Computational Complexity

16 Jan 2014

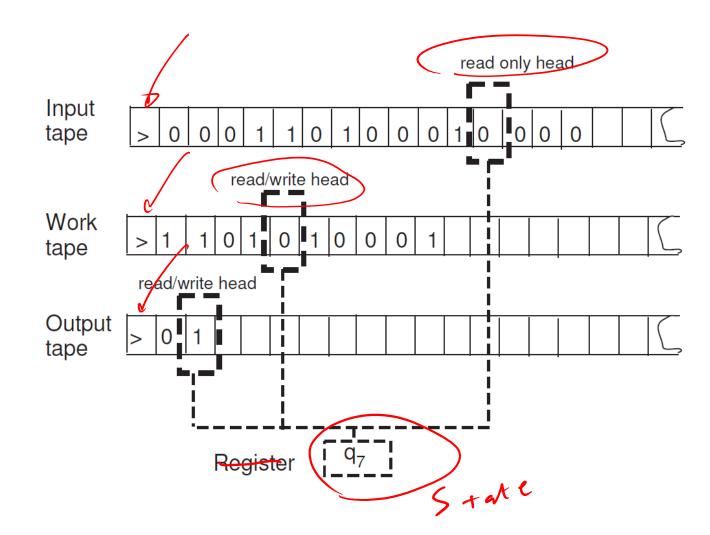
Today

- Turing machines
- Languages
- Universal Turing Machine
- Polynomial time algorithms and class ${\bf P}$

Intuition behind what computation is

- 1. Read a bit of the input.
- Read a bit (or possibly a symbol from a slightly larger alphabet, say a digit in the set {0,...,9}) from the "scratch pad" or working space we allow the algorithm to use.
 Based on the values read,
- 3. Write a bit/symbol to the scratch pad.
- 4. Either stop and output 0 or 1, or choose a new rule from the set that will be applied next.
- Example: multiplying numbers:

Turing Machines



always starts in Sate Gy Tstart

transition:

D'Content of the heads D'internal State new -on tent

IF			THEN			
input symbol read	work/ output tape symbol read	current state	move input head	new work/ output tape symbol	move work/ output tape	new state
:	:		:	÷	÷	:
a	b	q	Right	(b'	Left ≺	(q')
:	:	÷	÷	:	÷	÷
a :		q :	Right	b' :	·	

Turing Machines

set de symbols set table of previous ring: Stide Formally, a TM M is described by a tuple (Γ, Q, δ) containing: Formal definition.

- A finite set Γ of the symbols that M's tapes can contain. We assume that Γ contains a designated "blank" symbol, denoted \Box , a designated "start" symbol, denoted \triangleright and the numbers 0 and 1. We call Γ the *alphabet* of M.
- A finite set Q of possible states M's register can be in. We assume that Q contains a designated start state, denoted q_{start} and a designated halting state, denoted q_{halt} .
- A function $\delta: \mathcal{Q} \times \Gamma^{k-1} \times \{\mathsf{L}, \mathsf{S}, \mathsf{R}\}^k$, where $k \ge 2$, describing the rules Muse in performing each step. This function is called the *transition function* of M (see Figure 1.2.)

Variants of Turing Machines

- *K* tape Turing Machine
 - 1 input tape
 - 1 output tape
 - K 2 work tape
- 1 tape Turing Machine:
 - A single tape for input, work, and output

Stata: 7.

• Amazingly, all the above are "equivalent" (can simulate each other)

Definition 1.3 (*Computing a function and running time*) Let $f \colon \{0,1\}^* \to \{0,1\}^*$ and let $T : \mathbb{N} \to \mathbb{N}$ be some functions, and let M be a Turing machine. We say that (M) computes f if for every $x \in \{0,1\}^*$, whenever M is initialized to the start configuration on input x, then it halts with f(x) written on its output tape. We say M computes f in T(n)-time if its computation on every input x requires at most T(|x|)steps.

lg, M vons in time (n²: every input of length(5) is computed in time (n²)

Languages

• Simplest form of computational "tasks" / "problems": Given an input $x \in \{0,1\}^n$ decide if x is "acceptable" or not

An important special case of functions mapping strings to strings is the case of Boolean functions, whose output is a single bit. We identify such a function f with the subset $L_f = \{x : f(x) = 1\}$ of $\{0, 1\}^*$ and call such sets languages or decision problems (we use these terms interchangeably).¹ We identify the computational problem of computing f (i.e., given x compute f(x)) with the problem of deciding the language L_f (i.e., given x, decide whether $x \in L_f$).

- Example: Given a graph: is it connected?
- Example: Given a number: is it prime?
- Example: Does a given TM *M* halt over input *x* in time *t* ?

f:{0,1}

Turing Machines as Their Own Input!

• A Turing Machine $M = (Q, \Gamma, \delta)$ can be described in bits.

• Let $f : \{0,1\}^* \to \{0,1\}^*$ be defined as a (partial) function that takes (M, x) and outputs M(x)

• Important Theorem: There is a Turing Machine U that computes $f(\cdot)$

More Important Theorem:
 U's running time is not "much more" than M(x)

Efficient Universal Turing Machine

Theorem 1.9 (Efficient Universal Turing machine) There exists a TMU such that for every $x, \alpha \in \{0,1\}^*, U(x,\alpha) = M_{\alpha}(x)$, where M_{α} denotes the TM represented by α .

Moreover, if M_{α} halts on input x within T steps then $\mathcal{U}(x, \alpha)$ halts within $CT \log T$ steps, where C is a number independent of |x| and depending only on M_{α} 's alphabet size, number of tapes, and number of states.

 $L = \{ \langle M, x, t \rangle \} M(o)$ hat in t speps

• Recall : Is there a TM that finds out: Does a given TM M halt over input x in time t?

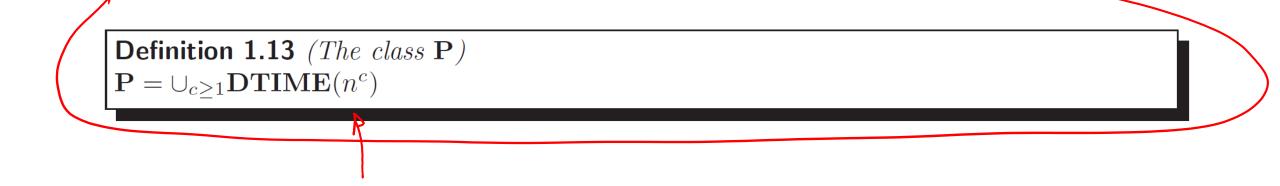
Theorem 1.9 (Efficient Universal Turing machine) There exists a TMU such that for every $x, \alpha \in \{0,1\}^*, U(x,\alpha) = M_{\alpha}(x)$, where M_{α} denotes the TM represented by α .

Moreover, if M_{α} halts on input x within T steps then $\mathcal{U}(x, \alpha)$ halts within $CT \log T$ steps, where C is a number independent of |x| and depending only on M_{α} 's alphabet size, number of tapes, and number of states.

• Answer to question above: YES

What can be solved in time $T(\cdot)$?

Definition 1.12 (*The class* **DTIME**.) Let $T : \mathbb{N} \to \mathbb{N}$ be some function. A language *L* is in **DTIME**(T(n)) iff there is a Turing machine that runs in time $c \cdot T(n)$ for some constant c > 0 and decides *L*.



Examples of Languages in P

- Given an input $x \in \{0,1\}^n$ decide if x is "acceptable" or not
 - Example: Given a graph: is it connected?

• Example: Given a number: is it prime?

rimesis in P

Im. : and see if it salt whats in t steps.

• Example: Does a given TM *M* halt over input *x* in time *t* ?

A closer model to out own computers?

Define a *RAM Turing machine* to be a Turing machine that has *random access memory*. We formalize this as follows: the machine has an infinite array A that is initialized to all blanks. It accesses this array as follows. One of the machine's work tapes is designated as the *address tape*. Also the machine has two special alphabet symbols denoted by \mathbf{R} and \mathbf{W} and an additional state we denote by q_{access} . Whenever the machine enters q_{access} , if its address tape contains $_{i}\mathbf{R}$ (where $_{i}\mathbf{i}$ denotes the binary representation of i) then the value A[i] is written in the cell next to the \mathbf{R} symbol. If its tape contains $_{i}\mathbf{W}\sigma$ (where σ is some symbol in the machine's alphabet) then A[i] is set to the value σ .

• Can be shown that RAM and TM are equivalent up to a polynomial time slow-down.

Next Time

- Nondeterministic Computation
- Class NP
- Reduction
- NP Completeness