Assignment 2: Computational Complexity

Due date: Thursday 20 Feb in Class. You can return it in class or during office hours.

- 1. (5) Read Theorem 2.2, understand the proof, and write the (full) proof in your own words. The technique "padding" used here is a very useful one and we might use it later.
- 2. Read assignment 2.6 for the definition of *Nondeterministic* Universal Turing Machine N-UTM (you don't have to solve assignment 2.6, but I assume you can at least sketch the proof of part (a) assuming UTM for deterministic case). Now suppose we try to adapt the proof of Theorem 3.1 to prove a time hierarchy theorem for non-deterministic computation as follows: we try to use N-UTM instead of UTM. Namely, we define language L as follows. Given input x, let M_x be the Nondeterministic TM encoded by x and let \overline{M}_x be another non-deterministic Turing machine that in *every* possible branch of computation (out of all exponentially many executions) does the same as M_x till the very last step but then suddenly "flips" its final answer (changes yes to no and vice versa). We define $x \in L$ if and only if \overline{M}_x "accepts" x (for this you need to recall when we say that a nondeterministic machine accepts an input). If we define L this way, then:
 - (5) Is it that $L \in Ntime(n^2)$?
 - (10) How about $L \notin Ntime(n)$? Why?

The above shows why the straightforward adaptation of the proof of Theorem 3.1 to nondeterministic case (to prove Theorem 3.2) does not work. So now you might have a good motivation to read the beautiful proof of Theorem 3.2.

- 3. (10) We already know that if $L \leq_p L'$ (i.e. there is a Karp reduction from L to L'), then $L' \in P$ implies $L \in P$. Prove that $L \leq_p L'$ also shows that: $L' \in NP \Rightarrow L \in NP$.
- 4. Show that:
 - (5) $TAUTOLOGY \leq_T SAT$ and $TAUTOLOGY \geq_T SAT$ where \leq_T denotes Turing reductiosn¹.
 - (10) If either of the following holds: $SAT \leq_P TAUTOLOGY$ or $SAT \geq_P TAUTOLOGY$, then NP = coNP.
- 5. (5) Prove that if P = NP then NP = coNP. (Hint: use first part of previous question).
- 6. Suppose $X \leq_T Y$ where X and Y are two functions². Then show that:
 - (10) $P^X \subseteq P^Y$ and $NP^X \subseteq NP^Y$.
 - (10) Can you also show that $(Dtime(n^2))^X \subseteq (Dtime(n^2))^Y$? Why?

¹The book calls Turing reductions: Cook reductions.

 $^{^{2}}$ Recall that the Turing reduction can be defined between any two functions or even search problems and not only the decision problems

- 7. (10) Assignment 2.27.
- 8. (10) Extra Credit: Assignment 2.11