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Today 

 Basic concepts 

 Implicit free lists 
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Dynamic Memory Allocation  

 Programmers use 
dynamic memory 
allocators (such as 
malloc) to acquire VM 
at run time.  
 For data structures whose 

size is only known at 
runtime. 

 Dynamic memory 
allocators manage an 
area of process virtual 
memory known as the 
heap.  

Heap (via malloc) 

Program text (.text) 

Initialized data (.data) 

Uninitialized data (.bss) 

User stack 

0 

Top of heap 
 (brk ptr) 

Application 

Dynamic Memory Allocator 

Heap 
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Dynamic Memory Allocation 

 Allocator maintains heap as collection of variable sized 
blocks, which are either allocated or free 

 Types of allocators 
 Explicit allocator:  application allocates and frees space  

 E.g.,  malloc and free in C 

 Implicit allocator: application allocates, but does not free space 

 E.g. garbage collection in Java, ML, and Lisp 

 

 Will discuss simple explicit memory allocation today 



3 

Carnegie Mellon 

5 

CS 47 Spring 2014 

The malloc Package 
#include <stdlib.h> 

void *malloc(size_t size) 

 Successful: 

 Returns a pointer to a memory block of at least size bytes 
(typically) aligned to 8-byte boundary 

 If size == 0, returns NULL 

 Unsuccessful: returns NULL (0) and sets errno 

void free(void *p) 

 Returns the block pointed at by p to pool of available memory 

 p must come from a previous call to malloc or realloc 

Other functions 

 calloc: Version of malloc that initializes allocated block to zero.  

 realloc: Changes the size of a previously allocated block. 

 sbrk: Used internally by allocators to grow or shrink the heap 
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malloc Example 

void foo(int n, int m) { 

    int i, *p; 

   

    /* Allocate a block of n ints */ 

    p = (int *) malloc(n * sizeof(int)); 

    if (p == NULL) { 

        perror("malloc"); 

        exit(0); 

    } 

   

    /* Initialize allocated block */ 

    for (i=0; i<n; i++)  

        p[i] = i; 

 

   

    /* Return p to the heap */ 

    free(p);  

} 
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Assumptions Made in This Lecture 

 Memory is word addressed (each word can hold a 
pointer) 

Allocated block 
(4 words) 

Free block 
(3 words) Free word 

Allocated word 
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Allocation Example 

p1 = malloc(4) 

p2 = malloc(5) 

p3 = malloc(6) 

free(p2) 

p4 = malloc(2) 
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Constraints 

 Applications 
 Can issue arbitrary sequence of malloc and free requests 

 free request must be to a malloc’d  block 

 
 Allocators 

 Can’t control number or size of allocated blocks 

 Must respond immediately to malloc requests 

 i.e., can’t reorder or buffer requests 

 Must allocate blocks from free memory 

 i.e., can only place allocated blocks in free memory 

 Must align blocks so they satisfy all alignment requirements 

 8 byte alignment for GNU malloc (libc malloc) on Linux boxes 

 Can manipulate and modify only free memory 

 Can’t move the allocated blocks once they are malloc’d 

 i.e., compaction is not allowed 
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Performance Goal: Throughput 

 Given some sequence of malloc and free requests: 

  R0, R1, ..., Rk, ... , Rn-1 

 

 Goals: maximize throughput and peak memory utilization 
 These goals are often conflicting 

 

 Throughput: 
 Number of completed requests per unit time 

 Example: 

 5,000  malloc calls and 5,000 free calls in 10 seconds  

 Throughput is 1,000 operations/second 
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Performance Goal: Peak Memory Utilization 

 Given some sequence of malloc and free requests: 
  R0, R1, ..., Rk, ... , Rn-1 

 Def: Aggregate payload Pk  
  malloc(p) results in a block with a payload of p bytes 

 After request Rk has completed, the aggregate payload Pk  is the sum of 
currently allocated payloads 

 Def: Current heap size Hk 

 Assume Hk is monotonically nondecreasing 

 i.e., heap only grows when allocator uses sbrk 

 Def: Peak memory utilization after k requests  
 Uk = ( maxi<k Pi )  /  Hk 
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Fragmentation 

 Poor memory utilization caused by fragmentation 
 internal fragmentation 

 external fragmentation 
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Internal Fragmentation 

 For a given block, internal fragmentation occurs if payload is 
smaller than block size 

 

 

 

 

 

 

 Caused by  

 Overhead of maintaining heap data structures 

 Padding for alignment purposes 

 Explicit policy decisions  
(e.g., to return a big block to satisfy a small request) 

 Depends only on the pattern of previous requests 
 Thus, easy to measure 

Payload 
Internal  
fragmentation 

Block 

Internal  
fragmentation 
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External Fragmentation 

 Occurs when there is enough aggregate heap memory, 
but no single free block is large enough 

 

 

 

 

 

 

 

 

 Depends on the pattern of future requests 
 Thus, difficult to measure 

 

p1 = malloc(4) 

p2 = malloc(5) 

p3 = malloc(6) 

free(p2) 

p4 = malloc(6) Oops! (what would happen now?) 
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Implementation Issues 

 How do we know how much memory to free given just a 
pointer? 

 

 How do we keep track of the free blocks? 

 

 What do we do with the extra space when allocating a 
structure that is smaller than the free block it is placed in? 

 

 How do we pick a block to use for allocation -- many 
might fit? 

 

 How do we reinsert freed block? 
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Knowing How Much to Free 

 Standard method 
 Keep the length of a block in the word preceding the block. 

 This word is often called the header field or header 

 Requires an extra word for every allocated block 

p0 = malloc(4) 

p0 

free(p0) 

block size data 

5 
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Keeping Track of Free Blocks 

 Method 1: Implicit list using length—links all blocks 

 

 

 

 Method 2: Explicit list among the free blocks using pointers 

 
 

 
 Method 3: Segregated free list 

 Different free lists for different size classes 

 

 Method 4: Blocks sorted by size 
 Can use a balanced tree (e.g. Red-Black tree) with pointers within each 

free block, and the length used as a key 

5 4 2 6 

5 4 2 6 
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Today 

 Basic concepts 

 Implicit free lists 
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Method 1: Implicit List 

 For each block we need both size and allocation status 
 Could store this information in two words: wasteful! 

 Standard trick 
 If blocks are aligned, some low-order address bits are always 0 

 Instead of storing an always-0 bit, use it as a allocated/free flag 

 When reading size word, must mask out this bit 

Size 

1 word 

Format of 
allocated and 
free blocks 

Payload 

a = 1: Allocated block   
a = 0: Free block 
 
Size: block size 
 
Payload: application data 
(allocated blocks only) 
 

a 

Optional 
padding 
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Detailed Implicit Free List Example 

Start  
of  

heap 

Double-word 
aligned 

8/0 16/1 16/1 32/0 

Unused 

0/1 

Allocated blocks: shaded 
Free blocks: unshaded 
Headers: labeled with size in bytes/allocated bit 
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Implicit List: Finding a Free Block 
 First fit: 

 Search list from beginning, choose first free block that fits: 

 

 

 

 

 

 Can take linear time in total number of blocks (allocated and free) 

 In practice it can cause “splinters” at beginning of list 

 Next fit: 

 Like first fit, but search list starting where previous search finished 

 Should often be faster than first fit: avoids re-scanning unhelpful blocks 

 Some research suggests that fragmentation is worse 

 Best fit: 

 Search the list, choose the best free block: fits, with fewest bytes left over 

 Keeps fragments small—usually helps fragmentation 

 Will typically run slower than first fit 

p = start;  

while ((p < end) &&     \\ not passed end 

       ((*p & 1) ||     \\ already allocated 

       (*p <= len)))    \\ too small  

  p = p + (*p & -2);    \\ goto next block (word addressed) 
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Implicit List: Allocating in Free Block 

 Allocating in a free block: splitting 
 Since allocated space might be smaller than free space, we might want 

to split the block 

void addblock(ptr p, int len) { 

  int newsize = ((len + 1) >> 1) << 1;  // round up to even 

  int oldsize = *p & -2;                // mask out low bit 

  *p = newsize | 1;                     // set new length 

  if (newsize < oldsize) 

    *(p+newsize) = oldsize - newsize;   // set length in remaining 

}                                       //   part of block 

4 4 2 6 

4 2 4 

p 

2 4 

addblock(p, 4) 
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Implicit List: Freeing a Block 

 Simplest implementation: 
 Need only clear the “allocated” flag 

  void free_block(ptr p) { *p = *p & -2 } 

 

 But can lead to “false fragmentation”  

 

 

 

 

 

 

 

4 2 4 2 4 

free(p) p 

4 4 2 4 2 

malloc(5) Oops! 

There is enough free space, but the allocator won’t be able to find it 
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Implicit List: Coalescing 

 Join (coalesce) with next/previous blocks, if they are free 
 Coalescing with next block 

    

 

 

 

 

 

 

 

 

 

 But how do we coalesce with previous block? 

void free_block(ptr p) { 

    *p = *p & -2;          // clear allocated flag 

    next = p + *p;         // find next block 

    if ((*next & 1) == 0) 

      *p = *p + *next;     // add to this block if 

}                          //    not allocated 

4 2 4 2 

free(p) p 

4 4 2 

4 

6 2 

logically 
gone 
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Implicit List: Bidirectional Coalescing  
 Boundary tags [Knuth73] 

 Replicate size/allocated word at “bottom” (end) of free blocks 

 Allows us to traverse the “list” backwards, but requires extra space 

 Important and general technique! 

Size 

Format of 
allocated and 
free blocks 

Payload and 
padding 

a = 1: Allocated block   
a = 0: Free block 
 
Size: Total block size 
 
Payload: Application data 
(allocated blocks only) 
 

a 

Size a Boundary tag 
(footer) 

4 4 4 4 6 4 6 4 

Header 
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Constant Time Coalescing 

Allocated 

Allocated 

Allocated 

Free 

Free 

Allocated 

Free 

Free 

Block being 
freed 

Case 1 Case 2 Case 3 Case 4 
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m1 1 

Constant Time Coalescing (Case 1) 

m1 1 

n 1 

n 1 

m2 1 

m2 1 

m1 1 

m1 1 

n 0 

n 0 

m2 1 

m2 1 
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m1 1 

Constant Time Coalescing (Case 2) 

m1 1 

n+m2 0 

n+m2 0 

m1 1 

m1 1 

n 1 

n 1 

m2 0 

m2 0 
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m1 0 

Constant Time Coalescing (Case 3) 

m1 0 

n 1 

n 1 

m2 1 

m2 1 

n+m1 0 

n+m1 0 

m2 1 

m2 1 
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m1 0 

Constant Time Coalescing (Case 4) 

m1 0 

n 1 

n 1 

m2 0 

m2 0 

n+m1+m2 0 

n+m1+m2 0 



16 

Carnegie Mellon 

31 

CS 47 Spring 2014 

Disadvantages of Boundary Tags 

 Internal fragmentation 

 

 Can it be optimized? 
 Which blocks need the footer tag? 

 What does that mean? 
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Summary of Key Allocator Policies 
 Placement policy: 

 First-fit, next-fit, best-fit, etc. 

 Trades off lower throughput for less fragmentation  

 Interesting observation: segregated free lists (next lecture) 
approximate a best fit placement policy without having to search 
entire free list 

 Splitting policy: 
 When do we go ahead and split free blocks? 

 How much internal fragmentation are we willing to tolerate? 

 Coalescing policy: 
 Immediate coalescing: coalesce each time free is called  

 Deferred coalescing: try to improve performance of free by deferring 
coalescing until needed. Examples: 

 Coalesce as you scan the free list for malloc 

 Coalesce when the amount of external fragmentation reaches 
some threshold 
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Implicit Lists: Summary 
 Implementation: very simple 
 Allocate cost:  

 linear time worst case 

 Free cost:  
 constant time worst case 

 even with coalescing 

 Memory usage:  
 will depend on placement policy 

 First-fit, next-fit or best-fit 

 

 Not used in practice for malloc/free because of linear-
time allocation 
 used in many special purpose applications 

 

 However, the concepts of splitting and boundary tag 
coalescing are general to all allocators 


