Dependable Computing: Basic
Concepts and Definitions



Learning Objectives

* At the end of this lecture, you should be able to:

— Define fault-tolerance terms such as reliability,
availability, safety and distinguish between them

— ldentify faults, errors and failures based on system
descriptions and scenarios

— Classify faults, errors and failures into various types

— Categorize fault-tolerance techniques based on which
phase they are applied

— Apply common fault-tolerance strategies to problem
scenarios and systems



What is dependability ?

* |[FIP WG 10.4 on dependability

— [..] the trustworthiness of a computing system
which allows reliance to be justifiably placed on
the service it delivers

* |ncorporates the following notions:

— Availability, Reliability, Maintainability
(traditional)

— Safety, security and Integrity (modern)



Dependability: Attributes, Means and
Impairments

— AVAILABILITY
RELIABILITY
SAFETY
CONFIDENTIALITY
INTEGRITY
MAINTAINABILITY

— ATTRIBUTES -

Dependability ———

FAULT PREVENTION
FAULT TOLERANCE
FAULT REMOVAL
FAULT FORECASTING

—— MEANS

— FAULTS

— IMPAIRMENTS  ——— ERRORS
— FAILURES




Dependability Attributes

Availability: Readiness for correct service
Reliability: Continuity for correct service
Safety: Absence of catastrophic consequences
Integrity: Absence of improper modifications

Maintainability: ability to undergo modifications
and repairs



Which of the following do the systems
satisfy ?

A database system fails every 1 minute, but recovers in 0.1 micro-
seconds. The recovery is guaranteed to occur after every failure.

A web server has downtime of 1 month a year, but it goes down at
the same month every year and is down for the entire month

A missile system has an expected downtime of 1 minute a year, and
will hit its target with 99.999% certainity. However, occasionally it
may backfire and hit an object close to the missile launcher itself.

A nuclear power plant system will lock down whenever any
improper change is made to it. Once locked down, it needs the
sysadmin to initiate a complex control sequence to bring it up
again. This operation may take anywhere from few hours to a few
days.

A computer system on the stock trading floor has only 3 minutes of
downtime a year, and is always up during critical operations. It also
prevents any modifications to it (including code updates) unless
three different operators coordinate to simultaneously apply them.



Examples of Attributes

Type of Availability | Reliability Safety Integrity Maintainabi
system I|ty

Aircraft
systems

Nuclear X X X X
reactor

Internet X X X X
news page

Smart- X X X X
phone

Pace-maker X

Automobile X X X X
system



Dependability and Security

Security Dependability

Maintainability
and Safety

Confidentiality Availability,
Integrity and
Reliability



Dependability: Attributes, Means and
Impairments

— AVAILABILITY
RELIABILITY
SAFETY
CONFIDENTIALITY
INTEGRITY
MAINTAINABILITY

— ATTRIBUTES -

Dependability ———

FAULT PREVENTION
FAULT TOLERANCE
FAULT REMOVAL
FAULT FORECASTING

—— MEANS

— FAULTS

— IMPAIRMENTS  ——— ERRORS
— FAILURES




Dependability Impairments

Activation Latency

Y

>

A

Fault

Error

Failure Latency |

Failure

Fault — Defect in the system (e.g., soft error)

Error — Deviation of system behavior from fault-free run

Failure — Violation of system’s specification (e.g., crash)



ldentify fault, error and failure

* A soft error in a processor causes corruption of a
data word stored in the cache. This word is read
and de-referenced in the program, which leads to
an “out of bounds” exception (e.g., seg. fault).

A program has a logical bug that is trigerred only
by certain test cases (i.e., when they exercise it).
When the bug is triggered, it causes the program
to compute a value incorrectly and the wrong
value is printed as part of the program’s output.



Fault masking and benign errors

 Not all faults lead to errors

— Faults can be masked because they are not
activated (e.g., faults in unread locations)

— Faults can also be corrected before they lead to
errors (e.g., memory scrubbing in ECC)

* Not all errors lead to failures (benign errors)
— Error may affect inconsequential system state
— System may have redundancy to correct error



Anatomy of an Error

L]
Time —————

>
Incorrect Output !
<Crash Latency

Program

T — :*Crash !
Error
)*, Activated ! Benign Error S
= Error !
> Occurs! Success
= * Unactivated
Error
>

13



Inter-connected Systems

* One system’s failure (system A) may be
another one’s fault/error (system B)

A -~




Examples

e Example 1 * Example 2

— Asshort in an integrated circuit is — The result of an error by a
a failure (with respect to the programmer leads to a
function of the circuit) failure to write the correct

— The consequence (e.g., stuck at a instruction or data.
Boolean value) is a fault that — This results in a dormant
stays dormant until activated fault in the written software

— Upon activation (invoking the (e.g., faulty instruction)
faulty component by applying an — Upon activation the fault
input) the fault becomes active become active and
and produces an error produces an error

— If and when the propagated — When the error affects the
error affects the delivered delivered service, a failure
service (e.g., information occurs

content), a failure occurs



Fault Classification

Temporal

Transient
— Occur only once at a location
— Eg., cosmic ray strikes

Intermittent

— Periodically recur at a
location

— E.g., timing violations
Permanent

— Continuous and stable
occurrence at a location

— E.g., stuck-at-faults

Origin
* Physical faults:
— Occur due to physical
phenomena such as EM
effects, threshold, effects etc.

or due to environmental

conditions such as
temperature or workload

e Human-made faults:

— Programming errors, mis-
configuration, human
operator errors etc.



Classification of Failures

Classification 1 | Classification 2

Nature Halt (fail-stop) Erratic (Babbling)

Detection Signaled Un-signaled (fail
silent)

Consistency Consistent Inconsistent

Severity Minor Catastrophic



Classification of Errors

Classification 1 Classification 2

Domain Timing Content
Detection Detected Latent
Consistency Consistent Inconsistent

Severity Minor Catastrophic



Dependability: Attributes, Means and
Impairments

— AVAILABILITY
RELIABILITY
SAFETY
CONFIDENTIALITY
INTEGRITY
MAINTAINABILITY

— ATTRIBUTES -

Dependability ———

FAULT PREVENTION
FAULT TOLERANCE
FAULT REMOVAL
FAULT FORECASTING

—— MEANS

— FAULTS

— IMPAIRMENTS  ——— ERRORS
— FAILURES




Dependability Means

Fault prevention
— Prevent occurrence of faults

Fault tolerance
— Avoid service failures in the presence of faults

Fault removal
— Reduce the number or occurrence of faults
Fault forecasting

— Predict how many faults remain and their likely
consequences (increase assurance in system)



Examples

* Consider a space mission that has to be deployed
for long periods of time (say a few years)
— Fault prevention: Use of reliable coding practices,
(e.g., defensive programming) and safe languages

— Fault-tolerance: Provide ability to detect and repair
failed components during missions

— Fault-removal: Remove the faults at runtime or
record the commonly observed faults for later
removal

— Fault-forecasting: Predict how likely a future mission
is to succeed based on the lessons learned



Fault-tolerance techniques

Error Error Fault
Detection Recovery Avoidance
Concurrent: Roll-back: Diagnosis:
Detect errors . Restore system N Figure out the
during system to a state root cause of
operation before errors the error (fault)
—>» Pre-emptive: ——> Roll-forward: ——» Isolation/
Detect errors Clean up the Reconfiguration:
ahead of time error from Isolate faulty
state or go to component and
new state reconfigure the

without errors system



Fault Tolerance

* The ability to provide continued correct
operation despite the presence of faults

— Encompasses a broad rage of techniques ranging
from low-level devices to application software

— Important to ensure that the service behaves as
expected provided fault belongs to fault-model

— There is no such thing as perfect fault-tolerance
Every fault-tolerance technique has a coverage
and a fault-model over which it is evaluated.



Error Detection

* Concurrent detection during normal operation
— Watchdog timer
— Software assertions
— Process pairs

* Preemptive detection preempts the failure
— Spare checking
— Memory scrubbing
— Software rejuvenation



Error Recovery

* Rollback: Restores the state of the system to
one before the fault. Useful for transient and

intermittent faults.

* Rollforward: Corrects the fault and allows
system to make forward progress, if possible.

 Compensation: Leverage natural redundancy
of the system to mask the error.



Fault Avoidance

Diagnosis

— |ldentify the root cause of the fault (location, type)
Isolation

— Physically/Logically excludes faulty component
Reconfiguration

— Switches in non-faulty components and remaps the
tasks to the non-faulty components

Reinitialization
— Record the new system state and updates the

external entities that interface with the system (if
necessary)



Example: Hardware Fault
Tolerance

* Multi-core system experiences a fault in one
of the cores. Error is detected through a
concurrent check. What are the possible
recovery actions that can be taken ?



Example: Software Fault Tolerance

 Two identical copies of a software program
are run concurrently to check each other. If
the output of one differs from the output of

the other, what recovery actions can be
taken ?



Coverage

* Every fault-tolerance technique has associated
coverage, i.e., the probability that it detects/
corrects a fault, given that a fault has occurred
— Coverage can be reduced by defects in the fault-

tolerance mechanism’s implementation (“who will
check the checker ?”)

— Coverage can reduced because of common mode

failures or because assumptions made during the
FTM’s design are violated in practice



Summary

* Dependability concepts: definitions, means,
attributes and impairments, systems view

e Recommended reading:

Avizienis, A., Laprie, J., Randell, B., and Landwebhr,
C.

Basic Concepts and Taxonomy of Dependable and
Secure Computing. IEEE Trans. Dependable and
Secure Computing, Vol 1, Issue 1, 2004, 11-33.



