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15t Assignment

* Due tomorrow 5pm

e After that, can email me (mahmoody@gmail.com) a
typed or scanned version by Monday 5pm
(by Friday 5pm 80%, Sat 5pm 60%, Sun 5pm 40%, Mon 5pm 20%)

* Monday 5pm: Abbas (TA) will solve the problems
or sketch of answers will be uploaded


mailto:mahmoody@gmail.com

Last Time

* NP-complete problems exist
(TM-SAT: artificial language tailored to the definition of NP)

* Natural NP-complete problems exist: Cook-Levin theorem
(Circuit-SAT is NP-complete)




Today

* NP-completeness is everywhere (Karp’s famous paper)
e Search Problems vs. Decision Problems{\

 Complement of Languages



Recall Cook-Levin Theorem
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More NP complete problems

* Recall following problems in NP

* IND-SET g™/ ( Czj ) ith there  an }qum,{,w fe+ 41‘,’1(,
f < CLIQUE ”\\/-k ) SL (G

e Vertex-COVER 7 47° '
 We showed that: \ §/>/14
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 IND-SET SpV-Cover and V-Cover Sp IND-SET

ones (e.g. Y) will be NP complete as well, because for allT €
L<,X<,YandsoL <,Y
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* So if we prove any of these problems (e.g{ X) to be NP cc@hen other
NP>
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Web of Reductions
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Search vs. Decision

* So far we defined problems as “decision problems”

~— ¢ What about: given circuit C), findingwsuch that C(w) = 1
(not just knowing whethe a‘&iﬁ%t) e
w

e Let Search-Circ-SAT be search version of Circ-SAT

* Easy: If we can solve Search-Circ-SAT in polynomial time
= can solve (Decision) Circ-SAT in polynomial time

* The reduction is very similar to Karp-Reduction,
but note that Search-Circ-SAT is not a decisiom
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e Question: What if we can solve Circ-SAT € P ?



Search vs Decision for NP
/

* Any relation@defines a search problem:
For every input’xywe want find y such that@ ER
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* Most natural sea?/ﬁroblems ; T
/4. Given y itis ea$y to verify that (x,y) € R

2. Thus, if we defin= {il EI_}:/: (ﬂ) € R}then Ly € NP. we)
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* Conversely: For every L € NP there is a natural search problem 5
( R, = {(x,w) | w is a witness for x} Comy aczepy
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Search Vs. Decision: Circ-SAT

* Theorem: If we could solve (Decision) Circ-SAT in polynomial time we
can also solve the search version: Search-Circ-SAT in polynomial time
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