
Computational Complexity
Mohammad Mahmoody

7th Session
4 Feb 2014



Today Part 1:

• Recap important notions/theorems we saw so far



Formal Model for Computation

• Defined Turing Machines as formal model of computation

• Turing machine is “equivalent” to RAM model which is the basis for 
current computing machines.

• Turing machine (and RAM machines) can simulate each other and 
themselves with only a “polynomial-time” overhead.

• This gives rise to “Universal Turing Machine” that takes as input 
another Turing machine and runs it for a desired amount of time.



Complexity Classes and Languages

• Defined class 𝐏 : set of “easy” problems (languages) with YES/NO answer.

• Defined : set of problems with YES/NO answer where YES can always be 
accompanied with a “short” proof.

• Note: if the answer is NO, there might not be a short proof for that…

• Easy to see that 𝐏 ⊆ 𝐍𝐏 but is it 𝐏 = 𝐍𝐏 or not? Big open question.

Solvable in polynomial time over input length

polynomial length over input length



Reductions and 𝐍𝐏 Hardness

• Defined reductions as one way to relate hardness of two problems:
1. Karp Reductions: 

• Only work for two decision problems 𝐿, 𝐿′
• Given x, map it to f(x) and see if 𝑓 𝑥 ∈ 𝐿 or not

2. Turing Reductions: 
• Work for essentially any problem:
• Given a black-box that solves 𝐿′ we use it to solve 𝐿 in polynomial time

• For any notion of reduction, we can define 𝐍𝐏 hardness as:
• 𝐿′ is 𝐍𝐏 hard if: for all 𝐿 ∈ 𝐍𝐏 there is a reduction from 𝐿 to 𝐿′

• If an 𝐍𝐏 hard problem 𝐿′ is in 𝐍𝐏 itself, then it is 𝐍𝐏 complete.

• 𝐍𝐏 complete are the “hardest” in 𝐍𝐏 so:
• To answer 𝐏 =? 𝐍𝐏 we can focus on 𝐍𝐏 complete problems only



𝐍𝐏 Completeness

• 𝐍𝐏 complete problems exist:
• Easy to define “useless” 𝐍𝐏 complete problem TuringSAT

• Cook-Levin Theorem: Circ-SAT is 𝐍𝐏 complete

• Web of reductions: 
Hundreds of problems are shown 
to be 𝐍𝐏 complete by showing 
how to reduce another 𝐍𝐏 complete
problem to them.



Search vs. Decision

• For many problems the answer is not just YES/NO 

• Example: For 𝐿 ∈ 𝐍𝐏 and a given 𝑥 we want to know whether 𝑥 ∈ 𝐿 or not, and if 𝑥 ∈ 𝐿
we want to find a “witness”

• Defined search problems in general and showed a connection back to languages in 𝐍𝐏
(whenever a “solution” can be easily verified).

• Trivial: reduction from Decision to Search

• Nontrivial: for all 𝐍𝐏 complete problems there is a reduction from Search to Decision
• First proved it for Circ-SAT
• Then used the proof of Cook-Levin theorem to generalize it to all 𝐍𝐏 complete problems



Today

• What is the complexity class of the following problems?

• 𝐿 = {𝑥 ∣ 𝑥 is a 3CNF formula that is not satisfiable}

• 𝐿 = {𝑥 ∣ 𝑥 is a 3CNF formula that is a tautology (always satisfied)}



Complement of a Language

• for any class 𝐗 , define 𝐜𝐨𝐗 = {𝐿 ∣ 𝐿 ∈ 𝐗}

• If 𝐿 ∈ 𝐏 ⇒ 𝐿 ∈ 𝐏 as well so: 𝐏 = 𝐜𝐨𝐏

• If 𝐿 ∈ 𝐍𝐏 ⇒ 𝐿 ∈? 𝐍𝐏 ? 

• 𝐜𝐨𝐍𝐏 = {𝐿 ∣ 𝐿 ∈ 𝐍𝐏}
𝐜𝐨𝐍𝐏 is not the complement of 𝐍𝐏
𝐍𝐏 and 𝐜𝐨𝐍𝐏 both include 𝐏

• Can define 𝐜𝐨𝐍𝐏 hardness and 𝐜𝐨𝐍𝐏 completeness
• CircSAT is 𝐜𝐨𝐍𝐏 complete



NP: Nondeterministic Polynomial Time


