

Computational Complexity

Mohammad Mahmoody

Session 20 April 2014

Complexity Class **BPP**

say that a PTM M decides L in time T(n) if for every $x \in \{0, 1\}^*$, M halts in T(|x|) steps regardless of its random choices, and $\Pr[M(x) = L(x)] \ge 2/3$.

We let **BPTIME**(T(n)) be the class of languages decided by PTMs in O(T(n)) time and define **BPP** = \bigcup_c **BPTIME**(n^c).

Definition 7.3 (**BPP**, alternative definition) A language L is in **BPP** if there exists a polynomial-time TM M and a polynomial $p : \mathbb{N} \to \mathbb{N}$ such that for every $x \in \{0, 1\}^*$, $\Pr_{r \in_{\mathbb{R}} \{0, 1\}^{p(|x|)}}[M(x, r) = L(x)] \ge 2/3$.

Other ways randomness can help

• Find the answer always correctly (zero error) but faster.

imput: (21, 1 - 3 2) all distinct

• Example: finding median.

Sorted: (2/2/2/2/2/2) n=2k-1

Try 1: Sort and pick n/k: time
$$\theta(nlg)$$

Try 2: given n_1 - n_2 what is the kth smallest (general k)

pick $i \in \{1, \dots, 2n\}$ at random, look at $n_1 \in \{1, \dots, 2n\}$ at random, look at $n_2 \in \{1, \dots, 2n\}$ at random look at $n_3 \in \{1, \dots, 2n\}$ at random look at $n_4 \in \{1, \dots, 2n\}$ at random look at $n_4 \in \{1, \dots, 2n\}$ at random look at $n_4 \in \{1, \dots, 2n\}$ at random look at $n_4 \in \{1, \dots, 2n\}$ at random look at $n_4 \in \{1, \dots, 2n\}$ at random look at $n_4 \in \{1, \dots, 2n\}$ at random look at $n_4 \in \{1, \dots, 2n\}$ and $\{1, \dots, 2n\}$ at random look at $n_4 \in \{1, \dots$

One sided error

C.BPP

• **RP** : there is a poly-time $M(\cdot)$ such that

y-time
$$M(\cdot)$$
 such that
$$x \in L \Rightarrow \Pr[M(x) = 1] \ge \frac{2}{3}$$

$$x \notin L \Rightarrow \Pr[M(x) = 0] = 1$$

$$x \notin L \Rightarrow \Pr[M(x) = 0] = 1$$

$$x \notin L \Rightarrow \Pr[M(x) = 0] = 1$$

RPZNP

• The randomness r such that M(x,r)=1 is a "witness" that $x\in L$

Impagliazzo-Wigderson: if SAT require 2-size Circuit
for some constant c

$$\Rightarrow P = RP = BPP$$

COX COY $P \subseteq CO - RP \subseteq BPP$

How to decrease the error for **RP**?

• Suppose
$$x \in L \Rightarrow \Pr[M(x) = 1] \ge 2/3$$
 $x \notin L \Rightarrow \Pr[M(x) = 0] = 1$

Run $M(x)$ twice using independent randomning

 $x \mapsto A$
 $x \mapsto A$

How to decrease the error for **BPP**

• Suppose
$$x \in L \Rightarrow \Pr[M(x) = 1] \ge 2/3$$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 2/3$
 $x \notin L \Rightarrow P(x) = 2/3$
 $x \notin$