BllE
[UNIVERSITY
JVIRGINIA

Computational Complexity

Mohammad Mahmoody

7th Session
4 Feb 2014

Today Part 1:

* Recap important notions/theorems we saw so far

Formal Model for Computation

* Defined Turing Machines as formal model of computation

* Turing machine is “equivalent” to RAM model which is the basis for
current computing machines.

* Turing machine (and RAM machines) can simulate each other and
themselves with only a “polynomial-time” overhead.

* This gives rise to “Universal Turing Machine” that takes as input
another Turing machine and runs it for a desired amount of time.

Complexity Classes and Languages

* Defined class P : set of “easy” problems (languages) with YES/NO answer.

Solvable in polynomial time over input length

* Defined : set of problems with YES/NO answer where YES can always be
accompanied with a “short” proof.

polynomial length over input length

* Note: if the answer is NO, there might not be a short proof for that...

e Easy to see that P € NP butis it P = NP or not? Big open question.
S~———

Reductions and NP Hardness

* Defined reductions as one way to relate hardness of two problems:

1. Karp Reductions:
* Only work for two decision problems L, L' L < L/
* Given x, map it to@x) and see if f(x) € L’or not Ny
2. Turing Reductions: p
* Work for essentially any problem: L é_r L
* Given a black-box that solves L’ we use it to solve L in polynomial time
* For any notion of reduction, we can define NP hardness as:

L)is NP hard if: for all L € NP there is a reduction from L to L'
e If an NP hard problem L' is in NP itself, then it is NP complete.

* NP complete are the “hardest” in NP so:
. To answer P =, NP we can focus on NP complete problems onl
= i

P4 NP—=p I "B @

NP Completeness

* NP complete problems exist:
— Easy to define “useless” NP complete problem TuringSAT
— ¢ Cook-Levin Theorem: Circ-SAT is NP complete

VL € NP

o We b Of red u Ctio ns : Theorem 2.10 (Lemma 2.1 'I)L
Hundreds of problems are shown

/fTheorem 2.16

. HAMPATT] INTEGERPROG
to be NP CompIEte by ShOWIng : : '|‘h(‘(_)I_‘E_I)]r_lr_;,l.é-"’/’/ /Eijct(iéz?six%
how to reduce another NP complete ™" NEGET pxer |
Top - . SUBSETSUM
problem to them. /\
THE}(L)T?I;\LI:S, .)2 CLIQUE VERTjEféf)V?R
QEJ:[')]E”Q # " MAXCUT

COMBINATORIAL
AUCTION

Search vs. Decision

For many problems the answer is not just YES/NO

Example: For L € NP and a given x we want to know whether x € L or not, and if x € L

we want to find a “witness” — -
WIRITESS

Defined search problems in general and showed a connection back to languages in NP
(whenever a “solution” can be easily verified).

Trivial: reduction from Decision to Search

* Nontrivial: for all NP complete problems there is a reduction from Search to Decision

¢ First proved it for Circ-SAT
* Then used the proof of Cook-Levin theorem to generalize it to all NP complete problems

N—

Today kLéI\/E uw,a V“““*%L J—— @C /\/P

e N G (FED

mplexity class of the following problems?
/\
e

ed

3| \%_2(jﬁ

\%@: {x | x is a 3CNF formula that is not satisfiable}) s NP2 l/mrl

{OQA/LH./\ ‘\‘Cu{Lp > ale x '€/b"“‘ E oundd _fl/lﬁ answlr/ “ﬂg\
c NY i, !

L ={x1xisa3CNF formula that is a tautology (always satisfied)}

%(—:J\ f%@- Mede - - _
\jv\'v‘, wA - .

XEY = (X EaY PSP
Complement of a Language pc o\

e for any cIass@, define@b: {L I@ X} {f\? <GNP
iy -~ o

cIfLEP=LE€EPaswellso: P = coP

- >
*IfLENP =L € NP? P £ Co-N

«.coNP = {L | L € NP}
CONP is not the complement of NP

NP and coNP both include P CoNP hard b g
f all se NP
* Can define coNP hardness and coNP completeness redu e ts |
« CircSAT is CONP complete -
N— coNT Q,w\o\.ue:\- g

(- NP navd

{Le P

/N{Ij:@ondeterministic@olynomiaI Time

NDTM\has fwo transition function@m@, and a special state denoted by ¢,..,.. When
an TM M computes a function, we envision that at each computational step M makes
an arbitrary choice as to which of its two transition functions to apply. For every input

x, we say that M (x) = 1 if there exists some sequence of these choices (which we call the
non-deterministic choices of M) that would make M reach ¢,.., on input x.

Definition 2.5 For every function T : N — Nand L C {0,1}", we say that L &TIME(T(M)
if there is a constant ¢ > 0 and a ¢ - T'(n)-time NDTM M such that for every x € {0,1}",
reL e M) =1 &

Theorem 2.6 NP = U..xnNTIME(n®)

