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Arithmetic 

 We need to know how to do arithmetic by hand in order to 
understand how it is done by the computer. 

 Our ordinary arithmetic is done using place-value notation 
with base 10.  Each place is “worth” 10 times the place to its 
right. 

 Computer arithmetic is done using place value notation with 
base 2.  It is often convenient to use a power of 2 for the 
base, most commonly 24 = 16.  

 In base 16, we need numerals (digits) to represent 10, 11, 12, 
13, 14, and 15.  We use a, b, c, d, e, f (or A, B, C, D, E, F). 

 Most of us learned in grade school how to add, subtract, 
multiply, and divide decimal integers of any length. 

 The same algorithms work for any base: 10, 2, 16, or 
whatever you like. 

 

 

 



– 3 – CS 47 Spring, 2014 

Integer Arithmetic 

 Integers  
 Representation 

» 172810 = 1 * 103 + 7 * 102 + 2 * 101 + 8 

» 10112 = 1 * 23 + 0 * 22 + 1 * 21 + 1 

» 3e916 =  3 * 162 + (14) * 161 + 9 (digits a-f = 10 – 15) 

 Addition/subtraction  (use “carry” and “borrow”) 

» base 10: 1728 + 273 = ____ 1728 – 831 = ____ 

» base 2:  1011 + 101 = ____  1011 – 100 = ____ 

» base 16:  3e9 + 16 = ____   3e9 – 1a = ____ 

 Multiplication (“digit-by-digit” table) 

» base 10: 144 * 12 = ____  

» base 2:  1010 * 101 = ____   

» base 16:  63 * 7 = ____   

 Division  (“long division”) 

» base 10: 1729 / 12 = ____ r. ____ 

» base 2:  1011 / 101 = ____ r. ____   

» base 16:  3e9 / 7 = ____ r. ____ 
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Real Arithmetic 

 

 Real numbers 
 Representation 

» 31415.9  0.00013   6.02  1023 

 Addition/subtraction 

» Line up the decimal points 

» 31415.9 + 0.00013 = _____________ . 

 Multiplication 

» 1.1  102  *  1.3  104 = __________.  (add exponents) 

» base 2: 1.011 * 24  = __________ .  (shift the point) 

 Division 

» 1.43  106  / 1.1  102 = __________.  (subtract exponents) 
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Why base-2 and base-16? 

 

 base 2 (binary) 
 Computers are made out of logic circuits.  Each logic value is 

true or false, represented by 1 or 0.  Having only two possible 
values maximizes speed and reliability.  Base 2 is the natural 
way to represent these values. 

 base 16 (hexadecimal) 
 Base 2 is cumbersome for human use.  There are too many 

digits.  Each base-16 digit represents four base-2 digits. 

 Example:  11110001001101012  1111 0001 0011 0101  f13516 
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Conversion table 
 If you don’t know it already, please learn this table.  It will 

make your life in CS47 (and computer science in general) 

much easier. 

Base 2 
0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

Base 10 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Base 16 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
a 
b 
c 
d 
e 
f 
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Converting to a different base 
 Decimal to hexadecimal  (computing in decimal) 

 31510 = 19 * 16 + b 

 1910 = 1 * 16 + 3 

 110 = 0 * 16 + 1 

 31510 = 13b16 

 

OR 

 

 31510 = (((3 * 10) + 1) * 10) + 5 

 compute in hex: 3 * a + 1 = 1f.  1f * a + 5 = 13b 
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Converting to a different base (2) 
 Hexadecimal to Decimal  (computing in hex) 

 21d16 = 3616 * a16 + 1  (21d / a) = 36 r. 1 

 3616 = 516 * a16 + 4  (36 / a) = 5 r. 4 

 516 = 016 * a16 + 5 

 31116 = 54110 

 

OR 

 

 21d16 = (((2 * 16) + 1) * 16) + d 

 compute in decimal: 2 * 16 + 1 = 33.  33 * 16 + 13 = 541 
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Converting to a different base (3) 
 Hexadecimal to Binary 

 21d16 = 0010 0001 1101 

 

 Binary to Hexadecimal 

 0101 1011 1001 = 5b916 

 

 These conversions are effortless when you know the table. 

 Writing extra space after every fourth binary digit is helpful. 

 Hexadecimal can be regarded as just a more compact way to 

write binary numbers.   

 

 


