

Computational Complexity

Mohammad Mahmoody

Session 9 11 Feb 2014

Last time

• Diagonalization as in the proof of Halting Theorem

• Time Hierarchy Theorem Using "Diagonalization Technique"

Today

- A comment about the proof of Time-Hierarchy theorem
- Limits of Diagonalization Technique: A "similar proof" to "time hierarchy theorem" cannot prove $P \neq NP$

Prime
$$(n^2) \neq Dtime(10n)$$

Proving $Dtime(n^{k+1}) \neq Dtime(n^k)$
• Recall Universal TM:
UTM gets (M, x) as input, simulates T steps of $M(x)$ in time $T \log T$
Construct Language $L \in Drive(n^2)$ but $L \notin Drive(m(0n))$
def d given $X : if$ run X over $X = for + ine(n^2) + 1$
 $if X = accepts X = reject + x \notin L$
 $o+h$.
 $Q \in D + ine(t + y +) = D + ine(c.n!-5, (y(n!-5))) = D + ime(n^2)$
 $(Taim L \notin Dtime(10n); M Soluri L in 10n Rum Move M river$

Can a "similar proof" show $P \neq NP$? • Recall how we showed $Dtime(n^{k+1}) \neq Dtime(n^k)$ Claim: Same proof shows that $\underline{\mathbf{Dtime}^{\mathbf{0}}(n^{k+1}) \neq \mathbf{Dtime}^{\mathbf{0}}(n^k)}$ for any oracle $\mathbf{0}$ $\mathbf{Dtime^{\mathbf{0}}(n^k)}$: languages decidable in time n^k given oracle access to $\mathbf{0}$

Only needs (UTM) holds relative + any oracle. Can a "similar proof" show $P \neq NP$?

• Same proof shows that $Dtime^{O}(n^{k+1}) \neq Dtime^{O}(n^{k})$ for any oracle **O** $Dtime^{O}(n^{k})$: languages decidable in time n^{k} given oracle access to **O**

Drime
$$(n^{k}) \neq Drime (n^{k}n)$$
 Norme $(n^{k}) \neq N + he(n^{k})$
There exists oracle O such that $P^{O} = NP^{O}$
There exists oracle O such that $P^{O} = NP^{O}$
There exists no "velativizing" preof for $P \neq NP$
if $p(oof of P \neq NP \ relativize = P^{O} \neq NP^{O}$ for any O
 $P \neq NP^{O}$ for any O
 $P \neq NP^{O} \neq NP^{O}$ for any O
 $P = Exptime \ oradp: \begin{cases} query: (M, x, 1^{k}) \\ answer: M(x) \ dterest \\ step! \ Mp^{M} \end{cases}$
 $P = Expt \ ine.$
 $P = Expt \ ine$