

Computational Complexity

Mohammad Mahmoody

Session 13 27 Feb 2014

Today

- Will continue Space Complexity:
- Recursive Algorithms in PSPACE and Savitch's theorem

Bounding Space-Comp. by Time-Comp. **DTIME**(S(n)) \subseteq **SPACE**(S(n)) \subseteq **NSPACE**(S(n)) \subseteq **DTIME**($2^{O(S(n))}$)

Interesting Space Complexity Classes

 $PSPACE = \bigcup_{c>0} SPACE(n^{c})$ $NPSPACE = \bigcup_{c>0} NSPACE(n^{c})$ $L = SPACE(\log n)$ $NL = NSPACE(\log n)$

Interesting Problems in **NL**

 $PATH = \{ \langle G, s, t \rangle : G \text{ is a directed graph in which there is a path from } s \text{ to } t \}$

- Claim: $PATH \in \mathbf{NL}$
- Proof: Do a non-deterministic walk of length *n* in starting from *s*. Accept iff reaching *t* in this time.
- Interesting:

If one solves PATH in log space, then all **NL** is solvable in log space !

• Important: Is PATH in L as well?

Interesting problems in **PSPACE**

- Trivial: $NP \subseteq NSPACE$
- We also saw: $NP \subseteq EXP$
- Can improve both by showing $NP \subseteq PSPACE$

Big Picture

$L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXP$

Non-deterministic vs Deterministic Space

Theorem 4.14 (Savitch's Theorem [Sav70]) For any space-constructible $S : \mathbb{N} \to \mathbb{N}$ with $S(n) \ge \log n$, $NSPACE(S(n)) \subseteq SPACE(S(n)^2)$.