

Computational Complexity

Mohammad Mahmoody

Session 23 April 2014

Zero-Error Probabilistic Algorithms

• What if M is randomized and M(x) is correct with prob. 1 ?

Definition 7.7 The class **ZTIME**(T(n)) contains all the languages L for which there is a machine M that runs in an expected-time O(T(n)) such that for every input x, whenever M halts on x, the output M(x) it produces is exactly L(x).

We define **ZPP** = $\bigcup_{c>0}$ **ZTIME**(n^c).

CORP)... CRP (if net =) ~ NO ~=1 $ZPP \subseteq BPP$ We have M with zero err. Let to be st E[time[m(x)] Lito Lets run M(x) for 10t steps. Lif finishes in time = output

auswer

let T be a random variable.

random variable. in Pr[t] kto](h Y to T to Proof: Assume that Pr[t] kto] = < > \rightarrow \right

$\mathbf{ZPP} = \mathbf{RP} \cap \mathbf{coRP}$

- Note $ZPP \subseteq RP$ implies $ZPP = coZPP \subseteq coRP$
- So: $ZPP \subseteq RP \cap coRP$
- Claim: $\mathbf{RP} \cap \mathbf{coRP} \subseteq \mathbf{ZPP}$

M(x) { Ye) -> anjwer 11 (over 1/00)

 $M(x) = \frac{1}{1}$ $M(x) = \frac{1$

LPP ⊆ coRP

have M. Hine to

run M. M. (t.

Algorithm M: Ofrun M(x): if say, yes—p stop

No — stop

Of ZPP=RPn Suppose net : We stop if Mg(x) sons, yes.: 1 Y is the support of M(x) $P_{i}[Y] = 0$: $\frac{1}{2}$ $y_t - y_t - y_t$ $P[we go fo k strepi] = \overline{2}^k$ $E[stepi] = 1.\overline{2}' + 2.\overline{2}^2 ... = 2$ [E[stepi] = 2]

P(K,y) = ney + ny+ Polynomial Identity Testing: Where randomness seems to help • Given a two polynomials, find if they are the same... rean earry numbers. given tous circuiti is C, (x) for all x?