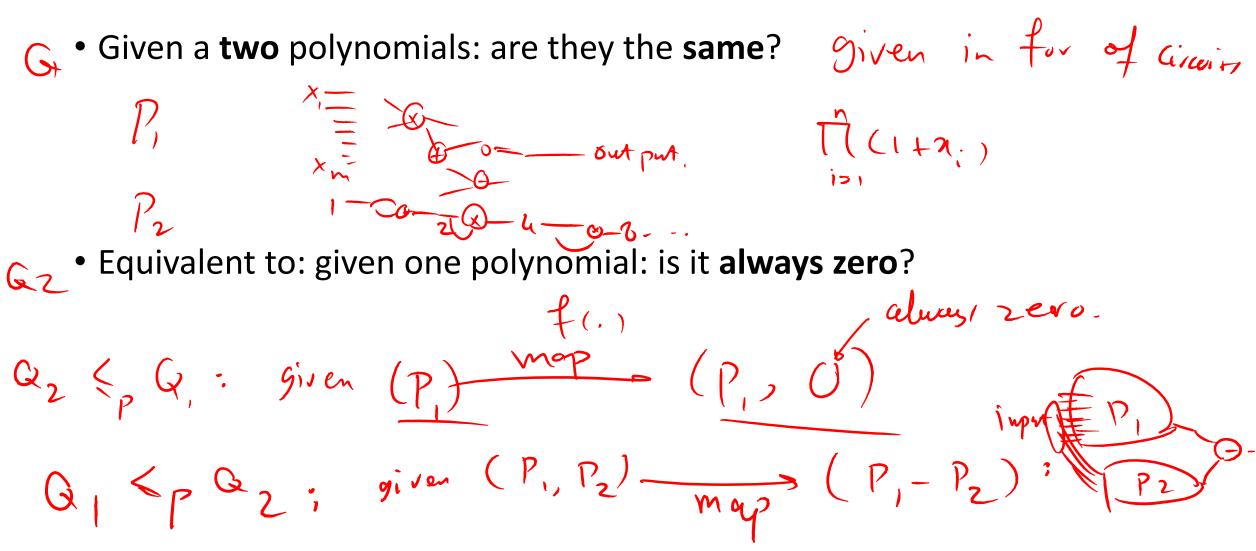
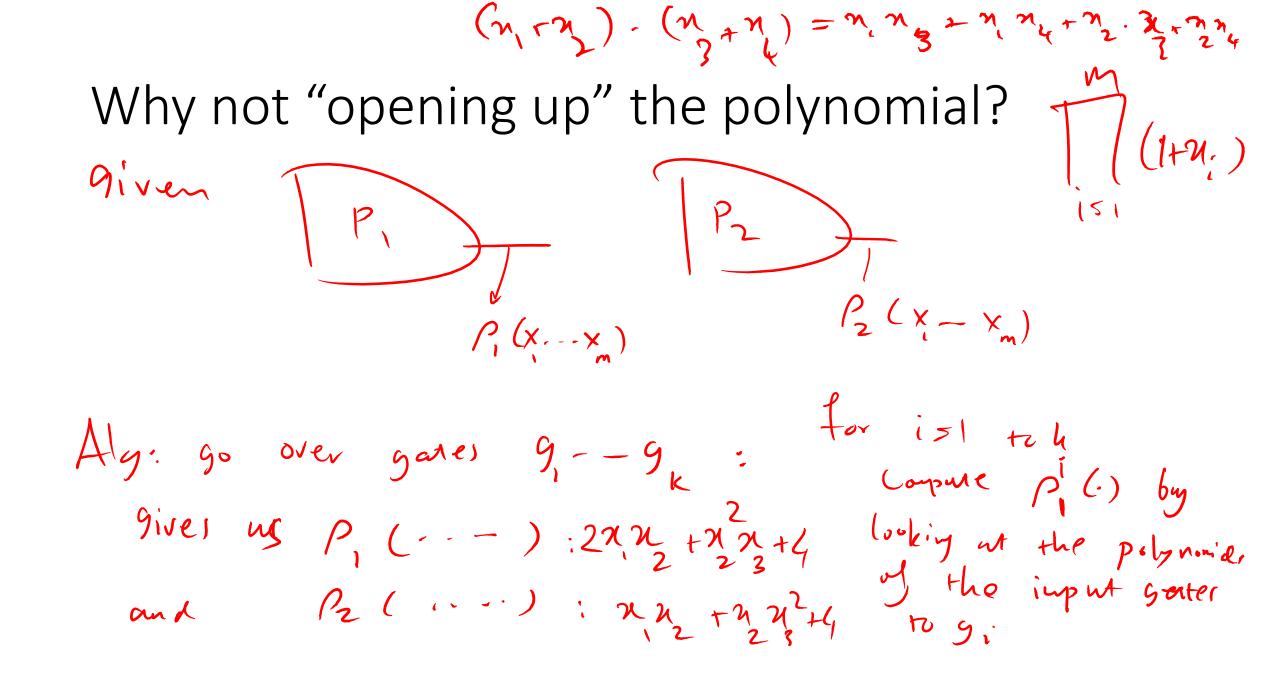


Computational Complexity

Mohammad Mahmoody

Session 24 April 2014 Polynomial Identity Testing: Where randomness seems to help





if
$$P(x) \equiv v \rightarrow v_{0}$$

Warm-up: Single Variable Polynomials $= a_{rd, r+q, r+q}$
• Fact: every non-zero polynomial of degree d has at most d roots.
Proof: if r is a root $P(x) \geq v = d$ inde $P(x) \geq q(x-v)$
 $= q(x) \leq v = p(n)$
 $=$

d 5 2ⁿ Alg: choos net { 1. - 4d } induction: the degree of $p(.) \leq 2^{i}$ $g = \frac{9}{2} \int if g = \frac{1}{2} = \frac{1}{2} \log \left\{ \frac{2^{i}}{2} \right\}$ $if g = x \quad \deg(2^{i}) + (2^{i})$ Claim: dey (p(.)) < 2k if p(.) is compared by a k-gale Circuit

Multi-variable case: Lemma: lepp(n) be of dejes & = sit choos 265 Pr(p(n)) **Lemma 7.5** Let $p(x_1, x_2, ..., x_m)$ be a nonzero polynomial of total degree⁶ at most d. Let S be a finite set of integers. Then, if a_1, a_2, \ldots, a_m are randomly chosen with replacement from *S*, then Swarz-Zipple $\Pr[p(a_1, a_2, \dots, a_m) \neq 0] \ge 1 - \frac{a}{|S|}$ the 10 tal day (p(.)) ~ ~ e in time didit) subi / add / mult. of 1 twu