
Assignment 4: Computational Complexity

Due date: Thursday 10 April before the class starts
(i.e., it cannot be returned during class)

1. (5) Problem 6.8 from the book.

2. 10: In class we saw that: If we have a poly-time (algorithm M for language L such that
x ∈ L⇒ Pr[M(x) = 1] ≥ 1/2 + c and x 6∈ L⇒ Pr[M(x) = 1] ≤ 1/2− c for a constant c, then
we can get another polynomial time algorithm M ′ such that x ∈ L⇒ Pr[M(x) = 1] ≥ 1−2−n

and x 6∈ L ⇒ Pr[M(x) = 0] ≥ 1 − 2−n. Prove that we can still do so, if we only assume
that M is a polynomial time algorithm M such that: x ∈ L ⇒ Pr[M(x) = 1] ≥ t + c and
x 6∈ L⇒ Pr[M(x) = 1] ≤ t− c for constants 0 < t < 1 and c < 1.

Hint: Note that when t = 1/2 is just we did solve as follows: we run M “many” times and
look at the majority function. Now that t is not necessarily 1/2, what is the most reasonable
way to judge the final decision based on many executions of M ? The next step is to just
apply the Chernoff bound (use the version we saw in class, not the one in the book).

3. 10: Problem 7.4 from the book. Hint: we solved this in class, but we worked with constant
instead of small inverse of polynomials; so you have to use better parameters in your repetition.
You might also find this fact useful: (1− q)1/q < 1/e for any number q < 1.

4. 10: Read Lemma 7.13 from the book and sketch its proof.

Note: This is a very nice lemma showing that if we use a source of randomness that gives us
one bit each time, but is not uniformly distributed, can still be used, even if our algorithm is
designed to use perfectly uniform random bits.

5. 10: Problem 7.7 from the book. Hint: for that you essentially need to use the argument we
saw in class that shows how to eliminate randomness when we can use non-uniformity (i.e.
non-uniform advice about “good randomness). But be careful about all the definitions.

6. (25) Problem 6.12 from the book. In order to ignore the “finite field” part of the question, for
simplicity suppose our circuits can have two types of gates: addition and multiplication, and
the wires of the circuit can carry integers (not just Boolean values). So, we can have a circuit
that takes three inputs a, b, c and computes a · b + a · c using only two gates (by computing
a · (b + c)). In this language, if we talk about NC0 circuits, it would be circuits of constant
depth (and polynomial size) that can use the above mentioned wires and gates. Also note
that the class NC (not NC0) allows the depth be (log n)c for any constant c.

Grades: part a: 5, Part b: 10, Part c: 10. Part c is extra credit.

Hint: part (a) can be solved based on what we saw in class (but you still have to write it
fully). For part (b) you just need a smart way of computing ab for large b that uses much
smaller than b multiplications. For part (c) first check what happens if we compute A2 where
A is an adjacency matrix of a graph G. Double hint: the entries of A2 tell us if there is a path
of length 2 between the nodes. Prove a generalized version of this observation by induction
and then apply Part 2.
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