
Computational Complexity
Mohammad Mahmoody

6th Session
30 Jan 2014

Last Time

• Many natural combinatorial problems are 𝐍𝐏-complete:
CircSAT, 3SAT, IND-SET, CLIQUE, V-Cover
So to find out whether 𝐏 ≠ 𝐍𝐏 we can focus on these problems.

• Search Problems and their close relation to the class 𝐍𝐏.

• Search vs. Decision: For Circ-SAT they were “equivalent”.

Today

• Search vs. Decision for other problems in 𝐍𝐏

• The notion of Turing reductions (and generalizing 𝐍𝐏 hardness)

• Complement of languages and relevant classes

Search Vs. Decision: CircSAT

• Theorem: If we could solve (Decision) Circ-SAT in polynomial time we
can also solve the search version: Search-Circ-SAT in polynomial time

What kind of Reduction was that?

• We assumed a “subroutine” 𝐵 that solves Circ-SAT
Presented an algorithm 𝐴 that uses 𝐵 and solves Search-Circ-SAT

• It is called a Cook or a Turing reduction: Given a subroutine 𝐵 that solves some
“problem” 𝑋, 𝐴 uses 𝐵 and solves some other problem 𝑌. Notation 𝑋 ≤𝑇 𝑌

• Notation 𝐴𝐵 or just 𝐴𝑋:
Algorithm 𝐴 gets accesses a subroutine 𝐵 or some subroutine that solves 𝑋.

• 𝐴 does not care how 𝑋 is solved: uses solver as a “black-box” (a.k.a. “oracle”).

• It is meaningful to talk about 𝐴𝑋 even if 𝑋 is not solvable efficiently (or at all).

What is an 𝐍𝐏-hard problem?

• Previously we called a language 𝐿 𝐍𝐏-hard if:
1. 𝐿 ∈ 𝑁𝑃

2. There is a Karp reduction from any 𝑆 ∈ 𝑁𝑃 to 𝐿 : 𝑆 ≤𝑝 𝐿

• The above definition is just 𝐍𝐏-hardness under Karp reduction

• We can talk about 𝐍𝐏-hard under Turing reductions as well:

• Call any problem 𝑋 𝐍𝐏-hard if for all 𝑆 ∈ 𝐍𝐏 there is a polynomial-
time Turing reduction 𝑅 such that 𝑅𝑋 dcides 𝑆 on all inputs correctly

How about other problems?

• Theorem: Suppose 𝐿 is any 𝐍𝐏 complete language. Then there is a
Turing reduction from the search version of 𝐿 (where, given 𝑥 we
want to find a witness 𝑤 that 𝑥 ∈ 𝐿) to (decision version of) 𝐿.

