Hardware Level Fault-Tolerance
Techniques

EECE 513: Design of Fault-tolerant
Digital Systems

Learning Objectives

List the techniques for improving the reliability of
commodity & high end processors

Design coding techniques for memory soft errors and
evaluate their trade-offs

Understand the benefits of chipkill ECC, sparing and
scrubbing

List the techniques used in the I/O sub-system

Putting it together: Stratus Case Study

High-Availability Systems

IBM G5 Mainframes

— Duplicated execution units
on each core

— Redundant CPU logic

— Inline checking in 1/O sub-
system

— ECCin memory and
registers

Error Recovery is
accomplished using
instruction retry

— Transparent to the S/W

* Tandem Non-Stop

— Duplicated processors
running in lock-step

— Process pairs for checking

— End-to-end disk
checksums, CRC

— ECC in memory only

* Error recovery is achieved
by swapping in backup
processes

— S/W needs to be involved
in the failover

Commodity Micro-processors

Source: Recent Advances and New Avenues in Hardware-Level Reliability Support,

by lyer, Nakka, Kalbarczyk and Mitra, IEEE Micro 2005.

Feature Intel P6 family AMD Hammer Intal tanium
Internal regsters Panty NO protection No protecton
L1 Data Party cache: parity; Party
D cache: =CC
Tag Party Parity Party
L2 Data ECC £ECC g-bit ECC/
&4 cata bts
Tag Party £ECC Panty
L3 Data N/A N/A g-oit ECC/
&4 0ata bats
Tag N/A N/A 3 panty bits
T.Bs Party Parity Party
Buses ECCon NO protection No protecton
C2U-L2 bus
Other faatures Machine check MCA Multilevel MCA:
architecture IMCA) lkocal and global
1o datect and MCA, hardware
COrace errors N bus reset
procassor loge
Unque features Functiona Chipll memory Nultilevel error
redundancy conmrolier to conta nment.
chacking using SUPOOrt meMmary watchaog tmer;
master/slave senbbing. NX error logging and
Procassors VIFUS Protecton corrected error

for Windows XP
§-’>2

notficaton: NX
VIrUS protection

Learning Objectives

List the techniques for improving the reliability of
commodity & high end processors

Design coding techniques for memory soft errors and
evaluate their trade-offs

Understand the benefits of chipkill ECC, sparing and
scrubbing

List the techniques used in the I/O sub-system

Putting it together: Stratus Case Study

Memory Errors: History

* Memory elements have long been the target
of soft-errors since the late 70’s

— In 1978 May and Woods reported "A New Physical
Mechanism for Soft Errors in Dynamic Memories”

— In 1979, "Alpha-Particle-Induced Soft Errors in
Dynamic Memories.”

— SRAMs saw problems approximately 2 years later

Soft Errors Today

Baumann, R.;, "The impact of technology scaling on soft error rate performance
and limits to the efficacy of error correction," Electron Devices Meeting, 2002.

DRAMs SRAMs
100000 g 40 100000 ¢
10000 35 _
g 10000 4
= 1000 - i
z -
Y & o0 !
100
! 3 :
01 DRAM single-bit SER 15
: 100
L ———rrvvet « gy ¢ vreovt | ()
1 10 100 1000
Integration Density (Mbit)
Figure X, The sngle b SER wead (white diamonds) in SRAM devices a5 a2

Figure 2. The singhe bit (white diamonds) snd system (Mack diamonds) SER fenctaan of technology node The rapid scakeg down of opevating voltapes
trends for DRAM s o function of technology node. The operating voliage ot is evadent shows by the cueve with pray tnangles. The ~ 10x roducson o
oach node s reprosensed by the curve with gray tnanghes SER after the 029 um node 15 the effect of removing BIFSG

Error Trends in today’s memories

 DRAM reliability has remained relatively constant
over many years

— Thanks to improvement in fabrication
— May be different in eDRAMSs and mobile DRAM

 SRAM reliability becoming an increasing concern
with shrinking cell sizes and voltage

* DRAM hard errors are emerging as a problem
[Schroeder’09][Dell’08]

Parity Protection - 1

* Single bit added to each memory byte/word
to detect a single error

— Cannot detect multiple errors
— Cannot correct the error
— Affordable alternative to ECC memory

Parity bit — even parity

Xp =X0"Ax1Ax2AMNXx3Mx4 Mx57Mx6 Nx7

Parity Protection - 2

Requires an additional operation on reads/writes to
memory —> extra access latency

Circuitry to compute parity bit is simple, but requires
additional area and power

Used mainly in SRAM structures where error rates
were low and access times are important

For DRAMs, no added benefit of using parity over ECC
when the memory data width is greater than 8 bytes

ECC Memory -1

* For every memory word of size ‘n’ bits, we need
at least log, (n) bits of ECC memory

— For 64 bit memory, we need at least 6 bits of ECC
— The check bits are distributed throughout word

— Each bit is protected by multiple checkbits given by
the index (the sum of the checkbits matches index)

R1 = R37R5~R7AR9"R11
= 07A17M1170M1
=1

R4 = R5AR6M"R77R12
= 1r07M1AM1
=1

ECC Memory - 2

* Let’s say you had a single bit error in R5 (1-20)

ol o M- AN

Check Bits are recomputed and compared.

R1=R3AR5AR7AR9AR11=0A0NA17A0N1=0
R4=R5"R6"A"R7AR12=07A0M17r1=0
Both check-bits R1 and R4 differ from their computed

values. These are called the syndromes. So we can infer
that the bit R5 had an error in it, and can correct the error.

ECC Memory -3

e Let’s say you errors in bits R5 and R7 (double-error)

R1R2.R40.0 R8 } ‘ ‘ ‘

Let’s compute check-bits R1, R2 and R4
R1=R3AR52AR7AR9MAR11=02020"2071=1 (Same as prior value)
R2=R3A"R6AR7"R1I0M"R11=020~0~071=1 (Differs from prior value)
R4=R5"R6AR77AR12=020"207~1=1 (Same as prior value)

How do we distinguish this case from the one where bit R2 is corrupted ?

ECC Memory -4

* Add an extra parity bit RO for the entire word

RO R1 R2.R4 0.0 R8

Extra parity bit for the word is added
* |In the case of a single bit error, both syndrome

vit(s) and RO bit will differ = can be corrected

* |In case of a double error, only syndrome bit(s)
differs = can be detected but not corrected

ECC: Implementation Trade-offs

e ECC memory is not free !
— Performance overheads for read/write operations

e 3104 % more for PC133 CAS2 ECC SDRAM
* Up to 33 % for high-speed SRAMs

— Area overhead for error-detection/correction ckts

e 20 % die overheads

— Additional costs as chipset support is needed

* 10 to 25 % more for entire chip

— Effectiveness: Corrects more than 90% of errors

Above nos. are from the Terazzon white paper.

Learning Objectives

List the techniques for improving the reliability of
commodity & high end processors

Design coding techniques for memory soft errors and
evaluate their trade-offs

Understand the benefits of chipkill ECC, sparing and
scrubbing

List the techniques used in the I/O sub-system

Putting it together: Stratus Case Study

ChipKill ECC - 1

* ECC can detect 2 bit and correct 1 bit errors
— Provided the entire memory chip does not fail
— Chip failure can lead to data loss even with ECC

Traditional SEC/DED ECC
for a 64-bit word with
eight check-bits of ECC

8 ECC Bits 64 Data Bits

ChipKill ECC - 2

e Solution: Use Chip-kill ECC™ (IBM S/390)

— Spread the ECC check bits over multiple chips

— Bit-steering = Steer the checkbits of adjacent bits
in @ memory word to different words in the ECC

Chip-kill ECC

Note how the bits are
scattered across
different modules

Figure 2

ChipKill ECC: Implementation
Tradeoffs

* Incurs four times the overhead of traditional ECC
— Can be optimized using very wide ECC words
— Provide detection of chip failures but not correction

 Compagqg proposed a clever interleaving solution
to combine two ECC words into one module

— Provides the benefits of Chipkill ECC with only as
much cost as parity protection

— After a chip has failed, the Compaq ECC is unable to
provide protection from single/double bit errors

Parity, ECC and ChipKill- Comparison

* Simulation data
gathered by IBM % "5 sovm
over 36 months g | 8 1o chphs -
comparing: $
— 32 MB Parity §
protected : ‘z:
memory ¥ il
— 1 GB SEC ECC e
— 1 GB Chipkill ECC e s

Memory Type and Months in Fleld

Other variations of ECC

e Scrubbing e Sparing

— ECC memory only checks — Correlated or large area
the bits during reads/ defects cannot be
writes combated with ECC

— However, infrequent alone
accesses may lead to bit — Use spare rows/columns
errors accumalating in conjunction with ECC

— Solution: Scrub memory — Leads to an order of
periodically by magnitude reliability
performing reads/writes improvement over ECC

to unaccessed memory alone for hard faults

Learning Objectives

List the techniques for improving the reliability of
commodity & high end processors

Design coding techniques for memory soft errors and
evaluate their trade-offs

Understand the benefits of chipkill ECC, sparing and
scrubbing

List the techniques used in the I/O sub-system

Putting it together: Stratus Case Study

/O Sub-system - 1

* Disk and other storage media protected using
RAID technologies

— Fairly mature, industry standard
— However, data is susceptible when it is buffered
— Firmware controllers and I/O processor errors

* Need to ensure end-to-end consistency of
data from I/O initiation to disk read/write

/O Sub-system - 2

* Techniques for end-to-end I/O checking
— Checksums on data before and after reads

— Checking of header fields for consistency

— Watchdog timer for ensuring no deadlocks or
livelocks of I/O devices

— System-level consistency checks. e.g., read back
data written to disk in chunks and check them

— Use multiple file organizations to store data

Learning Objectives

List the techniques for improving the reliability of
commodity & high end processors

Design coding techniques for memory soft errors and
evaluate their trade-offs

Understand the benefits of chipkill ECC, sparing and
scrubbing

List the techniques used in the I/O sub-system

Putting it together: Stratus Case Study

Stratus System Architecture Overview

. S%/stem composed of u;) to 32 computers connected through
Stratus bus called Stratalink

— Two independent coaxial links

— System software monitors if a link is up and can switch over in
case of failure

« Each computer has a backplane bus called StrataBus
— Major boards interface with the StrataBus

— 32 logical slots in StrataBus, grouped into two independent sets,
say Bus A and Bus B with independent power supply

— Each board does its own power regulation
— Each board interfaces with both buses
— Parity signals on each bus detects bus failures

— Additionally, memory boards detect bus problems such as open
bus lines, shorted bus lines, or failure of bus driver on a board

Stratus System View

e
(e=-0v)

Packel
Switched
Network

¢—— Systems

D_
S p— al

Stratus Hardware Fault-Tolerance

* Enough battery backup to do stage-wise shutdown
« System Boards

— Self-checking by having independent duplicate logic run
synchronously

— Outputs run through comparator which run the bus drivers

— Requirement for self-checking is there be no don’t care
states in FSMs

— Boards almost always occur in pairs, called partner boards
— Partner boards may run in

* Synchronous lockstep: Send same signals to StrataBus at same
clock tick

» Logically paired: System software keeps the pair in sync
— Partner boards are placed in even-odd slots of StrataBus

A Self-Checking Board

= A pair of identical logic
m Comparator enables or disables bus driver
= Incoming signals from bus are fed through a multiplexer

Fault-Tolerant Disk Subsystem

Organized into logical volumes with each disk paired
Two disks run through different disk controller boards

OS uses several technigues to ensure the duplexed
disk contains the same data — disk mirroring

Each block of data written to disk is checksummed
and checksum written to disk

Any disk block that goes bad is remapped to an
alternate block

— Diagnosis of bad block during reading creates a delay and
read data is written to a new block

— Diagnosis of bad block during writing creates a delay and
new block is allocated and data written serially to both

blocks

Disk Recovery Scenarios

 \What if controller fails?

— OS keeps track of writes to the mirrored disk driven
by the functioning controller

— When bad controller is repaired and brought back
online, only incremental writes are done to the disk on
that controller

— Called Fast Recovery

 What if disk fails?

— When repair or replacement is done, all data from
functioning disk is written to new disk

— Dual port disks so parallel reading and writing can go
on, but done serially for fault tolerance purposes

— Called Normal Recovery

What If Comparator Fails?

* Reports false failure

— Oﬂqe of the boards in the pair is diagnosed as faulty and taken
offline

« Misses reporting a failure

— Possibility 1: Bad board drives a ‘0" on the bus and functioning
board drives a ‘1" . OR-ing puts the correct data on the bus

— Possibility 2: Bad board drives a ‘1" on the bus. Parity checking
logic on the bus detects a problem and takes the bus offline

— Pf(?tential for problem in the latter case if both buses are taken
offline

« Liveness failure
— Board does not put any value on the bus
— A bus monitoring process to detect activity

Learning Objectives

List the techniques for improving the reliability of
commodity & high end processors

Design coding techniques for memory soft errors and
evaluate their trade-offs

Understand the benefits of chipkill ECC, sparing and
scrubbing

List the techniques used in the I/O sub-system

Putting it together: Stratus Case Study

Summary

* Processor desigh must be self-checking
— Error detection and recovery part of design
— Duplication incurs up to 35 % area overheads (G5)
— Commodity processors cannot afford such high costs

* Memory elements can be protected using ECC
— ECC alone is not enough for chip failures -> chipkill
— ECC has power, performance and area costs

* |/O systems need end-to-end consistency checks

Further Reading

T. Slegel et al. , IBM's S/390 G5 Microprocessor Design. IEEE
Micro 19, 2 (Mar. 1999), pp.12-23.

Soft Errors in Electronic Memory, A white paper by
Terrazon Semiconductors, 2004.

Baumann, R.;, "The impact of technology scaling on soft
error rate performance and limits to the efficacy of error
correction," Electron Devices Meeting, 2002.

Timothy J. Dell, A White Paper on the Benefits of Chipkill-
Correct ECC for PC Server Main Memory, (1997).

Schroeder, B., Pinheiro, E., and Weber, W. 2009. DRAM
errors in the wild: a large-scale field study. In Proceedings

of the Eleventh international Conference on Measurement
and Modeling of Computer Systems. SIGMETRICS '09.

“The Stratus architecture”, Steve Webber & John Beirne,
Symposium on Fault-Tolerant Computing, 1991 (FTCS-21).

