Distributed Systems

EECE 513: Design of Fault-tolerant
Digital Systems

Outline

Issues in design of distributed systems
Agreement protocols
Byzantine agreement algorithm

Paxos

Distributed Systems: Questions

How do we integrate components with varying fault tolerance
characteristics into a coherent high availability distributed system?

 How do you guarantee reliable communication (message delivery)?
* How do you synchronize actions of dispersed processors and processes?

 How do you make sure that replicated services (independently executing)
have a consistent view of the overall networked system?

* How do you contain errors (or achieve fail-silent behavior of
components) to prevent error propagation?

* How do you adapt the system architecture to changes in availability
requirements of the application(s)?

Fault Models

A process A process stops

stops prematurely \Prematurely or A process
and does nothing intermittently response

from that point on omit§ to send/
receive messages/ correct but

untimely

A process
responds
incorrectly:
either output
or the state
transition is
incorrect

Omission

Incorrect
Computation

Byzantine
(malicious

A process
behaves
randomly or
arbitrarily

What Do We Need ?

* Understand and provide solution to replication
problem (in its broad meaning)

— process/data replication
— replica consistency and replica determinism
— replica recovery/reintegration

— redundancy management

* Provide efficient techniques for supporting a
consistent data and coherent behavior between

system components despite failures

Agreement Protocols

It is often required that processes reach a mutual agreement.

Faulty processes can send conflicting values to other processors
preventing them from reaching an agreement

Processes must exchange their values and relay the values received
from other processes several times to isolate the effects of faulty

processes.

System model

— There are n processes in the system and at most m of them can be faulty.

— Processes communicate with one another by message passing and the
receiver process always knows the identity of the sender process

— The communication network is reliable, i.e., only processes can fail

Synchronous vs. Asynchronous

In synchronous computation, processes in the
system run in lockstep:

— In each step, a process receives messages (sent to it in
the previous step), performs computation, and sends
messages to other processes (received in the next step).

— A process knows all the messages it expects to receive in
a step/round

In asynchronous computation, processes do not
execute in lockstep:

— A process can send and receive messages and perform
computation at any time

— Agreement is impossible with even a single, faulty
process — FLP result by Lynch et al.

The synchronous model of computation is assumed

Model of Processor Failures

* Crash fault: Processor stops functioning and
never resumes operation

e Omission fault: Processor “omits” to send
messages to some processors

* Byzantine fault: Processor behaves randomly
and arbitrarily

In synchronous model, omission can be
detected. We assume Byzantine model.

Authenticated vs. Non-Authenticated
Messages

 Toreach an agreement, processes need to exchange their values and
relay the received values to other processors

Two Types of Messages:
* Authenticated (signed)

— A faulty process cannot forge a message or change the contents of a
received message (before it relays the message to other processes).

— A process can verify the authenticity of the received message.
 Non-authenticated (oral)

— A faulty process can forge a message and claim to have received it from
another processor or change the contents of the received message before it
relays it to other processes.

— A process has no way to verify the authenticity of the received message.

Outline

Issues in design of distributed systems
Agreement protocols
Byzantine agreement algorithm

Paxos

Agreement Problems - Classification

* The Byzantine Agreement Problem

— A single value is initialized by any arbitrary process, and
all non-faulty processes have to agree on that value

e The Consensus Problem

— Every process has its own initial value, and all correct
processes must agree on a single, common value.

* The Interactive Consistency Problem

— Every process has its own initial value, and all non-faulty
process must agree on a set of common values.

The Byzantine Agreement Problem

* An arbitrarily chosen process - the source -
broadcasts its value to all other processes.

 Agreement - All non-faulty processes agree on
the same value

* Validity - If the source process is non-faulty then
the common value agreed on by all non-faulty
processes should be the value of the source

The Consensus Problem

* Every process broadcasts its initial value to all
other processes

— Initial values of the processes may be different.

 Agreement - All non-faulty processes agree on
the same single value.

* Validity - if the initial value of every non-faulty
process is v, then the common value agreed
upon by non-faulty processes must be v.

The Interactive Consistency Problem

* Every process broadcasts its initial value to all
other processes

— Initial values of the processes may be different.

 Agreement - All non-faulty processes agree on
the same vector:

(Vy, v, ..,V))

* Validity - If the in process is non-faulty and its
initial value is v, then the in value to be agreed
on by all non-faulty processes must be v.

Relations Among the Agreement
Problems

1. Given an algorithm to solve Byzantine
agreement, how would you solve Interactive
Consistency?

2. Given an algorithm to solve Interactive
Consistency, how would you solve
Consensus?

3. Given an algorithm to solve Consensus, how
would you solve Byzantine Agreement?

Outline

Issues in design of distributed systems
Agreement protocols
Byzantine agreement algorithm

Paxos

Byzantine Agreement Problem

* In a fully connected network it is impossible to reach a consensus if
the number of faulty processes, m, exceeds | (n-1)/3],

— For example, if n = 3, than m =0, i.e., having three processes, we cannot
solve the Byzantine agreement problem n the event of a single error.

— The protocol requires m+1 rounds of message exchange (m is the
maximum number of faulty processes)

— This is also the lower bound on the number of rounds of message
exchanged.

e Using authenticated messages, this bound is relaxed, and a consensus
can be reached for any number of faulty processes.

— We assume non-authenticated messages in the rest of the discussion

Impossibility Results

* Consider a system with three processes p;, p,, P;
 There are two values, 0 and 1, on which processes agree.

* p, initiates the algorithm.

Case one - p, is not faulty

assume p, is faulty

suppose p, broadcast 1 to p,and p,

p, acts maliciously and sends O to p;,

p, must agree on 1 if algorithm is to be satisfied
p, receives two conflicting values

no agreement is possible

Case one - p, is faulty

suppose p, sends 1 to p, and 0 to p,
p, communicates 0 to p;,

p, receives two conflicting values

no agreement is possible

Oral Messages Algorithm OM(m)

* Arecursive algorithm solves the Byzantine
agreement problem for >= 3m+1 processes in
the presence of at most m faulty processes.

Algorithm OM(0)

* 1. The source process sends its value to every
process,

e 2. Each process uses the value it receives
from the source (if it receives no value, then
it uses a default value of 0).

Oral Messages Algorithm OM(m)
Algorithm OM(m), m>0

1. The source process sends its value to every
process,

2. For each J, let v, be the value processor i
receives from the source,

— Process i acts as a new source and initiates Algorithm
OM(m-1) wherein it sends the value v, to each of the
n-2 other processes

3. For each iand each j = ilet v, be the value
process i received from j in step (2) using
Algorithm OM(m-1). (If no value is received then
default value O is used). Process i uses the value
majority (v,,V,, ..., U, 4).

Oral Messages Algorithm OM(m)

Consider a system with four processes p,, p;, P2; P3
p, initiate the algorithm; p, is faulty

1

To initiate the agreement p,
executes OM(1) wherein it sends 1
to all processes

At step 2 of the OM(1) algorithm,
P1s Py, P; €xecute the algorithm OM(0)

p, and p; are non-faulty and

P4 sends 1 to {p,, ps}

p; sends 1 to {p,, p,}
p, is faulty and sends 1 to p, and 0 to p,

After receiving all messages

P+, P2, P3 €xecute step 3 of the OM(1) to decide
the majority value

p, received {1,1, 1} =1

p, received {1,1, 1} =1

p; received {1, 1, 0} = 1

Both conditions of the Byzantine

agreement are satisfied

Oral Messages Algorithm OM(m) (cont)

Consider a system with four processes p,, P, P2, P3
p, initiate the algorithm; p, is faulty

P, send conflicting values to p,, p,, p;

Under step 1 of OM(0) p,, p,, p; send
the received values to the other two processes

P4, Py, P; €xecute step 3 of OM(1) to decide
on the majority value

p, received {1,0, 1} = 1

p, received {0, 1,1} =1

p; received {1, 1, 0} =1

Both conditions of the Byzantine
agreement are satisfied

Interactive Consistency by Running
the Byzantine Agreement Protocol

Consider a system, which consists of four processes: p,, p;» P2, P3
Initial values in the processes: v,=1, v,=1, v;=1, v =1

Src
Po (P P, (P
P, sender : P, received ! : ’ ’
0 0|1
P, 0]0 L
\
P, 1o]o majqrity
P, sender : P, \ \
\
\
P, 1| 1 1oy
on| 1| 1 own A,
P, valde
P, sender : P, 0/1 110 o
(N \\
P) \ \\
. | 1| 1 3y
—_— T ___- » P.={0,1,1,1}
P;sender : P, 0/1 1 1 --~~
P,={0,1,1,1
P, 01| 1 1 ={0.LL1;
; P,={0,1,1,1}
3

Vectors in each process

==> |

==> |
==> |

Final decision

Interactive Consistency by Running
the Byzan,tme Agreement Protocol

P, sender : P, received |
P, 0] 0 1|1
P, 1 1
P, 1 1
P, sender : P,
P, /1| 1 1 |1
P, /1| 1 1
P, /1| 1 1
P, sender : P, 0/1 1 1
P,
P, 01| 1 1
P, 0/1| 1 1
P; sender : P, 0/1 1 1
P, /1] 1 1 |1
P,
P, 0/1 | 1 1
P, sender : P, 0/1 0 (0
0/1 0 (0
0/1

’.c '.M’.c l;-U

=

P,={0,1,1,1,0}==> 1
P,={0,1,1,1,0}==> 1
P,={0,1,1,10}==> 1
P,={0,1,1,1,0}==> 1

Vectors in each process

Final decision

Interactive Consistency by Running

the Byz

P, sender : P, received”] 0
P, 00
P; 0 0] 0
P, 0 0 0 0

P, sender : P,
P, /1| 1 1 |1
P, o1 1| 1 1
P, /1 1| 1 1

P, sender : P, 0/1 1 1 1
P,
P, 01| 1] 1 1
P, 01| 1] 1 1

P; sender : P, 0/1 1|11 |1
P, /1 1 1 |1
P,
P, o1 1|1 1 |1

P, sender : P, 0/1 0 0 |0
P, 0/1 0 (0
Ps 0/1 0 0
P,

P,={0,1,1,1,0}==> 1
P,={0,1,1,1,0}==> 1
P,={0,1,1,1,0}==> 1
P,={0,1,1,1,0}==> 1

Vectors in each process

antine.Agreement Protocol

Final decision

Outline

Issues in design of distributed systems
Agreement protocols
Byzantine agreement algorithm

Paxos

Paxos: Problem

* Most failures are not Byzantine in the real
world = BFT protocols are an over-kill

* Consensus under non-byzantine faults
— Can be achieved with 2f + 1 processes
— Assumes crash-stop-recovery failure semantics
— Assumes network can lose or reorder messages

— Requires at most 4f + 4 messages in fault-free
case

Paxos: Principals

* Proposer: Node that initiates the protocol
— Proposes an initial value to agree upon
— May be more than one proposer to start with
— Leader: A distinguished, trusted proposer

* Acceptor: All other nodes that participate
— Can reject the proposal from the proposer

— Can agree with the proposal, but is prevented
from agreeing to proposals from other proposers

Paxos: Properties

* Non-triviality
— The value learned is one of the proposed ones

e Safety:

— At most of the proposed values is learned

e Liveness:

— Eventually, all non-faulty acceptors will learn it

Paxos: Proposal Numbers

* Because multiple proposers can be active, we
need a way to distinguish proposals

— Assume that there is a global mechanism to
sequence proposals from1.. N

* An acceptor accepts a proposal with value m if
and only if it has not responded to a proposal
with value higher than m (with a promise)

Paxos Algorithm: Phase 1

* Proposer selects a proposal number n and sends
a prepare request with number n to a majority of
acceptors (quorum)

* If an acceptor receives a prepare request with
number ‘n’ greater than that of any prepare
request to which it has already responded, then
it responds with a promise not to accept any
more proposals numbered less than n and with
the highest-numbered proposal that it has
accepted.

Paxos Algorithm: Phase 2

* If the proposer receives a response to its prepare
requests numbered n from a majority of
acceptors, then it sends an accept request to
each of those acceptors numbered n with a value
v, where v is the value of the highest-numbered

oroposal among the responses, or is any value.

* If an acceptor receives an accept request for a
oroposal numbered n, it accepts the proposal
unless it has already responded to a prepare
request having a number greater than n.

Termination

* How do we tell if a value has been learned by
a majority of the processes ?

— Solution: Have specially designated processes
called Learners, which keep track of the accepted
values. Acceptors send their responses to

Learners, who may then communicate with other
learners to spread the information

— Message loss may prevent learners from ever
finding out the value accepted by a quorum

Paxos: Failure modes

More than one proposer

Failures of proposer, acceptor (non-majority)
or learners

Network failures among any pairs of links

Failure of leader (rare event)

Paxos: Message Complexity

* Failure-free operation:
— Phase 1: Proposer sends f + 1 messages
— Acceptors provide f + 1 responses

— Phase 2: Proposer sends f + 1 messages and
receives another f + 1 responses

* Total number of messages = 4f + 4
Compared to OM(n) protocol, this is much lower

Outline

Issues in design of distributed systems
Agreement protocols
Byzantine agreement algorithm

Paxos

