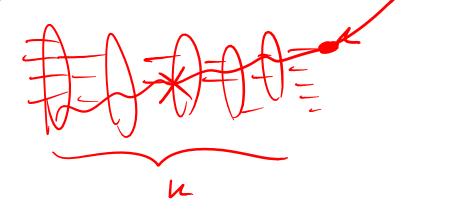


Computational Complexity

Mohammad Mahmoody

Session 19 March 2014

Depth of a Circuit as "parallel time"

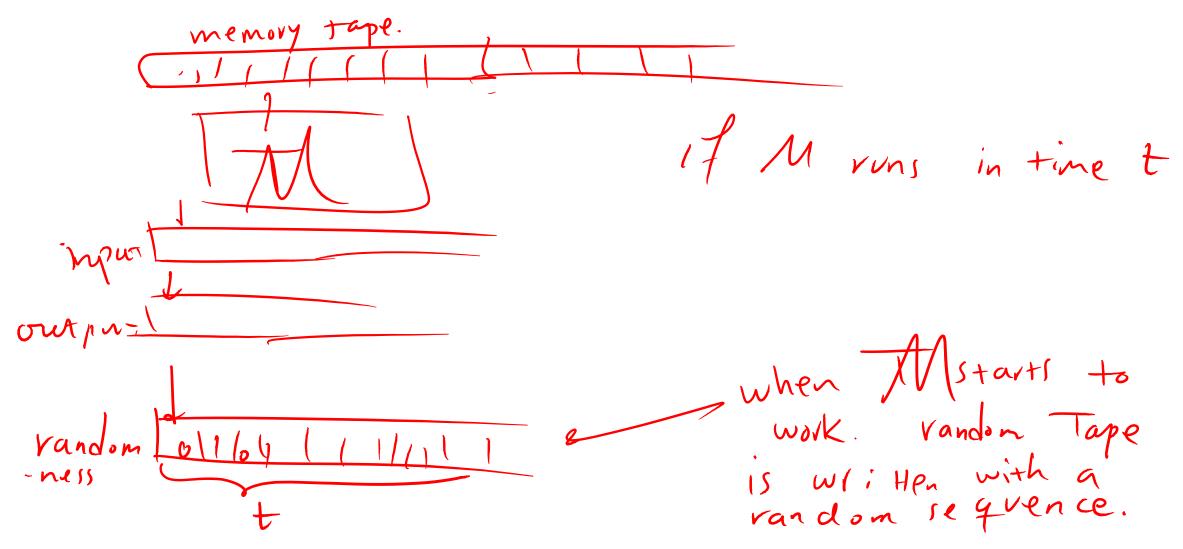

Time Civalit. Turing Madhire every directed graph with no cycle has a topological order : length of lengert path in Gr.
minimum # of layers G could
be drawn

n=juput bey = A (m2) Matrix multiplication $m \left(\frac{A}{A} \right) = m \left(\frac{C}{G} \right)$ Most obvions Abs: $n^3 = \frac{3}{2}$ Strussons Abs $m^2 \cdot 8 - \frac{3}{2}$ Compute (Cij) indep from (i'j' $2m^2$ A = 1 B = 1 $C_{ij} = \sum_{k=1}^{m} a_{ik} \cdot b_{kj}$ Computers aix bus is indep of a big Thm; Comuting matrix multiplication in lg(n)

Other Circuit-Based Complexity Classes

NCo = Constant Hearth circuins

New Topic: Randomized Computation


Nature seems to provide randomness; can we use it?

• What if we find the "solution" with probability $1 - 2^{-100}$?

Note: we do not assume the input to be random...

Formalizing Randomized Computation

Complexity Class BPP

say that a PTM M decides L in time T(n) if for every $x \in \{0, 1\}^*$, M halts in T(|x|)steps regardless of its random choices, and $Pr[M(x) = L(x)] \ge 2/\sqrt{2}$

$$\frac{1-2^{-100}}{2+\frac{1}{x}}$$

We let **BPTIME**(T(n)) be the class of languages decided by PTMs in O(T(n))time and define **BPP** = \bigcup_c **BPTIME** (n^c) .