

Computational Complexity

Mohammad Mahmoody

Session 21 April 2014

Complexity Class **BPP**

Definition 7.3 (**BPP**, *alternative definition*) A language *L* is in **BPP** if there exists a polynomial-time TM *M* and a polynomial $p : \mathbb{N} \to \mathbb{N}$ such that for every $x \in \{0, 1\}^*$, $\Pr_{r \in_{\mathbb{R}} \{0, 1\}^{p(|x|)}}[M(x, r) = L(x)] \ge 2/3$.

How to decrease the error for **BPP**
• Suppose
$$x \in L \Rightarrow \Pr[M(x) = 1] \ge 1/2 + \varepsilon$$

 $x \notin L \Rightarrow \Pr[M(x) = 0] \ge 1/2 + \varepsilon$
 $k: \text{ odd}$
 $M_{i}: \text{ run } M(x) \quad k \text{ times using independent random rule.}$
 $k: \text{ get back } a_{i}a_{2}\dots a_{k}$ and output: majority.
 $a \text{ the expected } \# a \# \text{ "curect" consider } is \ge (\frac{1}{2} + \varepsilon) \cdot k$
 $define: c_{i} = \text{ boolean random variabler } \{i \ \# M(\omega) \text{ curied } \text{ curech} \\ N(x) = \text{ word.}$
 $P_{i}\{c_{i}=i\} \ge 1 + \varepsilon : = \mathbb{E} \times [c_{i}] \gg \frac{1}{2} + \varepsilon$
 $Big G_{i}: \Pr[\Sigma C_{i} \times \gamma / 2] \stackrel{?}{=} E[\Sigma C_{i}] \gg \Sigma E[C_{i}] \gg U(y_{i}+\varepsilon)$

_

Chernoff-Hoeffding Bound

babl badz

Concentration Bound:

• Theorem: Suppose $a_1, ..., a_k$ are independent Boolean random variables such that $\operatorname{Ex}[a_i] = \Pr[a_i = 1] = \beta$ and let $a = \frac{\sum_i a_i}{k}$ then and $\Pr[a \ge \beta + \varepsilon]$ and $\Pr[a \le \beta - \varepsilon]$ are both $< 2^{-k\varepsilon^2}$

if we van
$$M_{kk}$$
: what is pril. of getting wrong answe?
recal: $P_{i}(c_{i}: i^{th} exec. being correct) > (z+z)$
if alg M_{n} fails \implies fraction of content B
 $\sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{j=1$

