
The Spectral Theorem and some related topics

Throughout these notes, T denotes a self-adjoint (T ∗ = T ) linear transformation on V , an
n-dimensional inner product space (i.p.s.) over C.

Prop. 1: Let {e1, . . . , en} be any orthonormal basis for V . Then the matrix representative
of T in this basis is self-adjoint in the sense that A∗ = A.

Proof: By definition, Tei =
∑

j ajiej. So

< Tei, ek > =<
∑
j

ajiej, ek >

=
∑
j

aji < ej, ek > =
∑
j

ajiδjk = aki

< Tei, ek > = < ei, Tek > (T ∗ = T )

= < ei,
∑
m

amkem > =
∑
m

āmk < ei, em >

=
∑
m

āmkδim = āik

So aki = āik and A∗ = A �

Prop. 2: Let W be any subspace of V and let ΠW : V → W be the orthogonal projection
of V onto W . Then ΠW is self-adjoint.

♣ Exercise: Proof: Hint: Show that < ΠWx,y > = < x,ΠWy >, ∀x,y ∈ V , so that we
must have ΠW = ΠW

∗ (why?)

We’ve already shown that the eigenvalues of T are real, and that the eigenspaces corre-
sponding to distinct eigenvalues are mutually orthogonal: Eλ1 ⊥ Eλ2 if λ1 6= λ2. By the
fundamental theorem of algebra, pT (λ) splits over C.

Theorem: Any self-adjoint linear transformation can be diagonalized by a unitary matrix
(U−1 = U∗). (Alternatively, there exists an orthonormal basis in which the matrix of T is
diagonal, or an orthonormal basis of eigenvectors. These are all equivalent characterizations.)

Proof: By induction on the dimension of V . If dim(V ) = 1, then there’s an eigenvalue λ0,
since pT (λ) = λ0 − λ. So Tv = λ0v. Take any unit vector for a basis.

Suppose the result holds for any i.p.s. of dimension k and let dim(V ) = k + 1. If T is
self-adjoint, find an eigenvalue; call it λ1 and a unit eigenvector e1. Let W = span{e1},
and consider the space W⊥. We know that V = W ⊕W⊥, so dim(W⊥) = k. Since W is
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T -invariant, so is W⊥: If v ∈ W⊥ and w ∈ W, then w = ce1. So

< Tv,w > =< v, Tw >

= λ1 < v,w >= 0 (λ1 ∈ R)

⇒ Tv ⊥ W.

Since W⊥ is T -invariant, and T = T ∗, it follows that TW⊥ is self-adjoint, and we can apply
the induction hypothesis - there exists an orthonormal basis {e2, . . . , ek+1} for W⊥ in which
TW⊥ is diagonal. So in the full orthonormal basis {e1, . . . , ek+1}, T is diagonal. This proves
the theorem.

If we put U =
(
e1|e2| · · · |en

)
, where the vectors are given in the coordinates of the original

basis in which T is represented by A, then we have, in the usual way, U∗AU = D, where D
is a diagonal matrix whose entries are the eigenvalues of T , with each appearing as many
times as its multiplicity �

Example: Let

A =

(
1 i
−i 1

)
.

Clearly, A = A∗. pA(λ) = λ(λ − 2), so λ1 = 0, λ2 = 2. We easily find that corresponding
eigenvectors are

v1 =

(
i
−1

)
, and v2 =

(
i
1

)
.

We compute < v1,v2 >= v∗2v1 = (−i, 1)

(
i
−1

)
= 0, so the eigenvectors are orthogonal.

They are each of length
√

2, so we have the orthonormal basis

e1 =
1√
2

(
i
−1

)
, and e2 =

1√
2

(
i
1

)
.

You should check that if U =
(
e1|e2

)
, then

U∗AU =

(
0 0
0 2

)
.

Now, in the same situation as in the theorem, suppose there are k distinct eigenvalues with
multiplicities mk. Then renumber the eigenvectors so that the first m1 are the orthonormal
basis of Eλ1 , the next m2 form an orthonormal basis of Eλ2 and so on. This of course changes
the matrix U by permuting its columns. We will still call it U . In the reordered basis, we
then have

U∗AU =


λ1Im1 0 · · · 0

0 λ2Im2 · · · 0
...

...
. . . 0

0 0 · · · λkImk

 ,

where the “0”s are block matrices of zeros with the appropriate dimension.
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Notice that the orthogonal projection onto Eλ1 is given by

Πλ1(v) =

m1∑
i=1

< v, ei > ei

independent of the basis for V . In the orthonormal basis U , this projection just picks off the
first m1 components of the vector v, so that, in this basis, the matrix representation of Πλ1

is just the n×n matrix with Im1 in the upper left hand block and zeros everywhere else. The
matrix of TEλ1 in the basis {e1, . . . , , em1} is just λ1Im1 , and this is true for each i, 1 ≤ i ≤ k.
In terms of the linear transformations themselves, rather than their matrix representatives,
we have

Cor. 1: The identity transformation on V can be expressed as I =
∑k

i=1 Πλi where Πλi is
the orthogonal projection onto the eigenspace Eλi . This is sometimes called the “resolution
of the identity” corresponding to the self-adjoint transformation T .

Cor.2: (The spectral theorem) Let T be a self-adjoint linear transformation on V . Then V
is the orthogonal direct sum of the eigenspaces of T and T = λ1Πλ1 + λ2Πλ2 + · · ·+ λkΠλk .

Remarks on the case F = R:

Everything is still true. T is self-adjoint in this case means that in any orthonormal basis,
its matrix representative is symmetric: At = A. The matrix U in the theorem is now real,
so U = Ū , and U t = U−1. A matrix with this property is said to be orthongonal. So the
corresponding results in this case are

1. Any self-adjoint linear transformation on a finite-dimensional real inner product space
can be diagonalized by an orthogonal matrix.

2. The resolution of the identity and the spectral theorem are the same.

Commuting operators: Suppose T is self-adjoint, as above, and the eigenvalues λi have
multiplicites mi > 1. In the physical sciences, multiplicities are known as degeneracies. For
instance, the possible values of the energy of a bound electron in the hydrogen atom are
all degenerate. Sometimes, it’s possible to “resolve” the degeneracies by introducing one or
more additional self-adjoint operators which commute with T . We illustrate the process for
one such operator S.

So suppose S and T are two self-adjoint operators satisfying TS = ST (i.e., they commute
under multiplication; recall that this is not the case for most operators). Now suppose we’ve
decomposed V into the mutually orthogonal sum of eigenspaces of T , as above. Let λ be an
eigenvalue of T and v ∈ Eλ, the corresponding eigenspace. We then have
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T (S(v)) = S(T (v)) = S(λv) = λS(v).

So Sv ∈ Eλ if v ∈ Eλ. And this means that Eλ, an eigenspace of T , is invariant under S as
well. This does not mean that Eλ is an eigenspace of S, only that it’s S-invariant. But since
S = S∗, the characteristic polynomial of SEλ splits over R, and by the spectral theorem, we
can write Eλ as the orthogonal direct sum

Eλ = Eλ|µ1 ⊕ Eλ|µ2 ⊕ · · · ⊕ Eλ|µj ,

where µ1, . . . , µj are the different eigenvalues of SEλ and the sum of the multiplicities of the
eigenvalues µ1, . . . , µj equals the dimension of Eλ

So at this point, it’s natural to replace the original orthonormal basis for Eλ with orthonormal
eigenvectors in each S-eigensubspace. In this new basis, which is still orthonormal, instead
of (say) k arbitrary o.n. vectors spanning Eλ, we’ll have for each i, nµi eigenvectors which
are orthonormal, and are in Eλ(T ) ∩ Eµi(S). So if the eigenvalues of T are {λj} and those
of S are {µi}, we have a decomposition of V into the mutually orthogonal eigenspaces
Eλj(T ) ∩ Eµi(S). We say that T and S can be simultaneously diagonalized. Depending on
T, S, and V , there may still be joint eigenspaces with dimension > 1. If so, one can try to
find a third self-adjoint operator R, which commutes with the other two, and further refine
the eigenspaces into things like Eλi(T ) ∩ Eµj(S) ∩ Eνk(R). If, at some point, we arrive at
a situation in which all of the joint eigenspaces have dimension 1, then we say we have a
complete set of commuting operators.

Example (simple): Let T have the matrix

A =


2 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1


where the orthonormal basis has already been chosen to diagonalize T , and in this same
basis, let S have the matrix

B =


1 2 0 0
2 1 0 0
0 0 2 −3
0 0 −3 2


Both eigenvalues of T are twofold degenerate. It is easily checked that both A and B are
self-adjoint (symmetric, in this case), and that AB = BA. The eigenspace E2(T ) is spanned
by {e1, e2}, and for any vector v ∈ E2 with coordinates (a, b, 0, 0), Bv = 2v ∈ E2(T ). So,
as advertised, E2(T ) is S-invariant, and SE2(T ) has the matrix

B1 =

(
1 2
2 1

)
,
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with characteristic polynomial λ2 − 2λ− 3, eigenvalues µ1 = 3, µ2 = −1, and corresponding
unit eigenvectors

ê1 =
1√
2

(
1
1

)
, and ê2 =

1√
2

(
1
−1

)
.

Both these vectors lie in E2(T ), so if we replace the original {e1, e2}, the matrix representa-
tion of T , namely A, is unchanged, while the upper 2× 2 block of the matrix representation
of S is now given by (

3 0
0 −1

)
.

♣ Exercise: Complete the process for the lower right 2× 2 block

B2 =

(
2 −3
−3 2

)
,

and find orthonormal vectors ê3, ê4 so that in the basis {ê1, ê2, ê3, ê4}, the matrix of T is
given by A, while that of S is given by

B̂ =


3 0 0 0
0 −1 0 0
0 0 5 0
0 0 0 −1

 .

So this is an orthonormal basis in which both linear transformations are simultaneously
diagonalized. Each common one-dimensional eigenspace is uniquely labelled by a pair of
eigenvalues: Physicists and chemists would write something like

ê1 = |2, 3 >
ê2 = |2,−1 >

ê3 = |1, 5 >
ê4 = |1,−1 >
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