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@/Iany natural combinatorial problems are NP- complete \ __7é /\/ P

CircSAT, 3SAT, IND-SET, CLIQUE, V-Cover
So to find out whether P #= NP we can focus on these problems.

@Search Problems and their close relation to the class NP.
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e Search vs. Decision: For/éwc-SAT/they were “equivalent”.
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Today

e Search vs. Decision for other problems in NP
* The notion of Turing reductions (and generalizing NP hardness)

* Complement of languages and relevant classes



Search Vs. Decision: CircSAT
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* Theorem: If we could solve (Decision) Circ-SAT in polynomial time we '»T
can also solve the search version: Search-Circ-SAT in polynomial time
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What kind of Reduction was that?

* We assumed a “subroutine” B that solves Circ-SAT
Presented an algorithm A that uses B and solves Search-Circ-SAT
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* Itis called a Cook or a(ruﬁﬁg\(eduction: Given a subroutine B th e

“problem”(X} 4 use@rﬁsolves some other problem Y. Notation & < #
—_ -\ ‘,/,—{ (A< A\ r.:lLu.

* Notation AOorJust A®. J —

Algorithm A gets accesses a subroutine B or some subroutine that solves X.

« A does not care how X is solved: uses solver as a “black-box” (a.k.a. “oracle”).
Y Xy H”/(”j I’;:Hem
* It is meaningful to talk about@even i s not solvable efficiently (or at all).



What is anQ\lP—hard@roblem?

Q,ere‘te
* Previously we called a Ianguag@NP-Wd if:
1. LENP /NP hasd negr
2. Thereis areduction fromany S € NPtoL : S<, L -

___s* The above definition is just NP-hardness under Karp reduction

* We can talk about NP-hard under Turing reductions as well:

>
[\' Call any problem(X) NP-hard if for all S € NP there is a polynomial-
— | time Turing reduction @such thadcid"es S on all inputs correctly
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How about other problems? TJ Peducrion
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* Theorem: Suppose L is any NP complete language. Then there is a
Turing reduction from the search version of L (where, given x we
want to find a witness w that x € L) to (decision version of) L.
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