

Computational Complexity

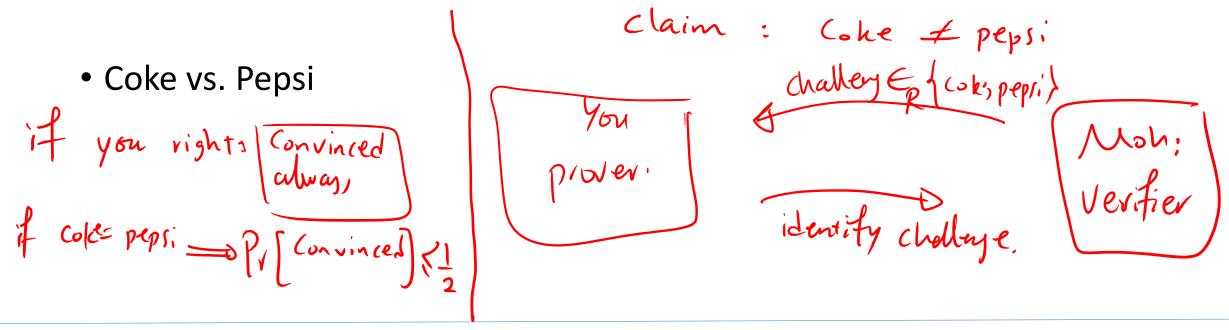
Mohammad Mahmoody

Session 24 April 2014

Interactive Proofs – Revising notion of "proof"

• Recalling **NP** one more time... Ventie

Allowing interaction (interrogation)



• Informal Definition: IP = class of problems whose solution can be proved interactively

Graph Non-Isomorphism

 $GI:L:\{(G_1,G)|G_1=G_2\}$ GI=ND

• It is not known whether GNI \in **NP** or not... but we show GNI \in **IP**

Prover

(Caim: G # (

Venter

Chook He & G, 6

prover Conets in claim—> ventin accepts.

G_L=H

related node, of H

& prover is lieging

H's distribution is independent of the

prose can gu

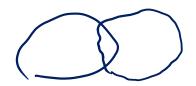
PI[EINEZ] 5 PILED, PILEZIEN

Can we decrease the "error"?

2-message interactive protoch to GNT Completell: If NEGNI - honest prover convincer ventice Soundness: if ng/GNI = foing proser: Ventie réjects (6,=62) w.p. 1-(2)e serr Profie ven: : accept iff
both executions Protocol 2: Completell: if Ut GNI - Verifier a crepts both executions P/ [acc A a () = P/ [acc | acc | a Soundall: 24 GNI

Is randomness of the verifier really helpful?

Definition 8.3 (Deterministic proof systems) We say that a language L has a k-round deterministic interactive proof system if there's a deterministic TM V that on input x, a_1, \ldots, a_i runs in time polynomial in |x|, and can have a k-round interaction with any function P such that



Why dIP is not interesing?

The formal definition of class **IP**

Definition 8.6 (Probabilistic verifiers and the class **IP**) For an integer $k \ge 1$ (that may depend on the input length), we say that a language L is in **IP**[k] if there is a probabilistic polynomial-time Turing machine V that can have a k-round interaction with a function $P:\{0, 1\}^* \to \{0, 1\}^*$ such that

(Completeness)
$$x \in L \Rightarrow \exists P \Pr[\mathsf{out}_V \langle V, P \rangle(x) = 1] = 1$$

(Soundness) $x \notin L \Rightarrow \forall P \Pr[\mathsf{out}_V \langle V, P \rangle(x) = 1] \leq 1/3$

where all probabilities are over the choice of r.

We define $\mathbf{IP} = \bigcup_{c>1} \mathbf{IP}[n^c]$.