
Math 590 - Exam 1 Solutions

Directions: Show all your work on these papers. Use the back if you run out of space.
If you’re running out of time, try to indicate what should be done on the uncompleted
problems. For instance, just leave Ax as it is, instead of multiplying it out.

I: Defintions:

1. The set of vectors {e1, e2, . . . , ek} ⊂ V is linearly dependent if ∃c1, . . . , ck, not all 0,
such that

∑
ciei = 0.

2. The set of vectors {e1, e2, . . . , ek} ⊂ V forms a basis for V if the set is linearly inde-
pendent and spans V .

3. If V and W are vector spaces, a function T : V → W is a linear transformation if
T (cu + v) = cT (u) + T (v) ∀u, v ∈ V, c ∈ F.

4. The linear transformation T : V → W is an isomorphism if it’s 1-1 and onto. Equiva-
lently, ∃U : W → V such that UT = IV , TU = IW .

5. The span of the set {e1, e2, . . . , ek} ⊂ V is the set of all linear combinations of elements
of the set.

II: Mostly computation

1. If T : V → W is linear, show that R(T ) is a subspace of W .

Let y1, y2 ∈ R(T ), c ∈ F. We need to show that cy1+y2 ∈ R(T ). ∃x1, x2 ∈ V such that Txi =
yi (because the y′s are in the range). Therefore cy1 + y2 = cTx1 + Tx2 = T (cx1 +
x2) (linearity of T). Done...

2. Let T : P2(R) → P3(R) be given by (Tf)(x) = x3f ′′(x) − 2xf ′(x) + f(x). You may
assume T is linear. What is the rank of T? What is the nullity of T?

We have T1 = 1; Tx = −x; Tx2 = 2x3 − 3x2. These are linearly independent (look
at the degrees) so rank(T) = 3. By the dimension theorem, nullity(T) = 0.

3. Let

e1 =

(
1
−2

)
, e2 =

(
−1

1

)
be a basis for R2. Find the coordinates of v = (3, 4) in this basis.

If v = c1e1 + c2e2, then we get the equations c1− c2 = 3; −2c1 + c2 = 4. The solutions
are c1 = −7, c2 = −10.

If f1 = 3e1 − e2, f2 = e1 + 2e2, find the coordinates of the same vector v in the basis
{f1, f2}.
We have F = EP , where

P =

(
3 1
−1 2

)
, and vF = P−1vE = (1/7)

(
2 −1
1 3

)(
−7
−10

)
=
−1

7

(
4

37

)
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4. Let {e1, e2}, {f1, f2} be the same as in problem (3) above. Suppose the linear tranfor-
mation T : R2 → R2 is defined by

Te1 = e1 + 2e2, T e2 = 2e1 + e2,

and extending by linearity. Find the matrix representation A of T in the basis {e1, e2}.
Then find the matrix representation of T in the basis {f1, f2}.

A =

(
1 2
2 1

)
; B = P−1AP = (1/7)

(
−3 6
16 17

)

III: (True/False): You must give a reason for your answer!

1. If T : V → W is linear and 1-1, then T is onto.

False: for instance, (x, y)→ (x, y, 0) is 1-1 but not onto, and it’s linear.

2. If dim(V ) = dim(W ) = k (finite) and T : V → W is onto, then T is 1-1.

True: if T is onto, then rank(T) = k, so dim(N(T)) = 0 and therefore T is 1-1.

3. The range of the linear transformation LA : Rn → Rm is the space generated by the
columns of the matrix A.

True: If y = Ax, so y is in the range, then y =
∑

i xicoli(A).

4. If the Gauss-Jordan form of the matrix A has a row of zeros, then the null space of A
has dimension ≥ 1.

False: for example

A =

 1 0
0 1
0 0


is in Gauss-Jordan form and has N(T ) = {0}.

IV: Do one of the following:

1. Suppose T : V → W is linear and {f1, f2, . . . , fk} is a basis for R(T ). Let {e1, e2, . . . , ek}
be vectors in V such that Tei = f1, for 1 ≤ i ≤ k.

(a) Show that the set {e1, e2, . . . , ek} is linearly independent.

If
∑

i ciei = 0, then T (
∑

i ciei) =
∑

i cifi = 0 ⇒ c1 = · · · = ck = 0 (because the
f’s are lin. ind). So this means all the c′s vanish and the e’s are lin ind.

(b) Suppose there exists a vector v ∈ V , which is not in the span{e1, . . . , ek}. Show
that there exist constants c1, . . . , ck such that v −

∑k
i=1 ciei belongs to N(T ).

Given v, we must have Tv = R(T )⇒ Tv =
∑

i cifi for some coefficients ci. Then
Tv = T (

∑
i ciei)⇒ T (v −

∑
i ciei) = 0⇒ v −

∑
i ciei ∈ N(T ).
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2. Suppose that {e1, . . . , en} and {f1, . . . , fm} are both bases for the vector space V . Show
that m = n.

Suppose not, and that m < n. We’ll show that {e1, e2, . . . , en} must be linearly depen-
dent and therefore not a basis. Similar reasoning will apply if n < m leaving m = n
as the only possibility.

Since the fi are a basis, we may write e1 = a1f1 + · · · + amfm for some coefficients
ai, not all of which are 0. By renumbering if necessary, we may suppose that a1 6= 0.
Then we can solve algebraically for f1 as a linear combination of {e1, f2, f3, ..., fm}.
This set, which contains m vectors, is a basis: f1 is a lin. comb. of all these, so the
span of this set includes all the fi, so it spans V . And it’s linearly independent, since
any lin. comb. of e1, f2, ...fm can be converted into a lin. comb. of f1, f2, ..., fm and
therefore vanishes ⇐⇒ all coefficients vanish.

We then repeat the argument, replacing f2 (possibly renumbered) with e2, again ob-
taining a basis for V . Continue along until we have the set of m vectors {e1, e2, . . . , em}
as a basis for V . It then follows that em+1, . . . , en are in the span of these m vectors,
and so the n vectors are linearly dependent, hence not a basis, as claimed.

3. If A is m× n, and Pm×m and Qn×n are both invertible, then rank(PAQ) = rank(A).

We consider the linear transformation LA : F n → Fm. First, look at AQ or LALQ.
LQ is an isomorphism of F n, so LQ(F n) = F n (as sets). Therefore, rank(LAQ) =
rank(LA)⇒ rank(AQ) = rank(A).

Next consider PA or LPLA. Since LP is an isomorphism it maps the range of A
onto a set of the same dimension (even though it doesn’t preserve the range). So
rank(PA) = rank(A). Combining these two gives the result.

Remark: There are undoubtedly other ways to do these problems....
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