Fault Injection: Techniques, Tools
and Trade-offs

EECE 513: Design of Fault-tolerant
Systems

What will we learn ?

* Fault-injection: Motivation and means

* Fault-injection at different levels

* LLFI: Configurable Runtime Fault Injector

Dependability Evaluation

Dependability Evaluation Techniques

|
! !

Model-Based Measurement-based
I
| ; !
l l Fault-injection Real failures
Analytical Simulation l

——

Design Prototype Operational

Fault-injection

* Fault-injection (or fault-insertion) is the act of
deliberately introducing faults into the system
in a controlled and scientific manner, in order
to study the system’s response to the fault

— Can be used to estimate coverage of
dependability mechanisms (e.g., detection,

recovery)
— Also used to understand inherent fault tolerance

— To obtain reliability estimates of the system prior
to deployment (requires statistical projection)

Why fault-injection ?

* Versus Model-based
— More realistic, as it evaluates actual system
— No need to worry about mathematical feasibility
— No need to supply input parameters

* Versus operational measurements

— Failures take a *long* time to occur and when they do, are
often not reproducible or analyzable

— Failures provide limited insight into what *can* go wrong

— One has to wait until the system is deployed, which may
be too late

1

Fault Injection Spec’s > & ~<--- Workload Spec’s
Injection Strategy : t 1‘ J Rates and Mixes
Stress-based | Interaction
path-based | ﬂ_ﬁ itk
Random |]
Injection Method i Workload
by hardware ! Generator
by software I
Fault Location E
MCPU : System
emory .
disk /0 A CPU MEMORY 1/O Under
network I/0 \ Test
Other I/Os \\
Injection Time N /
load threshold \
program execution path \\\ 4
fault arrival rate “.0ad

Level~

Measure

Fault-injection Steps

Identify
fault-injection
points and times

Inject fault at the
appropriate time
and point

Collect the
outcome of the
expt.

| 1]

Choose workload
and platform to
inject

Start workload

on platform with
instrumentation

Compare the
outcome with
the correct one

Fault-injection: Inputs/Outputs

* Inputs
— Workload and platform to inject ?
— When and where to inject ?
— How many faults to inject (total) ?

* Outputs
— How many faults were activated ?
— How many faults cause a deviation of the outcome ?
— What is the latency of manifestation ?

Measures to Compute

Activation Latency Failure Latency
€ Sy

A A

Fault Fault Fault
injected Activated manifested

hat fraction of injected faults are activated ?
hat fraction of activated faults manifest as failures ?
hat are the average activation and failure latencies ?

S ==

Assumptions/Requirements

* Arepresentative set of faults must be injected

— Need to include enough faults to give confidence in
the measures being studies

* Only one or controlled no. of faults injected
— Ability to map the outcome to a set of faults

* Need to have a specification of correct behavior
to distinguish incorrect outcomes

— May need to determine golden run ahead of time

What will we learn ?

* Fault-injection: Motivation and means

* Fault-injection at different levels

* LLFI: Configurable Runtime Fault Injector

Levels of Fault-Injection

* Fault-injection can be performed at multiple
levels, from hardware to software

* Three things to consider in choosing level

— Type of fault to inject (e.g., stuck at faults easier to
inject in the hardware than in software)

— Speed of injection (e.g., h/w simulation slower than
real execution, though direct h/w probes possible)

— Intrusiveness (e.g., probing hardware result in
physical modifications that change the system’s
characteristics)

Fault-Injection and Fault-Models

Hardware

Open

Bridging

Stuck-at

Power Surge
Spurious Current
Bit-flip

Software

Storage Data Corruption
— Registers, Memory, Disk

Communication data
corruption
— CRC errors, Bus Errors

Software defect emulation

— Machine code corruption,
source code mutation

Hardware fault-injection

Contact-based Non-contact based
* Active Probes: Alters the * Heavy-ion Radiation: Put the
Eﬁgrg{:]tsv'a probes attached to chip in an accelerator beam
— Usually limited to stuck-at- (e.g., TRIUMF)
faults, though bridging faults — Difficult to control and
can also be modeled reproduce

— Care must be taken to not

damage the pins — But injects realistic faults

— No restriction on where faults

« Socket based: Insert a socket can be injected
between the target hardware
and the circuit board

— Can inject stuck-at or other
logical faults — Can lead to permanent damage

Placing chip in an EM field

H/W Fault-Injection: Example
(Contact Based)

Cperator

< T

& >

| Input files |
- -

_ Output files

[}

: Management of the test sequence

I

Control of the experiment

Environment

S$imulation Activation Injection ‘ Data collection
4 R0y |
T Initialization Fault t
Inputs/outputs) Synchranization Readouts
[- Target system

Messaline from CNRS [Arlat’1990]: Can perform probe-based and socket-based
injection. used for evaluating safety-critical systems such as railway control system

Hardware Fault-Injection
(Non-contact Based)

Inside vacuum chamber

Reset
1
Reference CPU Test CPU
Data \ |]
\ |
External External
bus) bus
L .| Comparator
error flip-flops

Trigger| External S;;at ' Memory
bus %
!
; Commands and
Error Lagic 1
data analyzer program loading

Error
data ‘

' 1 J
Host Error data | Monitoring ‘
computer [*— computer | Reset

FIST from Chalmers [Karlson’1995]: Used a Vaccum chamber in which an ionizing
source was placed. A second non-faulty processor was used for state comparision.

Software-based Fault-Injection (SWIFI)

Pros

Do not require expensive
hardware modifications

Can target applications and
OS errors

Many hardware faults do
not require probes, e.g,
register data corruption

Cons

Restricted to inject only
faults that S/W can see

May perturb the workload
that is running on the
system, resulting in missing
many heisenbugs

Coarser-grained time
resolution than h/w

SWIFI: Types

Compile-time

Modify source code or
machine code of the
program prior to execution

Can be used to model
software defects

Requires going thro’
compile-run cycle each time

Runtime

Modify the program or its
data during runtime

Can be done through the
debugger, kernel or with
support from compiler

No need to go through
compile-run cycle each time

Compile-time Injection

* Modify program’s code prior to execution
— Model hardware transient faults in machine code
— Also, allows for modeling of software errors

— Typically only inject into the first dynamic instance
of an instruction

* Main advantage: Take advantage of static
analysis of the code to customize the injection

Runtime Injection

* Advantages
— Can inject faults without recompiling - speed

— Faults can occur deeper in the execution. e.g.,
one-millionth iteration of a loop

— Fault can depend on runtime conditions. e.g., if
memory usage exceeds a threshold, inject fault

What will we learn ?

* Fault-injection: Motivation and means

* Fault-injection at different levels

* LLFI: Configurable Runtime Fault Injector

Why yet another fault injector?

 Difficult to customize existing injectors
— Inject into specific instructions
— Inject into a specific variable
— Inject into specific code constructs

* Difficult to understand the results
— Difficulty in fault injection customization
— Difficult to study the propagation of errors
— Difficult to map result back to source code

LLFI

e A fault injector based on LLVM
— Intermediate representation (IR) level injection

* Features
— Easy to customize the fault injection
— Easy to analyze fault propagation
— Accurate compared to assembly level injection

Why LLVM Compiler ?

e Supports wide variety of front- and back-ends
* Provides high-level features in the IR code

24

How does LLFI work?

Compile time

Fault injection

instruction/
register selector

Instrument IR code
of the program
with function calls

Fault injection

executable

Profiling
executable

Next

Fault injector . .
J Instruction

Runtime

Factorial Example: Original

define 132 @main(i32 %argc, 18** %argv) nounwind {
entry:
%"alloca point" = bitcast 132 0 to 132

%0
%1
%2

br

9 bb:

4 U

4

4

i

4

%3
%4

br

14 bbl:

10

§
4 U

4

4 C

4 2

4

—

= getelementptr inbounds i8** %argv, i64 1
= load i8** %0, align 1
= call 132 (...)* @to1(18* %1) nounwind
label %bbl
; preds = %bbl
= mul nsw 132 %fact.0, %1.0
= add nsw 132 %i.0, 1
label %bbl
; preds = %bb, %entry

%1.0 = phi 132 [1, %entry], [%4, %bb
[

%fact.® = phi 132 [1, %entry],

%5 = icmp sle 132 %i.0, %2
br 11 %5, label %bb, label %bb2

27 }

‘ret i32 undef

) bb2: ; preds = %bbl
%6 = call 132 (i8*%, ...)* @printf(i8* noalias getelementptr
inbounds ([4 x i8]* @.str, 164 0, 164 0), 132 %fact.®) nounwind
br label %returr

; preds = %bb2

Factorial Example: Instrumented

1 define 132 @main(i32 %argc, i8** %argv) nounwind {
2 entry:
- 11l void @initInjections(i8* getelementptr

4 inbounds ([21 x i8]* @NameStr, i32 0, 132 0))
5 %"alloca point" = bitcast 132 0 to 132

%fi2 = call 132 @injectFaulte(i32 2, i32 0, i32 %"alloca point")
7 %0 = getelementptr inbounds i8%** %argv, 164 1
%fi3 = call 1i8** @injectFaultl(i32 3, i32 0, i8%** %0)

2 %1 = load i8** %fi3, align 1
1€ %fi4 = call i8* @injectFault2(i32 4, i32 0, i8* %1)

11 %2 = call 132 (...)* @to1(1i8* %fi4) nounwind
12 %fi5 = call 132 @injectFaulte(i32 5, i32 0, i32 %2)
13 br label %bbl

15 bb: ; preds = %bbl
16 %3 = mul nsw 132 %fi8, %fil

17 %fi6 = call 132 @injectFaulte(i32 6, i32 0, i32 %3)

18 %4 = add nsw 132 %fil, 1

19 %fi7 = call 132 @injectFaulte(i32 7, i32 0, i32 %4)
26 br label %bbl
22 bbl: ; preds = %bb, %entry
22 %i.0 = phi i32 [1, %entry], [%fi7, %bb]
24 %fact.0 = phi i32 [1, %entry], [%fi6, %bb]
25 %fi8 = call 132 @injectFaulte(i32 8, i32 0, i32 %fact.0)
26 %fil = call 132 @injectFaulte(i32 1, i32 0, i32 %i.0)
27 %5 = icmp sle i32 %fil, %fi5
28 %fi9 = call il @injectFault3(i32 9, i32 0, il %5)
29 br il %fi9, label %bb, label %bb2

31 bb2: ; preds = %bbl
32 %6 = call 132 (i8*%, ...)* @printf(i8* noalias getelementptr

3 inbounds ([4 x i8]* @.str, i64 0, i64 0), i32 %fi8) nounwind
4 %file = call 132 @injectFaulte(i32 10, i32 0, i32 %6)

35 br label %rett

37 ret rn: ; preds = %bb2

R T T L SR — e

Features of LLFI

* Easy to customize the fault injection

* Easy to analyze the fault propagation

* Accurate compared to assembly level injection

Easy Fault Injection Customization

Fault injection Instrument IR code
instruction/ of the program
register selector with function calls

Fault injection

o executable
Compile time

Next

Fault injector . .
J Instruction

Runtime

Easy Fault Injection Customization

* Fault injection instruction selector

— Based on instruction type
* Include: add + cmp
* Include: all; Exclude: load

— Based on custom instruction selector

— Include backward/forward trace

Easy Fault Injection Customization

* Fault injector

— Common fault injectors
* Bit-flip, stuck-at-0/1, etc.

— Custom fault injectors
» Specified by user as C function

Features of LLFI

* Easy to customize the fault injection

e Easy to analyze the fault propagation

* Accurate compared to assembly level injection

Easy Analysis

Compile time

Fault injection

instruction/
register selector

Instrument IR code
of the program
with function calls

Tracing Fault injection

executable executable

Profiling
executable

Next

Fault injector . .
J Instruction

Runtime

Easy Analysis

* Trace the value of every instruction
— Obtain golden run and fault injection run
— Caninclude forward and backward dependencies
— Can limit the trace for performance reasons

* Perform a comparison

— Data diff:
* |nstruction ID;: 20/add: val 3 => 11

— Control diff:
e Instruction ID: 22/cmp: 22 ->23=>22->24

Easy Analysis

e Graphical output of trace differences as dot file

: 4
13 Data
br difference

in lbb

maing Control
s |m difference
phi

—* Control and
data difference

icmp sub

e

Y
K Tieiss

Features of LLFI

* Easy to customize the fault injection

* Easy to analyze the fault propagation

* Accurate compared to assembly level injection

Experimental Setup

* Compared LLFI with assembly language level
fault injection implemented using PIN tool

 Used six benchmarks from SPEC, PARSEC to
perform fault-injection experiments on both

* Classified results in crashes, SDCs, and benign

SDC percentage

Accuracy Results: SDCs

20.0%
18.0%
16.0%
14.0%
12.0%
10.0%
8.0%
6.0%
4.0%
2.0% i
0.0% ﬁ
LLFIPINFI LLFIPINFI LLFIPINFI LLFIPINFI LLFIPINFI LLFIPINFI
bzip2 libquantum ocean hmmer mcf raytrace

Benchmark programs

Difference in SDC rate between LLFI and PIN < 5%

Summary and Ongoing Work

* LLFI

— Easy to customize your fault injection
— Easy to analyze the result
— Accurate compared to assembly code injection

* Ongoing Work
— GUI to choose fault configuration options (in beta)

— Extension to inject into multi-threaded programs

1. https://github.com/DependableSystemsLab/LLFI

What will we learn ?

* Fault-injection: Motivation and means

* Fault-injection at different levels

* LLFI: Configurable Runtime Fault Injector

