

Computational Complexity

Mohammad Mahmoody

7th Session 4 Feb 2014

Today Part 1:

• Recap important notions/theorems we saw so far

Formal Model for Computation

- Defined Turing Machines as formal model of computation
- Turing machine is "equivalent" to RAM model which is the basis for current computing machines.
- Turing machine (and RAM machines) can simulate each other and themselves with only a "polynomial-time" overhead.
- This gives rise to "Universal Turing Machine" that takes as input another Turing machine and runs it for a desired amount of time.

Complexity Classes and Languages

• Defined class **P** : set of "easy" problems (languages) with YES/NO answer.

Solvable in polynomial time over input length

 Defined : set of problems with YES/NO answer where YES can always be accompanied with a "short" proof.

polynomial length over input length

- Note: if the answer is NO, there might not be a short proof for that...
- Easy to see that $P \subseteq NP$ but is it P = NP or not? Big open question.

Reductions and NP Hardness

- Defined reductions as one way to relate hardness of two problems:
 - 1. Karp Reductions:

 - Only work for two decision problems L, L'
 Given x, map it to f(x) and see if f(x) ∈ L or not
 - 2. Turing Reductions:
 - Work for essentially any problem:
 - Given a black-box that solves L' we use it to solve L in polynomial time
- For any notion of reduction, we can define NP hardness as: (L) is NP hard if: for all $L \in NP$ there is a reduction from L to L'
- If an NP hard problem L' is in NP itself, then it is NP complete.
- **NP** complete are the "hardest" in **NP** so:
 - To answer $\mathbf{P} =_{?} \mathbf{NP}$ we can focus on \mathbf{NP} complete problems only

P#NP-

NP Completeness

- NP complete problems exist:
- Easy to define "useless" NP complete problem TuringSAT
- Cook-Levin Theorem: Circ-SAT is NP complete
- Web of reductions: Hundreds of problems are shown to be NP complete by showing how to reduce another NP complete problem to them.

Search vs. Decision

- For many problems the answer is not just YES/NO
- Example: For L ∈ NP and a given x we want to know whether x ∈ L or not, and if x ∈ L we want to find a "witness"
- Defined search problems in general and showed a connection back to languages in **NP** (whenever a "solution" can be easily verified).
- Trivial: reduction from Decision to Search
- Nontrivial: for all **NP** complete problems there is a reduction from Search to Decision
 - First proved it for Circ-SAT
 - Then used **the proof of Cook-Levin theorem** to generalize it to all **NP complete** problems

NP: Nondeterministic Polynomial Time

NDTM has two transition functions δ_0 and δ_1 , and a special state denoted by q_{accept} . When an NDTM M computes a function, we envision that at each computational step M makes an arbitrary choice as to which of its two transition functions to apply. For every input x, we say that M(x) = 1 if there *exists* some sequence of these choices (which we call the *non-deterministic choices* of M) that would make M reach q_{accept} on input x.

Definition 2.5 For every function $T : \mathbb{N} \to \mathbb{N}$ and $L \subseteq \{0,1\}^*$, we say that $L \notin \mathbf{NTIME}(T(n))$ if there is a constant c > 0 and a $c \cdot T(n)$ -time NDTM M such that for every $x \in \{0,1\}^*$, $x \in L \Leftrightarrow M(x) = 1$

Theorem 2.6 $NP = \bigcup_{c \in \mathbb{N}} NTIME(n^c)$