Computational Complexity

21 Jan 2014

Last Time

- Turing machines
- Languages
- Universal Turing Machine
- Polynomial time algorithms and class ${f P}$

- The complexity class NP (Non-deterministic Polynomial time)
- Notion of reduction (way to compare hardness of problems)
- NP completeness (one of the most important notions of complexity)

Crossword Puzzle

- Hard to solve
- Easy to "verify" solutions

- Other examples
 - Easier to verify a proof
 - Easier to appreciate good art[#]

Other Examples

- Does G have a Hamiltonian cycle?
- Is there a vector x such that $Ax \leq b$ for matrix A and vector b ?

prov

what is the set of witnesses for G,=G.

Real

- Is a given number Wa composite number?
- Are graphs G_1 and G_2 isomorphism?

Certificate is also called "witness"

- One of the biggest open questions in math and sciences
- Hundreds of important problems are in NP but not known to be in P (most of them special cases of integer programming)
- If **P** = **NP** then all these problems would be easy (solvable in polynomial time)
- How can we talk about "relative hardness" of two problems?

Reductions

Which one is harder to solve?

- IND-SET: Given (G, k), does graph G has independent set of size k?
- CLIQUE: Given (G, k), does graph G has a clique set of size k ?

IND-SET Z it solve clique _____ J can role IND-SET given (Gigker change G by Flipping all edges H solve ipping all edges H so

Another example

Which one is harder to solve?

TND-SET & CLIQUE

a LND-ret of

(G = n-

.er edge (a,b) (or

x E IND - Set

E

iven $(G_{2}k)$ Q: $(G_{2}k) \in IND-SET?$

tale

NP hardness and NP completeness

• We can define other "more powerful" reductions as well.

Theorem 2.8 1. (Transitivity) If $L \leq_p L'$ and $L' \leq_p L''$, then $L \leq_p L''$. 2. If language L is NP-hard and $L \in \mathbf{P}$ then $\mathbf{P} = \mathbf{NP}$. 3. If language L is NP-complete then $L \in \mathbf{P}$ if and only if $\mathbf{P} = \mathbf{NP}$.

Is there any **NP** complete problem?

Theorem 2.9 The following language is NP-complete:

 $\mathsf{TMSAT} = \{ \langle \alpha, x, 1^n, 1^t \rangle : \exists u \in \{0, 1\}^n \text{ s.t. } M_\alpha \text{ outputs } 1 \text{ on input } \langle x, u \rangle \text{ within } t \text{ steps} \}$

where M_{α} denotes the (deterministic) TM represented by the string α .²

NP: Nondeterministic Polynomial Time

NDTM has two transition functions δ_0 and δ_1 , and a special state denoted by q_{accept} . When an NDTM M computes a function, we envision that at each computational step M makes an arbitrary choice as to which of its two transition functions to apply. For every input x, we say that M(x) = 1 if there *exists* some sequence of these choices (which we call the *non-deterministic choices* of M) that would make M reach q_{accept} on input x.

Definition 2.5 For every function $T : \mathbb{N} \to \mathbb{N}$ and $L \subseteq \{0,1\}^*$, we say that $L \in \mathbf{NTIME}(T(n))$ if there is a constant c > 0 and a $c \cdot T(n)$ -time NDTM M such that for every $x \in \{0,1\}^*$, $x \in L \Leftrightarrow M(x) = 1$

Theorem 2.6 $NP = \bigcup_{c \in \mathbb{N}} NTIME(n^c)$

Next Time

- Boolean Satisfiability Problem is NP-Hard (Cook-Levin Theorem)
- Many Interesting Combinatorial Problems are NP-Hard (Karp)
- Search Problems vs. Decision Problems
- Philosophical Impacts of $\,P$ = $NP\,$ and $\,P \neq NP\,$