Computational Complexity

16 Jan 2014



Today

* Turing machines
* Languages
e Universal Turing Machine

* Polynomial time algorithms and class P



Intuition behind what computation is

1. Read a bit of the input.

2. Read a bit (or possibly a symbol from a slightly larger alphabet, say a digit in the set

Based on the values read,
3. Write a bit/symbol to the scratch pad.

4. Either stop and output O or 1, or choose a new rule from the set that will be applied
next.

* Example: multiplying numbers: 6le of




Turing Machines %W‘“f S oS

Input l" %L

tape >0001101000|H'0H0 C Stast
/ i

Work I :

ape  |>1141/0]1 0\:10001

|
|
i 1|

|

y&@write_ head -re :
Output |
|

|

|

|

|

T}
tape > 0|1I




IF THEN
input | Work/ current move | NeW move new
symbol | Output state input work/ work/ state
read | tape head | output | output
symbol tape tape
read symbol
YN
@ | G @ (re) () | e (@
N




bo\ )

S
[

Formal definition. Formally, a TM M is described by a tuple (I', ), 0) containing:

Turing Machines

e A finite set I' of the symbols that M’s tapes can contain. We assume that I' contains
a designated “blank” symbol, denoted LI, a designated “start” symbol, denoted > and
the numbers 0 and 1. We call I' the alphabet of M.

e A finite set @) of possible states M’s register can be in. We assume that ) contains a
designated start state, denoted ¢.,. and a designated halting state, denoted ¢....

o A function@: gx D —(Q)x I'*1 x {L,S.R}", where k > 2, describing the rules M
use in performing each step. This functiomis called the transition function of M (see
Figure 1.2.)



Variants of Turing Machines

e K tape Turing Machine
* 1 input tape
* 1 output tape
« K — 2 work tape

. . §/a/f 2
e 1 tape Turing Machine: B ?)”fm :
* Asingle tape for input, work, and output I —
—_ Vl
’ f 601& 5 m .),0

« Amazingly, all the above are “equivalent” (can Q’ﬁ%late each other)



A

mputing a function and running time)
, — {0,1}" and let T : N — N be some functions, and let M be a Turing
¢ say that computes [ if fo'Iively re {01}, whenever M is initialized to

Definition 1.3

the stalt configuration~on input x, then 1tw1th f(x) written on its output tape. We

say M computes f in T (n)-time if its computation on every input z requires at mog
steps.

e ot Tor
/\/\ Vins i 't.'m€<\/‘ . evey tvawf '30 ng»LO

!S Covwr whed A Yine d’)



Languages

 Simplest form of computational “tasks” / “problems”:
Given an input x € {0,1}" decide if x is “acceptable” or not

An important special case of functions mapping strings to strings is the case of Boolean

functions, whose output is a single bit. We identify such a function f with the subset

{z: f(x) =1} of {0,1}" and call such sets languages or decision problems (we use

< terms interchangeably).! We identify the computational problem of computing f (i.e..

given x compute f(z)) with the problem of deciding the language Ly (i.e., given z, decide
whether z € Ly).

 Example: Given a graph:is it connectedi_)
* Example: Given a number: is it prime?

 Example: Does a given TM M halt over input x intime ¢ ?

Xg’« o/ |

el



Turing Machines as Their Own Input!

« ATuring Maching M = (Q,T, &) ¢an be described in bits.

X
oN e {0/’3‘

* Let f:{0,1}* — {0,1}" be defined as a fpartial) functiort/hat takes (M, x) and outputs M (x)

—————

* Important Theorem: There is a Turing Machine U that computes f( ) % (AA )0)//}/16:)
Y
11

J

—

~L[/\/17)0) )
* More Important Theorem: '

U’s running time is not “much more” than M (x) M@ W ;% ,W
L _—




Efficient Universal Turing Machine

Theorem 1.9 (Efficient Universal Turing machine)

There exists a TM U such that for every x,« € {0,1}", U(x, «) = M, (x), where M, denotes
the T'M represented by «.

Moreover, it M, halts on input x within T" steps then U(x, «) halts within C'I'logT steps,

where C' is a number independent of |x| and depending only on M, ’s alphabet size, number
of tapes, and number of states.




L:4 My | MG hodr v Spogps

e Recall : Is there a TM that finds out: Does a given TM M halt over input x intime t ?

Theorem 1.9 (Efficient Universal Turing machine)

There exists a TM U such that for every x,« € {0,1}", U(x, ) = My (x), where M, denotes
the TM represented by «.

Moreover, if M, halts on input x within I" steps then U(x, o) halts within CT'logT" steps,
where C' is a number independent of |x| and depending only on M, ’s alphabet size, number
of tapes, and number of states.

* Answer to question above: YES



What can be solved in time T'(+) ?
/W/m

Definition 1.12 (The class DTIME.) Let T : N — N be some function. A language L is
in DTIME(T (n)) iff there is a Turing machine that runs in time ¢-7'(n) for some constant
¢ > 0 and decides L. O

e

Definition 1.13 (The class P)
P = U.>;DTIME(n°)




/\S ’@'Z(ZON Yp{ Y om J
Examples of Languages in P ovex ) bl — \ﬁ (1)

—

* Given an input x € {0,1}" decide if x is “acceptable” or not w@
* Example: Given a graph: is it connected?

@:Givenanumber@ %\es. ‘\V\\S
S

* Example: Does a?p TM M halt over input x in time ¢ ?

/

\ Vi AN over X
N(W (/\-/\ SH %) ?Ofi)rkfvv\ ©ond ee ,/f i
V]f KUV\\\IQJSCQ WalrS i+ gm\Qa




A closer model to out own computers?

Define a RAM Turing machine to be a Turing machine that has random access memory. We
formalize this as follows: the machine has an infinite array A that is initialized to all blanks. It
accesses this array as follows. One of the machine’s work tapes is designated as the address tape.
Also the machine has two special alphabet symbols denoted by R and W and an additional state
we denote by ¢access- Whenever the machine enters ¢.ccees, if its address tape contains _2,R (where
i, denotes the binary representation of i) then the value Ali] is written in the cell next to the R
symbol. If its tape contains i,Wo (where o is some symbol in the machine’s alphabet) then A[7] is
set to the value o.

* Can be shown that RAM and TM are equivalent up to a polynomial
time slow-down.



Next Time

* Nondeterministic Computation
* Class NP
* Reduction

* NP Completeness



