
– 1 – CS 47 Spring, 2014

Introduction to
Computer Systems

Topics:

 Arithmetic

class00.ppt

CS 47

Thomas Howell
January 27, 2014

– 2 – CS 47 Spring, 2014

Arithmetic

 We need to know how to do arithmetic by hand in order to
understand how it is done by the computer.

 Our ordinary arithmetic is done using place-value notation
with base 10. Each place is “worth” 10 times the place to its
right.

 Computer arithmetic is done using place value notation with
base 2. It is often convenient to use a power of 2 for the
base, most commonly 24 = 16.

 In base 16, we need numerals (digits) to represent 10, 11, 12,
13, 14, and 15. We use a, b, c, d, e, f (or A, B, C, D, E, F).

 Most of us learned in grade school how to add, subtract,
multiply, and divide decimal integers of any length.

 The same algorithms work for any base: 10, 2, 16, or
whatever you like.

– 3 – CS 47 Spring, 2014

Integer Arithmetic

 Integers
 Representation

» 172810 = 1 * 103 + 7 * 102 + 2 * 101 + 8

» 10112 = 1 * 23 + 0 * 22 + 1 * 21 + 1

» 3e916 = 3 * 162 + (14) * 161 + 9 (digits a-f = 10 – 15)

 Addition/subtraction (use “carry” and “borrow”)

» base 10: 1728 + 273 = ____ 1728 – 831 = ____

» base 2: 1011 + 101 = ____ 1011 – 100 = ____

» base 16: 3e9 + 16 = ____ 3e9 – 1a = ____

 Multiplication (“digit-by-digit” table)

» base 10: 144 * 12 = ____

» base 2: 1010 * 101 = ____

» base 16: 63 * 7 = ____

 Division (“long division”)

» base 10: 1729 / 12 = ____ r. ____

» base 2: 1011 / 101 = ____ r. ____

» base 16: 3e9 / 7 = ____ r. ____

– 4 – CS 47 Spring, 2014

Real Arithmetic

 Real numbers
 Representation

» 31415.9 0.00013 6.02  1023

 Addition/subtraction

» Line up the decimal points

» 31415.9 + 0.00013 = _____________ .

 Multiplication

» 1.1  102 * 1.3  104 = __________. (add exponents)

» base 2: 1.011 * 24 = __________ . (shift the point)

 Division

» 1.43  106 / 1.1  102 = __________. (subtract exponents)

– 5 – CS 47 Spring, 2014

Why base-2 and base-16?

 base 2 (binary)
 Computers are made out of logic circuits. Each logic value is

true or false, represented by 1 or 0. Having only two possible
values maximizes speed and reliability. Base 2 is the natural
way to represent these values.

 base 16 (hexadecimal)
 Base 2 is cumbersome for human use. There are too many

digits. Each base-16 digit represents four base-2 digits.

 Example: 11110001001101012  1111 0001 0011 0101  f13516

– 6 – CS 47 Spring, 2014

Conversion table
 If you don’t know it already, please learn this table. It will

make your life in CS47 (and computer science in general)

much easier.

Base 2
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Base 10
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Base 16
0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f

– 7 – CS 47 Spring, 2014

Converting to a different base
 Decimal to hexadecimal (computing in decimal)

 31510 = 19 * 16 + b

 1910 = 1 * 16 + 3

 110 = 0 * 16 + 1

 31510 = 13b16

OR

 31510 = (((3 * 10) + 1) * 10) + 5

 compute in hex: 3 * a + 1 = 1f. 1f * a + 5 = 13b

– 8 – CS 47 Spring, 2014

Converting to a different base (2)
 Hexadecimal to Decimal (computing in hex)

 21d16 = 3616 * a16 + 1 (21d / a) = 36 r. 1

 3616 = 516 * a16 + 4 (36 / a) = 5 r. 4

 516 = 016 * a16 + 5

 31116 = 54110

OR

 21d16 = (((2 * 16) + 1) * 16) + d

 compute in decimal: 2 * 16 + 1 = 33. 33 * 16 + 13 = 541

– 9 – CS 47 Spring, 2014

Converting to a different base (3)
 Hexadecimal to Binary

 21d16 = 0010 0001 1101

 Binary to Hexadecimal

 0101 1011 1001 = 5b916

 These conversions are effortless when you know the table.

 Writing extra space after every fourth binary digit is helpful.

 Hexadecimal can be regarded as just a more compact way to

write binary numbers.

