

Computational Complexity

Mohammad Mahmoody

Session 27 April 2014

Zero-Knowledge Proofs

• ZK Proof for Graph Isomorphism:

Zero-Knowledge Proofs

• ZK Proof for Graph Isomorphism:

• Soundness:

no h exists.

x=(6,6,)\$ 6]=)

if $G_1 \neq G_2$ for at least

PAVer rej)

one of $b \in \{0,1\}$

- Prover:Input: $(G_1 \equiv G_2)$ Prover:Verifierknows f such that $f(G_1) = G_2$ $f(G_1) = G_2$ Hchoose random g : $g(G_2) = H$ $g(G_2) = H$ bIf $b = 2 \Rightarrow h = g$ hif $b = 1 \Rightarrow h = g \circ f$ h
- Zero-Knowledge: What verifier gets to see?
- A random isomorphism for one of G_1 or G_2 of her choice!
- This is something she could generate on her own efficiently!

Proof of Zero-Knowledge of GI Protocol

 For any (perhaps malicious) verifier V* there is an efficient "simulator" S that generates what V* observes (called view).

Input: $(G_1 \equiv G_2)$

• Proof:
$$i \neq G \equiv G_2$$

 \cap

If
$$b = 2 \Rightarrow h = g$$

if $b = 1 \Rightarrow h = g \circ f$ Accept if $h(G_b) = H$

- S chooses $b' \in \{1,2\}$ at random and sends it to V^*
- S sends a random isomorphism H of G_b to V^* and gets back b
- If b = b' (happens with prob. $\frac{1}{2}$) S sends mapping of G_b to H
- IF $b \neq b'$ simulator repeats the game
- Expected repetitions of game: 2

Zero-Knowledge for all of **NP**

- Goldreich-Micali-Wigderson 87: If "one-way functions" exist \rightarrow all of *NP* has "zero-knowledge" proofs
- An efficiently computable function $f: \{0,1\}^n \rightarrow \{0,1\}^n$ is one-way if: The probability that f could be "inverted" efficiently $\leq 1/2$
- Formally: for every efficient A if $x \leftarrow \{0,1\}^n$, y = f(x) then $\Pr_x [f(A(y)) = y] \le 1/2$
- Note: if **P** = **NP** no one-way function exists.

Probabilistic Checkable Proofs (PCPs)

• A form of interactive proofs in which the prover is an oracle boade. Equivalent to saying : a proof is "written" and efficient verifier "reads" it

• Completeness: $x \in L \to \exists$ oracle $O \mid V^{O}(x) = 1 \leq I$ • Soundness: $x \notin L \to \forall$ oracle $O \mid V^{O}(x) \leq \frac{1}{2}$

PCP Theorem 1 [BFL90]: $\gamma_{F} \mathcal{C} \mathcal{C} \mathcal{P} \mathcal{F} \mathcal{K} \mathcal{C}$ languages with PCPs = **NEXP** = languages with ≥ 2 provers

PCPs for **NP**

- PCPs in general are trivial for NP
- PCP Theorem 2 [ALMSS98]:
 Any L ∈ NP has a PCP in which verifier reads only 3 bits of "proof"
- Main applications: "hardness of approximation" (e.g. of MAX-3SAT)

16

 $\alpha(\mathcal{A})$

right