of activity j.
x j = amount of activity j.

Ax 6 b says that you can use only the resources you have.
Primal problem: maximize the income cTx achievable with the given
resources.
Dual problem: Suppose that you can buy lacking resources and sell
unused resources.

Resource i has price yi . Total income:

L�x ,y� = cTx + yT �b −Ax� = �cT − yTA�x + yTb .

Let

f �x̂� = inf
y>0

L�x̂ ,y� 6 L�x̂ ,ŷ� 6 sup
x>0

L�x ,ŷ� = д�ŷ�.

�en f �x�> − ∞ needs Ax 6 b. Hence if the primal is feasible then
for the optimal x∗ (choosing y to make yT �b −Ax∗� = 0) we have

sup
x

f �x� = cTx∗ = z∗.

Similarly д�y�<∞ needs cT 6 yTA, hence if the dual is feasible then
we have

z∗ 6 inf
y
д�y� = �y∗�Tb = t∗.

Complementary slackness conditions:

yT �b −Ax� = 0, �yTA − cT �x = 0.

Proposition Equality of the primal and dual optima implies
complementary slackness.

Interpretation:
Inactive constraints have shadow price yi = 0.
Activities that do not yield the income required by shadow prices
have level x j = 0.

�eorem (Strong duality) �e primal problem has an optimum if
and only if the dual is feasible, and we have

z∗ = maxcTx = minyTb = t∗.

�is surprising theorem says that there is a set of prices (called
shadow prices) which will force you to use your resources optimally.
Many interesting uses and interpretations, and many proofs.

Our proof of strong duality uses the following result of the analysis
of the simplex algorithm.

�eorem If there is an optimum v then there is a basis
B ⊂ {1, . . . ,m + n} belonging to a basic feasible solution, and
coe�cients c̃i 6 0 such that

cTx = v + c̃Tx ,

is an identity for the variable x , where c̃i = 0 for i ∈ B.

For the proof, de�ne the nonnegative variables

ỹi = −c̃n+i i = 1, . . . ,m.

For any x , the following transformation holds, where i = 1, . . . ,m,
j = 1, . . . ,n:∑

j

c jx j = v +
∑
j

c̃ jx j +
∑
i

c̃n+ixn+i

= v +
∑
j

c̃ jx j +
∑
i

�−ỹi��bi −
∑
j

ai jx j�

= v −
∑
i

biỹi +
∑
j

�c̃ j +
∑
i

ai jỹi�x j .

�is is an identity for x , so the coe�cients of the two sides must
match: 0 = v −

∑
i biỹi , and also c j = c̃ j + ∑

i ai jỹi .
Optimality implies c̃ j 6 0, which implies that ỹi is a feasible solution
of the dual.

Linear programming and linear inequalities

Any feasible solution of the set of inequalities

Ax 6 b
ATy > c

cTx − bTy = 0
x , y > 0

gives an optimal solution to the original linear programming
problem.

�eory of alternatives

�eorem (Farkas Lemma, not as in the book) A set of inequalities
Ax 6 b is unsolvable if and only if a positive linear combination
gives a contradiction: there is a solution y > 0 to the inequalities

yTA = 0,
yTb = 1.

For proof, translate the problem to �nding an initial feasible solution
to standard linear programming.

We use the homework allowing variables without nonnegativity
constraints:

maximize z
subject to Ax + z · e 6 b

(7)

Here, e is the vector consisting of all 1’s. �e dual is

minimize yTb
subject to yTA = 0

yTe = 1
yT > 0

(8)

�e original problem has no feasible solution if and only if max z<0
in (7). In this case, minyTb<0 in (8). Condition yTe = 1 is not
needed. If we drop it then we can scale y to have yTb = −1.

Separating hyperplane

Vectors u1, . . . ,um in an n-dimensional space. Let L be the set of
convex linear combinations of these points: v is in L if∑

j

yiu i = v,
∑
i

yi = 1, y > 0.

Using matrix U with rows uTi :

yTU = v
T ,

∑
i

yi = 1, y > 0. (9)

If v < L then we can put between L and v a hyperplane with equation
dT

v = c . Writing x in place of d and z in place of c , this says that the
following set of inequalities has a solution for x ,z:

uTi x 6 z �i = 1, . . . ,m�, v
Tx>z.

Can be derived from the Farkas Lemma.

Complementary slackness, geometrically

Assume that the hyperplane dT
v = c actually touches the set L, that

is c is as small as possible (supporting hyperplane). �en there are
d ,y,c with the properties

dTu i 6 c

dT �
∑
i

yiu i� = c,∑
i

yi = 1,

y > 0.

�en for all those constraints dTu i 6 c that are not tight, the
coe�cient yi is 0. In other words, the optimal solution is already a
convex combination of those extremal elements of L that are on the
hyperplane dT

v = c .

Application to games

Primal, with dual variables wri�en in parentheses at end of lines:

minimize t
subject to t −

∑
j ai jq j > 0 i = 1, . . . ,m �pi�∑

j q j = 1, �z�
q j > 0, j = 1, . . . ,n

Dual:

maximize z
subject to ∑

i pi = 1,
−

∑
i ai jpi + z 6 0, j = 1, . . . ,n

pi > 0 i = 1, . . . ,m.

Dual for max-�ow: min-cut

maximize ∑
v∈V f �s,v�

subject to f �u,v� 6 c�u,v�, u,v ∈ V ,
f �u,v� = − f �v,u�, u,v ∈ V ,∑

v∈V f �u,v� = 0, u ∈ V \ {s,t}.

Two variables associated with each edge, f �u,v� and f �v,u�. Simplify.
Order the points arbitrarily, but starting with s and ending with t .
Leave f �u,v� when u<v: whenever f �v,u� appears with u<v, replace
with − f �u,v�.

maximize ∑
v>s f �s,v�

subject to f �u,v� 6 c�u,v�, u<v,
− f �u,v� 6 c�v,u�, u<v,∑

v>u f �u,v� −
∑

v<u f �v,u� = 0, u ∈ V \ {s,t}.

Some constraints disappeared but others appeared, since in case of
u<v the constraint f �v,u� 6 c�v,u� is wri�en now − f �u,v� 6 c�u,v�.
A dual variable for each constraint. For f �u,v� 6 c�u,v�, call it y�u,v�,
for − f �u,v� 6 c�v,u�, call it y�v,u�. For∑

v>u

f �u,v� −
∑
v<u

f �v,u� = 0

call it y�u�.

Dual constraint for each primal variable f �u,v�, u<v. Since f �u,v� is
not restricted by sign, the dual constraint is an equation. If u,v , s
then f �u,v� has coe�cient 0 in the objective function. �e equation
for u , s , v , t is y�u,v� − y�v,u� + y�u� − y�v� = 0.
For u = s , v , t : y�s,v� − y�v,s� − y�v� = 1.
For u , s but v = t , y�u,t� − y�t ,u� + y�u� = 0.
For u = s,v = t : y�s,t� − y�t ,s� = 1.
Se�ing y�s� = −1, y�t� = 0, all these equations can be summarized in

y�u,v� − y�v,u� = y�v� − y�u�.

�e objective function to minimize is ∑
u, v c�u,v�y�u,v�

=
∑
u< v

y�v,u��c�u,v� + c�v,u�� + c�u,v��y�v� − y�u��

=
∑
u< v

y�u,v��c�u,v� + c�v,u�� + c�v,u��y�u� − y�v��.

For each u<v, minimize the corresponding term while keeping
y�v� − y�u� �xed. If y�v� > y�u� then making y�v,u� = 0 still leaves
y�u,v� > 0. �e term becomes c�u,v��y�v� − y�u��.
If y�v�<y�u� then make y�u,v� = 0 to get c�v,u��y�u� − y�v��. �e
objective becomes ∑

u, v

c�u,v�|y�v� − y�u�|+

where |x |+ = max�x ,0�, subject to y�s� = −1 y�t� = 0. Require
y�s� = 0, y�t� = 1 instead; the problem remains the same.

Claim �ere is an optimal solution in which each y�u� is 0 or 1.

Proof. Assume that there is an y�u� that is not 0 or 1. If it is outside
the interval �0,1� then moving it towards this interval decreases the
objective function, so assume they are all inside. If there are some
variables y�u� inside this interval then move them all by the same
amount either up or down until one of them hits 0 or 1. One of these
two possible moves will not increase the objective function. Repeat
these actions until each y�u� is 0 or 1. �

Let y be an optimal solution in which each y�u� is either 0 or 1. Let

S = {u : y�u� = 0 }, T = {u : y�u� = 1 }.

�en s ∈ S , t ∈ T . �e objective function is∑
u∈S, v∈T

c�u,v�.

�is is the value of the “cut” �S ,T �. So the dual problem is about
�nding a minimum cut, and the duality theorem implies the
max-�ow/min-cut theorem.

Maximum bipartite matching
Bipartite graph with le� set A, right set B and edges E ⊆ A × B.
Interpretation: elements of A are workers, elements of B are jobs.
�a,b� ∈ E means that worker a has the skill to perform job b. Two
edges are disjoint if both of their endpoints di�er. Matching: a set M
of disjoint edges. Maximum matching: a maximum-size assignment
of workerst to jobs.
Covering set C ⊆ A ∪ B: a set with the property that for each edge
�a,b� ∈ E we have a ∈ C or b ∈ C .
Clearly, the size of each matching is 6 the size of each covering set.

�eorem �e size of a maximum matching is equal to the size of a
minimum covering set.

�ere is a proof by reduction to the �ow problem and using the
max-�ow min-cut theorem.

Problem (10pts) Show an example of a polyhedron determined by
the set of linear inequalitites Ax 6 b where A is anm × n matrix, and
of a vertex u of this polyhedron for which there are two di�erent sets
B1,B2 of n linearly independent rows aTi x 6 bi such that aTi u = bi
holds i ∈ B1 ∪ B2.

Solution Let aix = bi , i = 1, . . . ,n be independent equations and
let the �n + 1�st equation aTn+1x = bn+1 be the sum of the �rst n. �en
equations 2,3, . . . ,n + 1 are also independent. Now let us form the
inequalities aTi x 6 bi , i = 1, . . . ,n + 1.

Problem Take the game theory problem we considered in class.
Transform it into a linear program as we have done it. Perform the
steps that need to be taken before the simplex algorithm can be
started with an initial basic feasible solution.

Here is the problem to be solved by player 1:

Solution

maximize z
subject to ∑

i pi = 1,
−

∑
i ai jpi + z 6 0, j = 1, . . . ,n,

pi > 0, i = 1, . . . ,m.

Variable z needs to be wri�en as z ′ − z ′′ with z ′,z ′′ > 0. �e equation
must be wri�en as two inequalities:∑

i

pi 6 1,

−
∑
i

pi 6 −1.

In order to �nd an initial feasible solution we introduce a new
variable p0 > 0: −∑n

i=1 pi − p0 6 −1. �e slack form, with slack
variables t1,t2,pn+1, . . . ,pn+m is now:

t1 = 1 −
∑n

i=1 pi ,
t2 = −1 + p0 + ∑n

i=1 pi ,
pn+i = − z ′ + z ′′ + ∑

j ai jx j , i = 1, . . . ,m,

where −p0 must be maximized. Exchanging the variables t2 and p0 in
the basis gives

p0 = 1 + t2 −
n∑
i=1

pi ,

leaving the other equations unchanged, and changing the objective
function −p0 into 1 + t2 −

∑n
i=1 pi . Now

z ′ = z ′′ = t2 = p1 = · · · = pn = 0 is a basic feasible solution that can
be used to start the �rst phase of the simplex algorithm.

Problem (10pts) Consider a linear program in the standard form:
maximizing cTx subject to Ax 6 b with x > 0, where A is anm × n
matrix. Suppose that we �nd a vector y > 0 satisfying approximately
the dual inequalities: ATy > c/3. Show that then we also found an
approximate upper bound on the optimum of the original maximum,
namely cTx 6 3bTy.

Solution �e vector 3y, satis�es the dual inequalities, and
therefore by weak duality, cTx 6 �3y�Tb.

Problem We talked about the maximum matching problem in
class: given by a bipartite graph G = �A ∪ B,E�. Here A is the class of
workers, B the class of jobs, and �a,b� ∈ E if worker a can perform
job b. We introduce a variable xa,b for each �a,b� ∈ E: in the solution,
this variable 1 if edge �a,b� is selected and 0 otherwise. Consider the
following linear program:

maximize ∑
�a,b�∈E xa,b

subject to ∑
b:�a,b�∈E xa,b 6 1 for all a ∈ A,∑
a:�a,b�∈E xa,b 6 1 for all b ∈ B,

xa,b > 0 for all a,b .

It is easy to see that the integer solutions of this program are just the
maximum matchings.

a (10pts) Write up the dual of this problem.

Solution In the dual, we have a nonnegative variable for each
constraint. For the constraints corresponding to a ∈ A let the
variable be ya , for the constraints corresponding to b ∈ B let the
variable be zb . �ere is a dual constraint for pair �a,b� ∈ E. �is pair
appears in two constraints, once for a and once for b:

ya + zb > 1, �a,b� ∈ E.

�e dual objective is to minimize ∑
a∈Aya + ∑

b∈B zb .

b (5pts) Interpret it in the case that all its variables are required to
be integer.

Solution Let S be the union of the set of points a ∈ A with ya = 1
and those b ∈ B with zb = 1. �e constraint says that every edge
must be adjacent to a point in the set S . We must �nd the minimal
such set.

�e ellipsoid algorithm
�e problem

�e simplex algorithm may take an exponential number of steps,
as a function ofm + n.
Consider just the problem of deciding the feasibility of a set of
inequalities

aTi x 6 bi , i = 1, . . . ,m

for x ∈ Rn . If each entry has at most k digits then the size of the
input is

L =m · n · k .

We want a decision in a number of steps polynomial in L, that is
O�Lc� for some constant c .

Ellipsoids

In space Rn , for all r>0 the set

B�c,r � = {x : �x − c�T �x − c� 6 r 2 }

is a ball with center c and radius r . A nonsingular linear
transformation L transforms B�0,1� into an ellipsoid

E = {Lx : xTx 6 1 } = {y : yTA−1y 6 1 },

where A = LTL is positive de�nite. A general ellipsoid E�c,A� with
center c has the form

{x : �x − c�TA−1�x − c� 6 1 }

where A is positive de�nite.

�ough we will not use it substantially, the following theorem shows
that ellipsoids can always be brought to a simple form. A basis
b1, . . . ,bn of the vector space Rn is called orthonormal if bTi b j = 0
for i , j and 1 for i = j.

�eorem (Principal axes) Let E be an ellipsoid with center 0.
�en there is an orthonormal basis such that if vectors are expressed
with coordinates in this basis then

E = {x : xTA−2x 6 1 },

where A is a diagonal matrix with positive elements a1, . . . ,an on the
diagonal.

In other words, E =
{
x : x2

1
a2

1
+ · · · + x2

n
a2
n
6 1

}
.

In 2 dimensions this gives the familiar equation of the ellipse

x2

a2 + y2

b2 = 1.

�e numbers a,b are the lengths of the principal axes of the ellipse,
measured from the center. When they are all equal, we get the
equation of a circle (sphere in n dimensions).

Volume of an ellipsoid

Let Vn be the volume of a unit ball in n dimensions. It is easy to see
that the volume of the ellipsoid

E =
{
x :

x2
1
a2

1
+ · · · +

x2
n

a2
n
6 1

}
.

is Vol�E� = Vna1a2 · · ·an . More generally, if
E = {x : xT �AAT �−1x 6 1 } then Vol�E� = Vn detA.

Bounding the set of solutions

�e set of solutions is a (possibly empty) polyhedron P . Let

N = nn/2102kn, δ =
1

2mN
, ε =

δ

10kn
,

b ′i = bi + δ .

In preparation, we will show

�eorem

a �ere is a ball E1 of radius 6 N
√
n and center 0 with the

property that if there is a solution then there is a solution in E1.
b Ax 6 b is solvable if and only if Ax 6 b ′ is solvable and its set of

solutions of contains a cube of size 2ε .

Consider the upper bound �rst. We have seen in homework the
following:

Lemma If there is a solution that is a vertex then there is one with
|x j | 6 N for all j.

Now, suppose there is a solution z. For each j, if z j > 0 let us
introduce a new constraint x j > 0, while if z j<0 then introduce a
constraint x j 6 0. It is easy to see that this new system has a solution
that is a vertex.
Now for the lower bound. One of your homeworks has a problem
showing the following:

Lemma If Ax 6 b has no solution then de�ning b ′i = bi + δ , the
system Ax 6 b ′ has no solution either.

�e following clearly implies b of the theorem:

Corollary If Ax 6 b ′ is solvable then its set of solutions contains a
cube of size 2ε .

Proof. If Ax 6 b ′ is solvable then so is Ax 6 b. Let x be a solution of
Ax 6 b. �en changing each x j by any amount of absolute value at
most ε changes

aTi x =
n∑
j=1

ai jx j

by at most 10knε 6 δ , so each inequality aTi x 6 b
′
i still holds. �

�e algorithm

�e algorithm will go through a series x �1�,x �2�, . . . of trial
solutions, and in step t learn P ⊆ Et where our wraps E1,E2, . . .
are ellipsoids.
We start with x �1� = 0, the center of our ball. Is it a solution? If
not, there is an i with aTi x

�1�>bi . �en P is contained in the
half-ball

H1 = E1 ∩ {x : aTi x 6 aTi x
�1� }.

Shrinking rate

To keep our wraps simple, we enclose H1 into an ellipsoid E2 of
possibly small volume.

x(1) x(2)

Lemma �ere is an ellipsoid E2
containing H1 with
Vol�E2� 6 e−

1
2n Vol�E1�. �is is true

even if E1 was also an ellipsoid.

Note e− 1
2n ≈ 1 − 1

2n .

Proof

Assume without loss of generality
E1 is the unit ball E1 = {x : xTx 6 1 },
ai = −e1, bi<0.

�en the half-ball to consider is {x ∈ E1 : x1 > 0 }. �e best
ellipsoid’s center has the form �d ,0, . . . ,0�T . �e axes will be
�1 − d�,b,b, . . . ,b, so

E2 =
{
x : �x1 − d�

2

�1 − d�2 + b−2
∑
j>2

x2
j 6 1

}
.

It touches the ball E1 at the circle x1 = 0, ∑j>2 x
2
j = 1:

d2

�1 − d�2 + b−2 = 1.

Hence

b−2 = 1 − d2

�1 − d�2 =
1 − 2d

1 − 2d + d2 ,

b2 = 1 + d2

1−2d . Using 1 + z 6 ez :

Vol�E2� = Vn�1 − d�bn−1 6 Vne
−d+ �n−1�d2

1−2d = Vne
−d 1−�n+1�d

1−2d .

Choose d = 1
2�n+1� to make the numerator 1/2, then this is Vne−

1
2n .

�is proves the Lemma for the case when E1 is a ball. When E1 is an
ellipsoid, transform it linearly into a ball, apply the lemma and then
transform back. �e transformation takes ellipsoids into ellipsoids
and does not change the ratio of volumes.

Bounding the number of iterations

Now the algorithm constructs E3 from E2 in the same way, and so on.
If no solution is found, then r steps diminish the volume by a factor

e−
r

2n .

We know Vol�E1� 6 Vn�N
√
n�n , while if there is a solution then the

set of solutions contains a ball of volume > Vnεn . But if r is so large
that

e−
r

2n <

(
ε

N
√
n

)n
then Vol�Er+1� is smaller than the volume of this small ball, so there
is no solution.
It is easy to see from here that r can be chosen to be polynomial in
m,n,k .

Swept under the rug

Formula for computing the ellipsoids: Let Bk be the matrix of the kth
ellipsoid Ek , with center x �k�:
Ek = {x : �x − x �k��TB−1

k �x − x �k�� 6 1 }. Let aTi x 6 bi be the
violated constraint. De�ne

bk =
Bkai√
aTi Bkai

, x �k+1� = x �k� + bk
n + 1 ,

Bk+1 =
n2

n2 − 1

(
Bk −

2
n + 1bkb

T
k

)
.

It can be shown that this formula is su�cient to compute with a
precision that does not ruin the polynomiality of the algorithm.

Even if an exact solution exists, we only found an approximate
solution. To �nd an exact solution (if exists) in polynomial time, ask
one-by-one about each of the constraints whether it can be tight
(introduce the opposite inequality), until a vertex is found (add
possibly some more of constraints, of the type x j > 0, x j 6 0). �en
solve the equations.

Convex programming
Convexity

Many methods and results of linear programming generalize to the
case when the set of feasible solutions is convex and there is a
convex function to minimize.

De�nition A function f : Rn → R is convex if the set
{ �x ,y� : f �x� 6 y } is convex. It is concave if − f �x� is convex.

Equivalently, f is convex if

f �λa + �1 − λ�b� 6 λf �a� + �1 − λ�f �b�

holds for all 0 6 λ 6 1.

Examples

Each linear function aTx + b is convex.
If a matrix A is positive semide�nite then the quadratic function
xTAx is convex.
If f �x�, д�x� are convex and α ,β > 0 then α f �x� + βд�x� is also
convex.

If f �x� is convex then for every constant c the set {x : f �x� 6 c } is a
convex set.

De�nition A convex program is an optimization problem of the
form

min f0�x�

subject to fi�x� 6 0 for i = 1, . . . ,m,

where all functions fi for i = 0, . . . ,m are convex.
More generally, we also allow constraints of the form

x ∈ H

for any convex set H given in some e�ective way.

Example: Support vector machine

Vectors u1, . . . ,uk represent persons known to have ADD
(a�ention de�cit disorder). ui j = measurement value of the jth
psychological or medical test of person i . v1, . . . ,vl ∈ Rn

represent persons known not to have ADD.
Separate the two groups, if possible, by a linear test: �nd vectors
z,x<y with

zTu i 6 x for i = 1, . . . ,k,
zT vi > y for i = 1, . . . ,l .

For z,x ,y to maximize the width of the gap y−x
�zT z�1/2 , solve the

convex program:

maximize y − x
subject to uTi z 6 x , i = 1, . . . ,k,

v
T
i z > y , i = 1, . . . ,l ,

zTz 6 1.

Separation oracle

For the de�nition of “given in an e�ective way”, take clue from the
ellipsoid algorithm:

We were looking for a solution to a system of linear inequalities

aTi x 6 bi , i = 1, . . . ,n.

A trial solution x �t� was always the center of some ellipsoid Et . If
it violated the conditions, it violated one of these: aTi x �t�>bi . We
could then use this to cut the ellipsoid Et in half and to enclose it
into a smaller ellipsoid Et+1.
Now we are looking for an element of an arbitrary convex set H .
Assume again, that at step t , it is enclosed in an ellipsoid Et , and
we are checking the condition x �t� ∈ H . How to imitate the
ellipsoid algorithm further?

De�nition Let a : Qn → Qn , b : Qn → Q be functions computable
in polynomial time and H ⊆ Rn a (convex) set. �ese are a
separating (hyperplane) oracle for H if for all x ∈ Rn , with a = a�x�,
b = b�x� we have:

If x ∈ H then a = 0.
If x < H then a , 0, further aTy 6 b for all y ∈ H and aTx > b.

Example For the unit ball H = {x : xTx 6 1 }, the functions
a = x · |xTx − 1|+, and b = xTx |xTx − 1|+ give a separation oracle.
To �nd a separation oracle for an ellipsoid, transform it into a ball
�rst.

Suppose that the convex set H allows a separation oracle �a�·�,b�·��.
If the goal is to �nd an element of H then we can proceed with the
ellipsoid algorithm, enclosing the convex set H into ellipsoids of
smaller and smaller volume. �is sometimes leads to good
approximation algorithms.

Semide�nite programs

If A,B are symmetric matrices then A � B denotes that B −A is
positive semide�nite, and A ≺ B denotes that B −A is positive
de�nite.
Let the variables xi j be arranged in an n × n symmetric matrix
X = �xi j�. �e set of positive semide�nite matrices

{X : X � 0 }

is convex. Indeed, it is de�ned by the set of linear inequalities

aTXa > 0, that is
∑
i j

�aia j�xi j > 0

where a runs through all vectors in Rn .

Example: maximum cut

Recall the maximum cut problem in a graph G = �V ,E,w�·�� where we
is the weight of edge e .
New idea:

Assign a unit vector u i ∈ Rn to each vertex i ∈ V of the graph.
Choose a random direction through 0, that is a random unit
vector z. �e sign of the projection on z determines the cut:

S = { i : zTu i 6 0 }.

�e probability that z cuts u i and u j is

arccos�uTi u j�/π

(draw a picture!).

Let α ≈ 0.87856 be the largest value with

arccos�y�/π > α�1 − y�/2, −1 6 y 6 1.

Instead of maximizing ∑
i,j wi j arccos�uTi u j�/π , we will just

maximize its lower bound

α
∑
i,j

wi j�1 − uTi u j�/2.

�is is at least α times the value of the max cut, since if �S ,T � is a cut,
then se�ing u i = e for i ∈ S and u i = −e for i ∈ T we get exactly the
value ∑

i,j

wi j�1 − uTi u j�/2.

minimize ∑
i,j wi juTi u j

subject to uTi u i = 1, i = 1, . . . ,n.

It is more convenient to work with the variables xi j = uTi u j . �e
matrix X = �xi j� is positive semide�nite, with xii = 1, if and only if it
can be represented as xi j = uTi u j . We arrive at the semide�nite
program:

minimize ∑
i,j wi jxi j

subject to xii = 1, i = 1, . . . ,n,
X � 0.

Separation oracle for semide�niteness

Please look up the the LU decomposition algorithm in these notes,
when applied to positive semide�nite matrices A (Cholesky
decomposition). We structured it in such a way that when it fails it
gives a witness z with ∑

i j ziz jai j<0. �e vector �ziz j�ni, j=1 is the
direction of the hyperplane separating the matrix A from the positive
semide�nite ones. Indeed, for any positive semide�nite matrix B we
have ∑

i j ziz jbi j > 0.
Warning: All this is inexact without the estimation of the e�ect of
roundo� errors and degree of approximation, in the precise analysis
of the ellipsoid algorithm, in the context of convex optimization
problems.

NP problems

Examples

Shortest vs. longest simple paths
Euler tour vs. Hamiltonian cycle
2-SAT vs. 3-SAT. Satis�ability for circuits and for conjunctive
normal form (SAT). Reducing sastis�ability for circuits to 3-SAT.
Use of reduction in this course: proving hardness.
Ultrasound test of sex of fetus.

Decision problems vs. optimization problems vs. search problems.

Example Given a graph G.
Decision Given k , does G have an independent subset of size > k?
Optimization What is the size of the largest independent set?
Search Given k , give an independent set of size k (if there is one).
Optimization+search Give a maximum size independent set.

Random access machine

Memory: one-way in�nite tape: cell i contains natural number T �i�
of arbitrary size.
Program: a sequence of instructions, in the “program store”: a
(potentially) in�nite sequence of labeled registers containing
instructions. A program counter.
Instruction types:
T �T �i�� = T �T �j�� random access
T �i� = T �j� ±T �k� addition
if T �0�>0 then jump to s conditional branching

�e cost of an operation will be taken to be proportional to the total
length of the numbers participating in it. �is keeps the cost realistic
despite the arbitrary size of numbers in the registers.

Polynomial time

Abstract problems
Instance. Solution.

Encodings
Concrete problems: encoded into strings.
Polynomial-time computable functions, polynomial-time decidable
sets.
Polynomially related encodings.
Language: a set of strings. Deciding a language.

Polynomial-time veri�cation

Example Hamiltonian cycles.

An NP problem is de�ned with the help of a function

V �x ,w�

with yes/no values that veri�es, for a given input x and witness
(certi�cate) w whether w is indeed witness for x .
It is required that V �x ,w� is computable as a function of the
length of x . �is implies that the length of the witnesses w (taken
into account) is bounded polynomially in the length of x .

�e same decision problem may belong to very di�erent veri�cation
functions (search problems).

Example (Compositeness) Let the decision problem be the
question whether a number x is composite (nonprime). �e obvious
veri�able property is

V1�x ,w�⇔ �1<w<x� ∧ �w|x�.

�ere is also a very di�erent veri�able property V2�x ,w� for
compositeness such that, for a certain polynomial-time computable
b�x�, if x is composite then at least half of the numbers 1 6 w 6 b�x�
are witnesses. �is can be used for probabilistic prime number tests.

Satis�ability

Let us use Boolean variables xi ∈ {0,1}, where 0 stands for false,
1 for true. A logic expression is formed using the connectives
∧,∨,¬: for example

F �x1,x2,x3,x4� = �x1 ∨ ¬x2� ∧ �x2 ∨ ¬x3 ∨ x4�.

Other connectives: say x ⇒ y = ¬x ∨ y .
An assignment (say x1 = 0, x2 = 0, x3 = 1, x4 = 0) allows to
compute a value (in our example, F �0,0,1,0� = 0).
An assignment �a1,a2,a3,a4� satis�es F , if F �a1,a2,a3,a4� = 1. �e
formula is satis�able if it has some satisfying assignment.
Satis�ability problem: given a formula F �x1, . . . ,xn� decide
whether it is satis�able.

Special cases:
A conjunctive normal form (CNF) F �x1, . . . ,xn� = C1 ∧ · · · ∧Ck
where eachCi is a clause, with the formCi = x̃ j1 ∨ · · · ∨ x̃ jr . Here
each x̃ j is either x j or ¬x j , and is called a literal.
SAT: the satis�ability problem for conjunctive normal forms.
A 3-CNF is a conjunctive normal form in which each clause
contains at most 3 literals—gives rise to 3-SAT.
2-SAT: as seen in class, this is solvable in polynomial time.

Logic formulas, can be generalized to logic circuits.

Acyclic directed graph, where some nodes and edges have labels.
Nodes with no incoming edges are input nodes, each labeled by
some logic variable x1, . . . ,xn .
Nodes with no outgoing edges are output nodes.
Some edges have labels ¬. Non-input nodes are labeled ∨ or ∧.
Assume just one output node: the circuit C de�nes some Boolean
function fC�x1, . . . ,xn�. Circuit satis�ability is the question of
satis�ability of this function.
Assume also that every non-input node has exactly two incoming
edges.

Reducibility, completeness

Reduction of problem A1 to problem A2 in terms of the veri�cation
functions V1, V2 and a reduction (translation) function τ :

∃wV1�x ,w�⇔ ∃uV2�τ �x�,u�.

Example Reducing linear programming to linear programming in
standard form.

NP-hardness.
NP-completeness.

�eorem Circuit satis�ability is NP-complete.

Consider a veri�cation function V �x ,w�. For an x of length n, to a
random access machine program computing V �x ,w�, in cost t ,
construct a circuit C�x� of polynomial size in n,t , that computes
V �x ,w� from any input string w. (We translated x toC�x�.) Now there
is a witness w if and only if C�x� is satis�able.

�eorem 3-SAT is NP-complete.

Translating a circuit’s local rules into a 3-CNF.

�eorem INDEPENDENT SET is NP-complete.

Reducing SAT to it.

Example

Integer linear programming, in particular solving Ax = b, where
them × n matrix A > 0 and the vector b consist of integers, and
x j ∈ {0,1}.
Casem = 1 is the subset sum problem.
Reducing 3SAT to solving Ax = b.
Reducing Ax = b to aTx = b (subset sum).

Example Set cover > vertex cover ∼ independent set.

Co-NP

De�nition of the Co-NP class: L is in Co-NP if its complement is
in NP. Example: logical tautologies.
�e class NP∩Co-NP. Examples: duality theorems.
Example of a class that is in NP∩Co-NP, and not known to be in
P: derived from the factorization problem.
Let L be the set of those pairs of integers x>y>0 for which there
is an integer 1<w<y with w|x . �is is clearly in NP. But the
complement is also in NP. A witness that there is no w with the
given properties is a complete factorization

x = pα1
1 · · ·p

αk
k

of x , along with witnesses of the primality of p1, . . . ,pk . �e la�er
are known to exist, by an old—nontrivial—theorem that primality
is in NP.

Approximations
�e se�ing

In case of NP-complete problems, maybe something can be said
about how well we can approximate a solution. We will formulate
the question only for problems, where we maximize a positive
function. For object function f �x ,y� for x ,y ∈ {0,1}n , the optimum is

M�x� = max
y

f �x ,y�

where y runs over the possible “witnesses”.
For 0<λ, an algorithm A�x� is a λ-approximation if

f �x ,A�x��>M�x�/λ.

For minimization problems, with minimumm�x�, we require
f �x ,A�x��<m�x�λ.

Greedy algorithms

Try local improvements as long as you can.

Example (Maximum cut) Graph G = �V ,E�, cut S ⊆ V , S = V \ S .
Find cut S that maximizes the number of edges in the cut:

|{ {u,v} ∈ E : u ∈ S ,v ∈ S }|.

Greedy algorithm:
Repeat: �nd a point on one side of the cut whose moving

to the other side increases the cutsize.

�eorem If you cannot improve anymore with this algorithm then
you are within a factor 2 of the optimum.

�e unimprovable cut contains at least half of all edges.

Randomized algorithms

Generalize maximum cut for the case where edges e have weights we ,
that is maximize ∑

u∈S, v∈S

wu v .

�estion �e greedy algorithm brings within factor 2 of the
optimum also in the weighted case. But does it take a polynomial
number of steps?
New idea: decide each “v ∈ S?” question by tossing a coin. �e
expected weight of the cut is 1

2
∑

e we , since each edge is in the
cut with probability 1/2.
We will do be�er with semide�nite programming.

Less greed is sometimes be�er

What does the greedy algorithm for vertex cover say?
Be�er performance guarantee by a less greedy algorithm:
Approx Vertex Cover �G�:

C ← ∅
E ′ ← E�G�
while E ′ , ∅ do

let �u,v� be an arbitrary edge in E ′

C ← C ∪ {u,v}
remove from E ′ every edge incident on either u or v

return C

�eorem Approx Vertex Cover has a ratio bound of 2.

Proof. �e points of C are endpoints of a matching. Any optimum
vertex cover must contain half of them. �

More general vertex cover problem for G = �V ,E�, with weight wi in
vertex i . Let xi = 1 if vertex x is selected. Linear programming
problem without the integrality condition:

minimize w
Tx

subject to xi + x j > 1, �i, j� ∈ E,
x > 0.

Let the optimal solution be x∗. Choose x i = 1 if x∗i > 1/2 and 0
otherwise.

Claim Solution x has approximation ratio 2.

Proof. We increased each x∗i by at most a factor of 2. �

�e set-covering problem

Given �X ,F�: a set X and a family F of subsets of X , �nd a min-size
subset of F covering X .
Example: Smallest commi�ee with people covering all skills.
Generalization: Set S has weight w�S�>0. We want a
minimum-weight set cover.

�e algorithm Greedy Set Cover �X ,F�:

U ← X
C ← ∅
whileU , ∅ do

select an S ∈ F that maximizes |S ∩U |/w�S�
U ← U \ S
C ← C ∪ {S}

return C
If element e was covered by set S then let price�e� = w�S�

|S∩U | . �en we
cover each element at minimum price (at the moment).
Note that the total �nal weight is ∑n

k=1 price�ek �.

Analysis

Let H �n� = 1 + 1/2 + · · · + 1/n�≈ lnn�.

�eorem Greedy Set Cover has a ratio bound maxS∈F H �|S |�.

Lemma For all S in F we have ∑
e∈S price�e� 6 w�S�H �|S |�.

Proof. Let e ∈ S ∩ Si \
⋃

j<i S j , and Vi = S \
⋃

j<i S j be the remaining
part of S before e will be covered in the greedy cover. By the greedy
property,

price�e� 6 w�S�/|Vi |.

Let e1, . . . ,e|S | be a list of elements of S in the order in which they are
covered (ties are broken arbitrarily), with e j�k� the earliest element
covered along with ek . �e above inequality gives

price�ek � = price�e j�k�� 6
w�S�

|S | − j�k� + 1 6
w�S�

|S | − k + 1 .

Summing for all k proves the lemma. �

Proof of the theorem. Let C∗ be the optimal set cover and C the
cover returned by the algorithm.∑

e

price�e� 6
∑
S∈C∗

∑
e∈S

price�e� 6
∑
S∈C∗

w�S�H �|S |� 6 H �|S∗|�
∑
S∈C∗

w�S�

where S∗ is the largest set. �

�estion Is this the best possible factor for set cover?

�e answer is not known.

Primal-dual schema

Let us look at the same algorithm and analysis from a di�erent point
of view. Primal (a generalized “covering problem”):

minimize ∑n
j=1 c jx j

subject to ∑n
j=1 ai jx j > bi , i = 1, . . . ,m,

x j > 0, j = 1, . . . ,n.

Dual (a “packing problem”):

maximize ∑n
i=1 biyi

subject to ∑n
i=1 ai jyi 6 c j , j = 1, . . . ,n.

yi > 0, i = 1, . . . ,m.

For some α ,β > 1, formally relax the complementary slackness:
Primal conditions: x j>0⇒ c j/α 6

∑
j ai jyi 6 c j .

Dual conditions: yi>0⇒ bi 6
∑

j ai jx j 6 βbi .

Proposition If the primal and dual feasible solutions satisfy these
conditions, then

cTx 6 αβbTy.

Proof straightforward.

�e primal-dual schema:
Start from an infeasible integer primal and a feasible dual
(typically x = 0, y = 0).
Keep improving the feasibility of the primal, keeping it integral,
and the optimality of the dual.
�e primal guides the improvements of the dual and vice versa.

Application to set cover

Set cover problem, without integrality condition. Set system S ,
universe U .

minimize ∑
S c�S�xS

subject to ∑
S3e xS > 1, e ∈ U ,

xS > 0, S ∈ S,

Dual with variables ye , e ∈ U :

maximize ∑
e∈U ye

subject to ∑
e∈S ye 6 c�S�, S ∈ S,

ye > 0, e ∈ U .

Primal complementary slackness conditions for each S , with factor
α = 1: xS , 0⇒ ∑

e∈S ye = c�S�.
Set S is tight when this holds. Plan: use only tight sets.

�e algorithm

1. Start with x = 0, y = 0.
2. Repeat, until all elements are covered:

Pick uncovered element e , raise ye until some set S goes tight.
Add S to the set cover.

Since the relaxed complementary slackness conditions hold at the
end, we achieved the approximation factor αβ = 1.

Simplicity As opposed to the simplex method, the successive
improvements were not accompanied by any linear transformations
accompanying a basis change.

Fully approximable version of knapsack

�e knapsack problem is de�ned as follows.
Given: integers b > a1 > . . . > an , and integer weights
w1 > · · · > wn .

maximize w
Tx

subject to aTx 6 b,
xi = 0,1, i = 1, . . . ,n.

Dynamic programming: For 1 6 k 6 n,

Ak �p� = min{aTx : wTx > p, xk+1 = · · · = xn = 0 }.

If the set is empty the minimum is∞, and set Ak �x� = 0 for x 6 0.
Let w = w1 + · · · + wn . �e vector �Ak+1�0�, . . . ,Ak+1�w�� can be
computed by a simple recursion from �Ak �0�, . . . ,Ak �w��.

Ak+1�p� = min{Ak �p�,ak+1 + Ak �p − wk+1� }.

�e optimum is max{p : An�p� 6 b }.
Complexity: roughly O�nw� steps.
Why is this not a polynomial algorithm?

Idea for approximation: break each wi into a smaller number of big
chunks, and use dynamic programming. Let r>0, w′i = bwi/rc.

maximize �w′�Tx
subject to aTx 6 b,

xi = 0,1, i = 1, . . . ,n.

For the optimal solution x ′ of the changed problem, estimate
w
T x ′

OPT =
w
T x ′

w
T x∗ . We have

w
Tx ′/r > �w′�Tx ′ > �w′�Tx∗ > �w/r �Tx∗ − n,

w
Tx ′ > OPT − r · n = OPT − εw1,

where we set r = εw1/n. �is gives

�w�Tx ′

OPT > 1 − εw1
OPT > 1 − ε .

With w =
∑

i wi , the amount of time is of the order of

nw/r = n2
w/�w1ε� 6 n3/ε,

which is polynomial in n, �1/ε�.

Classifying approximability

An approximation scheme is an algorithm that for every ε , gives an
�1 + ε�-approximation, computable in polynomial time, if ε is �xed.

A problem is fully approximable if it has a polynomial-time
approximation scheme.
Example: see a version KNAPSACK below.
It is partly approximable if there is a lower bound λmin>1 on the
achievable approximation ratio.
Example: MAXIMUM CUT, VERTEX COVER, MAX-SAT.
It is inapproximable if even this cannot be achieved.
Example: INDEPENDENT SET (deep result). �e approximation
status of this problem is di�erent from VERTEX COVER, despite
the close equivalence between the two problems.

Approximability is model-dependent

Approximability depends much on which function is chosen to
optimize. Examples:

Special case of knapsack, with wi = ai . Equivalent to minimizing
b −

∑
i a

Tx . �e minimization is inapproximable, since the
question whether the optimum is 0 is NP-complete.
Maximum independent set is inapproximable. If k is the size of a
maximum independent set, then n − k is the size of a minimum
vertex cover, which is partly approximable. And it indeed might
happen that k = n1/2 and we only �nd n1/3. �e quotient is
unbounded, while n−n1/3

n−n1/2 → 1 as n → ∞.

Counting problems: the class # P

De�nition Function f is in #P if there is a polynomial-time
(veri�er) predicate V �x ,y� and polynomial p�n� such that for all x we
have

f �x� = |{y : |y | 6 p�|x |� ∧V �x ,y� }|.

Reduction among #P problems. �e #P-complete problems are all
obviously NP-hard.

Repeated tests

How to aproximate a #P function?
Repeated independent tests will work only if the probability of
success is not tiny. More formally, if it is not tiny compared to the
standard deviation. Look at Chebysev’s inequality, say. Let
X1, . . . ,XN be i.i.d. random variables with variance σ 2 and expected
value µ. �en the inequality says

P�|
∑
i

X i/N − µ |>tσ � 6 t −2/N .

Suppose we want to estimate µ within a factor of 2, so let tσ = µ/2,
then t = µ/�2σ �,

P�|
∑
i

X i/N − µ |>µ/2� 6 �1/N ��2σ/µ�2.

�is will converge slowly if σ/µ is large.

Example X i = 1 with probability p and 0 otherwise. �en
σ 2 = p�1 − p�, our bound is 4�1 − p�/�pN �, so we need N>1/p if p is
small.

DNF satisfaction

Suppose we want to �nd the number of satisfying assignments of a
disjunctive normal form

C1 ∨ · · · ∨Cm .

More generally, suppose we need to estimate |S | where

S = S1 ∪ · · · ∪ Sm .

Suppose that
We can generate uniformly the elements of Si for each i .
We know (can compute in polynomial time) |Si |.
For each element x , we know

c�x� = |{ i : x ∈ Si }|.

�en we know M =
∑

i |Si |, but we want to know |S |.

Pick I ∈ {1, . . . ,m} such that P�I = i� = |Si |/M . Pick an element
X ∈ S I uniformly. �en for each x we have

P�X = x� =
∑
S i 3x

P�I = i�P�X = x |I = i� =
∑
S i 3x

|Si |

M

1
|Si |
= c�x�/M .

Let Y = M/c�X �, then

E�Y � =
∑
x ∈S

M

c�x�
P�X = x� = |S |.

On the other hand, 0 6 Y 6 M , so σ 6 M 6 m|S |, therefore σ/µ 6 m,
so sampling will converge fast.
We found a FPRAS (fully polynomial randomized approximation
scheme) for counting the DNF solutions.

	Introduction
	Linear algebra
	Matrices and vectors
	Vector spaces
	Linear dependence
	Matrices
	Inverse, rank
	Determinant
	Positive definite matrices

	Divide and conquer
	Polynomial multiplication
	Faster matrix multiplication
	Fourier transform

	Linear equations
	Elimination
	LUP decomposition

	Inverting matrices
	Least squares approximation
	Issues of rounding
	Determinant exactly
	Pivoting and scaling

	Linear Programming
	Problem definition
	Solution idea
	Formulating problems as linear programs
	Standard and slack form
	The simplex algorithm
	Duality
	Alternatives
	Applications of duality

	The ellipsoid algorithm
	The problem
	Ellipsoids
	Upper and lower bounds
	The algorithm
	Shrinking rate
	Bounding the number of iterations
	Swept under the rug

	Convex programming
	Convexity
	Separation oracle
	Semidefinite programs

	NP-completeness
	Polynomial time
	Polynomial-time verification
	Satisfiability
	Reducibility, completeness

	Approximations
	Greedy algorithms
	The set-covering problem
	Primal-dual schema
	Approximation schemes
	Counting
	Repeated tests

