Assembly Programming HOWTO

Download all the required stuff
1. Download VirtualBox for Windows or Mac.
2. Download the VirtualBox extension pack.
3. Download the VM for Assembly Programming.

Install VirtualBox and the VM

1. To install VirtualBox, just doubleclick on the EXE and follow instructions on the screen.
On Mac, double click the DMG file, then drag VirtualBox into Applications.

2. Run VirtualBox from your Start/Applications Menu.

3. Go to File > Settings > Extensions. Click on the Add Package button on the right. Select
the extension pack you downloaded earlier. Follow onscreen instructions to complete
installation.

4. Go to File > Import Appliance.

5. Point to the .OVA file you downloaded above. This will usually be in your Downloads

folder.

6. Once the Import is complete, select AssemblyProgramming from the list of VMs and
click on Start.

7. Your VM should now boot. If you get some popups in blue on the top, you can safely
close them.

Begin Assembly Programming with Eclipse

Eclipse should autostart as your VM boots up. Two sample projects exist, one with a C program
and one with an ASM program. Open the Test project:

C/C++ - Eclipse Platform o ty) 12:00AM X% Student %

File Edit Source Refactor MNavigate Search Run Project Window Help

iR v &iv [fv @~ B Oy v | & - B |Bic/cs+|
| Project Explorer £ =% T =0 =B 2= outlin 2 ~_©® Make =8
= An outline is not available.
GrTest New
I Copy
Delete Delete

Import...
Export...

Open Project

Show in Remote Systems view

Run As

Debug As

Profile As

Team

Compare With v

Restore From Local History... slems | £ Tasks | Bl console % . [Properties Civ =8

DO e

Properties ter soles to display at this time.

0

0e T Test

http://www.google.com/url?q=http%3A%2F%2Fdownload.virtualbox.org%2Fvirtualbox%2F4.3.6%2FVirtualBox-4.3.6-91406-Win.exe&sa=D&sntz=1&usg=AFQjCNEtOPyT360-xPtQpb-3GKlAFqyDUA
http://www.google.com/url?q=http%3A%2F%2Fdownload.virtualbox.org%2Fvirtualbox%2F4.3.6%2FVirtualBox-4.3.6-91406-OSX.dmg&sa=D&sntz=1&usg=AFQjCNGij6RPLm6KeUFXdn3L6NwMa-vfew
http://www.google.com/url?q=http%3A%2F%2Fdownload.virtualbox.org%2Fvirtualbox%2F4.3.6%2FOracle_VM_VirtualBox_Extension_Pack-4.3.6-91406.vbox-extpack&sa=D&sntz=1&usg=AFQjCNGhX6n2XwX_p0Npd7mfiYvZt4QuDA
http://goo.gl/J3HBAW

After opening the project, open the associated program file, in this case test.c. You can now
toggle breakpoints at specific lines of code. Breakpoints pause the program execution so that we

may view values of program variables:

C/C++ - Testftest.c - Eclipse Platform

File Edit

Source Refactor Mavigate Search Run Project Window

Help

B W | g & [G [/ By | v O Qv | & v

25 Project Explorer 3¢ = % ¥ T 0 [dteste 3

int main() {
int a = 2;
int b=a * 3;
Toggle Breakpoint
Disable Breakpoint

¥ 5 Test
b il Includes
d)
» (= Debug
[

&I TestAsm Breakpoint Properties...

Breakpoint Types 0
Go to Annotation Cerl+1
Add Bookmark...

Add Task...

+ Show Quick Diff
Show Annotation

Shift+Ctrl+Q

Show Line Numbers
Folding 3

Preferences...

[2l Problems | ¥ Tasks | B console 32

Mo consoles to display at this time.

] writable

E Properties

B & 1t) 1201AM % Student {i¥
Hiw v B B/ >
= B 2= outlin 2 @ Make =0

P W o % ¥

e main() :inkt

Smart Insert 1:1

Now we have to Build our code, which is just a fancy name for compiling it. Select Project >

Build All.

C/C++ - Teskftest.c - Eclipse Platform

12:01AM X% Student {

File Edit Source Refactor MNavigate Search Run Project Window Help
i~ B @ | Er & [G | R 8 E [
&5 Project Explorer 52 = &% T 70 [tesk
¥ 5 Test int Build Configurations ’
» il Includes e Build Project
» = Debug Build Working Set U
T Clean...
1 TestAsm + Build Automatically
¥ Make Target J
Properties
r
E [2{ Problems | ¥ Tasks | Bl console & . O Properties
No consoles to display at this time.
-
[aid

] Writable

=8 |%C\IC++| »
= O| gz outlin & ™ @ Make =0
2 W o ¥ Y

e main() :inkt

Smart Insert 1:1

In this case, you are using a sample program provided by me in working condition. Therefore the
Build will go through painlessly. Once you write your own programs, you will see a number of
errors showing up here. These errors will help you fix your compilation errors.

Just because a program compiles does not mean it is error free. Now we will debug the program
to see if it actually does what we intended it to do.

To start debugging, go to Run > Debug in the menu.

C/C++ - Test/ftest.c - Eclipse Platform B O 1y € 12:03AM 2 Student i
File Edit Source Refactor MNavigate Search Run Project Window Help
@ Fhw a B | &g e Erer | Run ctrl+F11 | @@ | &~ Hle Ei'%q‘cn'
B Proj by & v =0 = B8//% outlin 2. ® =B
3 Project Explorer B 5 [c Run History N o= Outlin Make
v =5 Test Run As v B W s o ¥ 7
’E | - WC:JUdES o RunConfigurations... s main():int
7 * (= Debu
& 9 Debug History
™]
= 1 TestAsm EEITLE
é Debug Configurations...
Toggle Breakpoint Shift+Ctrl+B
{ Toggle Line Breakpoint

Toggle Method Breakpoint
Toggle Watchpoint
Skip All Breakpoints

r Remove All Breakpoints
- i Breakpoint Types v

External Tools +

[Problems | ¥ Tasks | Bl console 52 . E Properties 4 ¢ |&| 0F BF B = Evriv =0

CDT Build Console [Test]
MaKe act

make: Nothing to be done for “all'.

+% Build Finished **=

- 0* Writable Smart Insert 9:1

Eclipse will now change the perspective to debug mode. You will see a number of windows with
all kinds of information about your program.

35 Debug 2
¥ [E] Test [¢/C++

File Edit Source Refactor MNavigate Search Run Project Window Help

¥ % /home/student/workspace/Test/Debug/Test [2161] [cores: 0]

Debug - Test/test.c - Eclipse Platform

B O ty) 12:25AM X Student i

|3 O Qv | B & P B | 45 Debug|

il 3 I B i+ ¥ = B |®=variables | ® Breakpoints i Registers £ . =k Modules =8
Application]

5 0T

) Name Value Description
¥ i Thread [1] 2161 [core: 0] (Suspended : Breakpoint) wresp UADTTITICT T
= main() at test.c:2 0x80483ba it ebp Othfﬂ‘}da{
»l gdb v
Name : ebp
f [8 test.c 2 = B 8= outline = Disassembly 2 =B
int main() { -
int a = 2; -
int b =a=*3; Enter location here g #&lR
int ¢ = &a;
¥+ 080483ba: movl $0x2,-@xc(%ebp) =
b += 5; @3 int b = a * 3;
return a;

\!@‘E . 0 14, | E @

Ii—l El console 22

080483c1: mov -0xc(%ebp),%edx
080483c4: mov %edx,%eax
080483c6: add %eax,%eax
080483¢8: add %edx,%eax

¥ Tasks | [El Problems | @ Executables @ Memory B bB|Ee = B-r3- =0

Test [C/C++ Application] Test

I

e

Here is
1.

A Sl N

It is interesting
all the memory
information. Th

a quick review of all the things you see on this screen:
The code file, test.c

Disassembly of the C program with the corresponding assembly statements.
Registers
Variables

Memory. More information on accessing the right memory locations is given
below.

to observe how a program modifies memory. However, to know where to look in
the computer has, you must first know where your program is storing useful
is is easy to find using disassembly and registers.

First, note that the first line of C code is (highlighted in light green colour on the left)

int a

:2;

Debug - Test/test.c - Eclipse Platform

File Edit Source Refa Search Run Project Window Help
i) e
35 Debug 2 i+ ¥ = B ||®=variables | ® Breakpoints

¥ [c] Test [C/C++ Application]
¥ % /home/student/workspace/Test/Debug/Test [2216] [cores: 0]
¥ o Thread [1] 2216 [core: 0] (Suspended : Breakpoint)
= main() at test.c:2 0x80483ba

»l gdb
[¢l test.c 38 ™ [e] _ libc_start_main() at 0x14c4d3
int main() {
int a = 2;
int b = a * 3;
int ¢ = &a;
b += 5;
return a;
}

I?_—I B console | ¥ Tasks | [Problems | @ Executables | [} Memory £3
= X S* 0xbFFff3d8 : 0OxBFFFF3D8 <Hex> 2
8 - 3 4 -7

Monitors

~ OxbFFFF3ds Address
BFFFF3DO!

8

Name

100

st ebp

Name : ebp

= New Renderings...
- B C-F

E0330408, 00000000 L Ead D3C41460!
— BFFFF3E@, ©1000000; 74F4FFBF, 7CF4FFB

8OFSFFB7;

1010

wti Registers 2

Value
0xbffff3ds

&2 ty #) 12:35AM % Student {%
[| %5 Debug >
=\ Modules =8
B Y

5= outline | =¥ Disassembly 5

Enter location here

» 080483ba:

03
080483c1:
080483c4:
880483¢6:
080483c8:

Description

=0

4

movl $6x2,-@xc(%ebp) =
int b = a * 3;

mov -0xc(%ebp),%edx

mov %edx,%eax

add %eax,%eax

add %edx,%eax =

v

o b [@E

[3 e omg e |l G |&| 85+ ¥ T8

See the disassembly window. Observe the corresponding assembly line (highlighted in light

green colour on the right):

movl $0x2, -0xc (%ebp)

The above line indicates that the program has been compiled such that the variable “a” is stored

in the stack at (EBP-0x0c).

Debug - Test/test.c - Eclipse Platform B = 1t @) 1240AM 1L Student {if
File Edit Source Re Mavigate Search Run Project Window Help
Ciw |3 O Qv | B S P G Ef |4 Debug
%5 Debug 2 il 3 [S i ¥ = O||@=Variables | ® Breakpoints ! Registers £ . =h Modules =g
¥ [&] Test [C/C++ Application] B YT
v .
N | n@,r'home/student!workspaceﬁest/Debungest[23:12] [cores: 0] — e Becanhn A
7 ¥ o Thread [1] 2332 [core: 0] (Suspended : Breakpoint) w0 €SP UXDITITSTE
= main() at test.c:3 0x80483¢1 i ebp OxbFFFF408 -
v gdb v
[¢] test.c 33 ™ [e] _libc_start_main() at Ox14c4d3 = 8| g= outline = Disassembly 2 =g
= int main() { -
= int a = 2; —
- :!'“: b= 2 *3; Enter location here & fy @‘ =
int ¢ = &a;
080483ba: movl $6x2,-8xc(%ebp) -
" b += 5; @3 int b = a * 3;
g return a: » 080483cl: mov -@xc(%ebp),%edx
————— } 080483c4: mov %edx,%eax
F; 080483c6: add %eax,%eax
‘ 080483c8: add %edx,%eax -
v

Ii—l B console | Tasks |[Z Problems | 3 Executables | @ mMemory 5%

<+ 3% %4 OxbFfff3fc: OXBFFFF3FC <Hex> i
Address @ - 3 4 -7
BFFFF3FG] 80F21100, 00OOAOE

- BFFFF400 EG830408 60000000

Monitors

+ OxbFFff3fc

4 New Renderings...
8 -8B G E

@@000@@0. D3C41400

o e oweowe [ogl (gl By ¥ =0

Now, in the Registers tab (see image above), note that the value of EBP is 0x3ff££f408. So we
have to open the location 0x3ffff408 - 0x0c 0x3ffff3cc in memory. In order to do
that, first click on the Memory tab, then click on the green plus (+) icon. Now enter the memory
address in the dialog box that appears as shown below.

Eclipse B & fp @) 12:33AM % Student {1}
File Edit Source Refactor MNavigate Search Run Project Window Help
CHv B |#-0-q|®® o o [epebug) *
3 Debug b P B Y i ¥ = O||e=variables | % Breakpoints | ¥} Registers % . = Modules =0
¥ [&] Test [C/C++ Application] £ B et Y
¥ i /h tudent/work t/Deb! t[2161 10 . =
’_ | i /home/student/workspace/Test/Debug/Test [:] [cores: 0] T T Description
7 ¥ of® Thread [1] 2161 [core: 0] (Suspended : Breakpoint) wresp UAUTTIT oD
= main() at test.c:3 0x80483c1 it ebp 0xbffff3ds] =
wi gdb v
@ Monitor Memory =
[€ test.c 52 Enter address or expression to monitor: = 5| 3= outline = Disassembly 2 =8
7 dint main() { I| -
int a = 2; P
intb=a=*3; Enter location here & (=)
int ¢ = &a;
080483ba: movl $6x2,-0xc(%ebp) -
b += 5; @ Cancel | oK 83 int b=a * 3;
return a; % 080483cl: mov -@xc(%ebp),%edx
080483c4: mov %edx,%eax
080483¢6: add %eax,%eax
080483¢8: add %edx,%eaxr o =
E El console | %] Tasks | [2i Problems |3 Executables | @ b ot |<ts| m (& ¥ =08
Monitors &=
]
e

Debug - Test/test.c - Eclipse Platform B = 1t @) 12z41AM 1L Student {if
File Edit Source Refactor Mavigate Search Run Project Window Help
Civ |3 O Qv | B S P S m [#5Debug| ”
%5 Debug 2 il 3 [S i ¥ = O||@=Variables | ® Breakpoints ! Registers £ . =h Modules =g
¥ [&] Test [C/C++ Application] B YT
v .
’7 | % /home/student/workspace/Test/Debug/Test [2332] [cores: 0] — e Becanhn A
7 ¥ o Thread [1] 2332 [core: 0] (Suspended : Step) w0 €SP UXDITITSTE
= main() at test.c:4 0x80483cd Wt ebp OxbFffFF408 -

v gdb

[l test.c 32 [e] _libc_start_main() at Ox14c4d3

E B console | Tasks |[Z Problems | 3 Executables | @ mMemory 5%

= 8| g= outline = Disassembly 2 =g
-
Enter location here g gl
080483ca: mov %eax, -0x8(%ebp) -
4 int ¢ = &a;
» 080483cd: | lea -@xc(%ebp),%eax
080483d6: mov %eax, -0x4(%ebp)
6 b +=5;
080483d3: addl $0x5,-0x8(%ebp) -

o om oo |l g [By ¥ =0

Monitors 4 % % |OxbFfff3fc: OXBFFFF3FC<Hex> 23 . & New Renderings...
+ OxbFFFf3fc Address @ - 3 E4 -7 8 -8B =C =17
BFFFF3F6] 50F21106] 00900008 E9830408 [FLLIIT]
- BFFFF480 | D3C41400] L

Observe that the contents of the memory address 0x3ffff3ccis 0x00000002. This
corresponds to the first statement in the C program: int a = 2;

Memory addresses are a word long. In this particular example (32 bit x86 processor running
Linux), each word is four bytes long. Therefore the variable a is stored in addresses

0x3ffff3ccto 0x3ffff3cf. Registers such as EBP and EDX are also a word long.

In the image above, you can also see that address 0x3f£££400 is highlighted in red. why is that
so? The next line of this code is as follows

int b = a * 3;

In the Disassembler window, you can see that the corresponding assembly code is:

080483cl: mov -0xc (%ebp) , $edx
080483c4: mov %edx, $eax
080483c6: add %eax, $eax
080483c8: add %edx, $eax

080483ca: mov %eax,-0x8 (%ebp)

(The values ©80483c1 etc. here correspond to the location in memory where the particular
assembly instruction exists.)

As you can see, first we copy (mov) the contents of memory address EBP-0x0c to register
EDX, so EDX has the value 2. We then copy the contents of EDX to EAX. We then add EAX to
EAX, then EDX to EAX. Finally, we copy EAX to EBP-0x08. EBP-0x08 is where the variable b
is stored.

We asked to multiply a by 3 and store in b. Instead, it added a thrice and stored it in b.

This is known as compiler optimization. The compiler (in this case gcc, the GNU C Compiler),
decided that it would be more efficient for this processor to add it thrice, rather than multiply it by
3 once.

Now, let’s revisit the red text. What the debugger is doing is to highlight for us the memory
contents that got changed by the instruction that was just executed. But don’t programs run all at
once? Not in a debugger! Remember we added a breakpoint when we first saw the C program.
The program had stopped at that location (after int a = 2;). Before | took the screenshot, |
selected Run > Step Into from the menu first. This caused the debugger to run the next
statement (int b = a * 3;), highlight in red what changed, and stop again. Now we can
press F5 (the shortcut key for Step Into) and get the next statement to run. On each
statement run, certain registers or memory contents should change.

Eclipse supports various “views”. To go back to code view. Select Run > Terminate from the
menu. Then, click on the >> button on the top right, then click on C/C++.

B = t 1) 822AM L Student I}

B |#5Debug 17
o c N o
— 2 Resource =
Description
D
Enter location here g #wlElel o e ~=0

Working with an Actual Assembly Program

So far, we've looked at the disassembly of a C program. Now let’s write an actual assembly
program.

First, right click on Test inthe Project Explorer and select Close Project. Now, right
click on TestAsm and select Open Project. Double click on the file testasm.S.

From here on, everything is pretty much the same as before. You will see some assembly code.
Go ahead and add a breakpoint. Now Build Al1l, and Run. You should see something like this:

C/C+- TestAsm/testasm.S - Eclipse Platform © 13 ¢) 845AM 2 Student {}

File Edit Source Refactor Navigate Search Run Project Window Help

riv & B @&y Ey Gy R By [y O Qv | ® v 5 ([Bge ”

[Project Explorer % = & ¥ 0[S testasm.S 2 = 0| 8 outlin % @ Make =0

T Test -Szctinlf .dtt? Hello world \a* -
ol - Testasm message: .string "Hello World!\n

LAsh © message
» 4 Binaries .section .text

» @l Includes

N o # this directive allows the linker to see the "main" label
& Debug # which is our entry point

5 .globl main

o main

this directive allows the eclipse gdb to see a function called “main"
.func main

main:

fov $4, %eax

mov $1, %ebx

mov $message, %ecx

mov $14, %edx

int $ex80

mov $8, %eax

£ Problems | Tasks B console 3 " Properties x % B bi[E[E # 8- 13- =0

<terminated> TestAsm [c/C++ Application] [TestAsm (1/27/14 8:45 AM)
Hello World!

- i Wwritable Smartinsert 2:27

Down below in the console, you can see the output: Hel1lo World. Now let’s debug this
program (although there aren’t any real bugs). Go to Run > Debug. Your screen should change
to something like this:

Debug - TestAsm/testasm.S - Eclipse Platform @) 851AM 2 Student
File Edit Navigate Search Run Project Window Help
[milg By 0O Q- | & - & [$pebug
%5 Debug X i3 N o3> i ¥ = B|/®-variables | % Breakpoints | i Registers 53 . =\ Modules 6 B e Y0
v [£] TestAsm [C/C++ Application] Name Value Description A
ViR TestAsm [1968] [cores: 0] 0 ebx 3063796
v . R i
o Thread [1] 1968 [core: 0] (Suspended : Breakpoint) i esp OXbFFFF3be J
= main() at testasm.S:13 0x80483b4 D
»i gdb
[S testasm.s % = B|| & outline | Disassembly 5 =8
.section .data . o n BB = - -
= 0 = nessage: .string "Hello World!\n" Enter location here 28 B
- . 08048336: je 0x80483b1 <frame dummy+33> =
.section .text movl $0x8049f24, (%esp)
call *xeax
s # this directive allows the linker to see the "main” label leave
/ # which is our entry point ret
= .globl main
’ # this directive allows the eclipse gdb to see a function called "main" mnain:
- func main #080483b4: | moV $0x4,%eax
main 14

mov $1, %ebx
SR > nov ss, seax 080483b9: mov $0x1,%ebx
mov $1, %ebx 15 mov $message, %ecx
mov $message, %ecx 080483be: mov $6x804a016,%ecx
mov $14, edx nov 514, %edx
int $0x80 080483c3: mov $6xe,%edx
mov $0, %eax 17 int $ex80
030483cB: int $0x60
18 mov $0, %eax
mov $6x6,%eax
no
__libc_csu_init:
080483d0: push %ebp o

080483c:
080483C

) console | 7 Tasks [Problems | @ Executables | @ Memory &3 ooy we [

Monitors 4 % % 0x804a010; 20, % New

oo (L SRR R LB L
oa04n010 [EEIITIL 6F20576F 726C6421] 0A000G00
08044020, 00000000| 00000000 ©900000D] 00EEOO0O)
08044030, 00000000] 00000000, 00000, 00EEOO0O)
0804AB40, 00000000] 00000000, 8900, 0ABOO0O)
0804A050, 00000000] 00000000, 00000, 00EBOO0O)
0804A060, 00000000| 00000000, 000O000D, 00BOO0O)

A8048878]_nAnanana._nanananal_nnnanannl_annnanan &

The disassembly on the right is pretty clean. Let’s zoom in on that.

= O || 8= Outline (:_- Disassembly %
~ [Enter locationhere ~ @ &] @
080483a6: je 0x80483bl <frame_dummy+33>
080483a8: movl $0x8049f24, (%esp)
080483af: call *%eax
880483b1: leave
880483b2: ret
088483b3: nop
al3 mov $4, %eax
main:
% 080483b4: mov $0x4,%eax
14 mov $1, %ebx
080483b9: mov $8x1,%ebx
15 mov $message, %ecx
080483be: mov $0x804a010,%ecx
16 mov $14, %edx
080483c3: mov $0xe,%edx
17 int $0x80
080483c8: int %@x8e
18 mov %8, %eax
080483ca: mov $0x0,%eax
080483cf: nop
__libc_csu_init:
= 080483d0: push %ebp
'., 10
5 of oy v (o) G

Observe that Smessage has been replaced with 0x804a010. The variable message is actually
nothing but an address in memory where the string “Hello World!\n”is stored. In C
programming we call this a pointer. It is not the value of the pointer that is important... it is what
the pointer points to that is of interest to us. So let’s go look at this memory address:

0x8043010: 0xB04A010 <Hex> &2 4 New Renderings...|

+ R %

Address @ - 3 4 -7 8 -B E.-F

EIBEMAEIlEIé- 6F20576F 72606421 0AODOOOO
EIBEMAEIEEI. 00EEEEEe; 00000000 0OEEEE00; BEEEEOEO
0804A030! 0OQOOOGE; OO00ODEED; OCOOOOGEE; OOGGoOeEA
0804A040; 0OOEO0OGE: OO00ODEEE; O0OEOOGEEG: OOGEEEEA
0804A050] 000ODOOD; OODOOEOOR! CODOOOOG; 0OOOOEOO
0804A060; 000ODO0O; OOOOEOOE; GOOOEOOG: GOBO0E0O
E‘IRE‘I&E‘I?E‘I [STSTaTSTaTATATE] ST TATATATA] [STaTa AT TaTATA] [aTSTaTaTaTaTaTE]

Starting with 0x08042010, you can see the string “Hello World!\n”in all its hexadecimal
glory. Let’s pull up an ASCII chart here to decode what this is. I'll do the easy ones. 0x0804A015
is 0x20, which is a space. 0x0804A01B is 0x21, which is an exclamation mark. 0x0804A01C
is 0x0A, which is a new line character.

Our assembly code seems to be more intuitive or clean as compared to the assembly code
generated by the C compiler. This is one of the reasons sometimes people choose assembly
over high level languages. Observe how the compiler converted a multiplication to three sets of
additions. The compiler is a computer program too, and occasionally does not necessarily
generate the cleanest or most efficient assembly code (we have discussed in class). Where
execution efficiency is of importance, assembly programming is your best bet. Some examples
are Operating System code, code that interacts with external hardware in a time sensitive
manner (think pacemaker or other medical devices), or scientific formulae that must run zillions
of times on a supercomputer (matrix multiplication). A huge amount of mathematical formulae
are handcoded in assembly by expert programs, and licensed at very high cost to run on
supercomputers that predict the weather or help design new drugs.

Writing your own Assembly Program

Now that you are comfortably running the sample programs I've given you, let’s get you started
on your own first project. First, close any projects you've got open.

Go to File > New > C++ Project
Select Empty Project, Linux GCC, and give your project a name. Click on Finish.

Go to Project > Properties > C/C++ Build > Settings from the menu. Click on
GCC Assembler. Under Commandline Patterns, you will see:

${COMMAND} ${FLAGS} ${OUTPUT FLAG} ${OUTPUT PREFIX} ${OUTPUT}
${INPUTS}

Change this to:

${COMMAND} S$S{FLAGS} -g --gstabs ${OUTPUT FLAG} ${OUTPUT PREFIX}
${OUTPUT} S${INPUTS}

This change asks the assembler to include debugging symboils in the compiler binary. This
allows the debugger to step through code.

Now create your first program. Do File > New > Source File. Give your program a name,
remember to end it with . S. That's a capital S, donotputina .s or .asm.

http://www.google.com/url?q=http%3A%2F%2Fweb.cs.mun.ca%2F~michael%2Fc%2Fascii-table.html&sa=D&sntz=1&usg=AFQjCNH1H1WfD0E2L2w2TFYn9BlU5cqq8Q

Now type in your first program, save, build all, fix your compilation errors, and when the build
succeeds, run and debug.

What to do when things don’t work?

Sometimes, Eclipse will get stuck. You might end up closing so windows or move them around,
and then you won’t be able to see your registers any more. Or worse...

Here is how to avoid such problems:

1. Try not to play with Eclipse, yet. It is a finicky bit of software.
2. Remember that you can import the .ova file I've given you, as many times as you wish.
So if things break, just start afresh.
3. If you start afresh, you'll loose all the code you’ve written in the VM. Your options are:
a. Email the code from the /home/student/workspace directory to yourself using the
Firefox browser.
b. VirtualBox allows you to share a directory between your host Operating System
(Windows/Mac) and Linux. Copy all your code to your OS that way.
4. Delete the /home/student/.eclipse and /home/student/eclipse folders in Linux. This will
make Eclipse forget most things and start afresh.

If you'd like to email me, it is best done with a screenshot of your VM. Go to Machine menu in
VirtualBox, and select Take Screenshort. Email the generated PNG file to me.

How to Share files between the VM and your laptop’s host OS

The Internet works within your VM, so you can use the browser to open your email and send and
receive files. In case you want to share files between your VM and your laptop’s host OS
(Windows/Mac), here’s how to do that.

First, in your VM, open the terminal. Type the following:

student@ubuntu:~$ sudo nano /etc/group

The password is student.

At the end of this file, type the following:

vboxsf:x:999:student

How do you go to the end? Just use the down arrow keys. How do you save and exit? Press
Control-o, then Control-x.

Now Shutdown the VM. Click on the gear icon on the top right, and select Shut Down..
Next, in VirtualBox, go to the Settings for this VM. The last option is Shared Folders. In that click

on the little folder-plus icon to the right. Select a Folder Path of your preference, and remember
to check Auto Mount before you hit OK.

~ N A

@ Snapst
New SEttian AssemblyProgramming - Shared Folders
Aees B G B B $ @ 9| & 1
@POWl
. General System Display Storage Audio Network Ports | Shared Folders

B/ | Assem
% Runl Folders List

Name Path Auto-mount | Access @
¥ Machine Folders
neha /Users/neha Yes Full [Fa]
Transient Folders ® 00 TR =
Folder Path: |/User5/nehaj v F

Folder Name: neha

[| Read-only
(v Auto-mount =

[| Make Permanent L ‘

| Cancel | [OK J

{E Audio

Host Driver: CoreAudio
Controller: ICH AC97

= Network
Adapter 1. Intel PRO/1000 MT Desktop (NAT)

That’s it, you're done. Now Start the VM again. Click on the folder icon on the left, then File
System > media. You should see your shared folder there. Make sure you are able to copy
files both from and to this folder.

Home Folder 13) 11:01AM X Student %

Computer
isl Home
K Desktop
@ Documents
(&l Downloads
i Music
\®| Pictures
[videos

& Trash

lost+found

NNk

Network

[Ei Browse Net...

LR

§¥ Get Help ¢ WriteOut
wd Exit a8 Justify

<
E

initrd.img

"media" selected (containing 3 items)

