The Spectral Theorem and some related topics

Throughout these notes, T' denotes a self-adjoint (7* = T') linear transformation on V', an
n-dimensional inner product space (i.p.s.) over C.

Prop. 1: Let {ey,...,e,} be any orthonormal basis for V. Then the matrix representative
of T in this basis is self-adjoint in the sense that A* = A.

PRrROOF: By definition, Te; = Zj ajie;. So

< Tei,ek > =< Zaﬁej,ek >
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So ay; = a;; and A*=A N

Prop. 2: Let W be any subspace of V and let Ily, : V' — W be the orthogonal projection
of V onto W. Then Il is self-adjoint.

& Exercise: Proor: Hint: Show that < Iyx,y > = < x,IIyy >, Vx,y € V, so that we
must have ITy, = Iy (why?)

We’ve already shown that the eigenvalues of T are real, and that the eigenspaces corre-
sponding to distinct eigenvalues are mutually orthogonal: E,, L E), if Ay # Ao. By the
fundamental theorem of algebra, pr(A) splits over C.

THEOREM: Any self-adjoint linear transformation can be diagonalized by a unitary matrix
(U™' = U*). (Alternatively, there exists an orthonormal basis in which the matrix of 7' is
diagonal, or an orthonormal basis of eigenvectors. These are all equivalent characterizations.)

PRrROOF: By induction on the dimension of V. If dim(V') = 1, then there’s an eigenvalue g,
since pr(A) = Ao — A. So T'v = A\gv. Take any unit vector for a basis.

Suppose the result holds for any i.p.s. of dimension k and let dim(V) = k£ + 1. If T is
self-adjoint, find an eigenvalue; call it A\; and a unit eigenvector e;. Let W = span{e;},
and consider the space W+. We know that V = W & W+, so dim(W+) = k. Since W is



T-invariant, so is W+: If v € W+ and w € W, then w = ce;. So

<Tv,w>=<v,Tw >
:)\1<V,W>:O<)\1€R)
=Tv LW

Since W+ is T-invariant, and 7' = T*, it follows that T}, . is self-adjoint, and we can apply
the induction hypothesis - there exists an orthonormal basis {es, ..., ey} for W= in which
Ty is diagonal. So in the full orthonormal basis {ey,...,ex1}, T is diagonal. This proves
the theorem.

If we put U = (eq]es| - - - e,,), where the vectors are given in the coordinates of the original
basis in which T is represented by A, then we have, in the usual way, U*AU = D, where D
is a diagonal matrix whose entries are the eigenvalues of 7', with each appearing as many

times as its multiplicity
1 4
(1),

Clearly, A = A*. pa(\) = AM(A —2), 80 \y =0, Ay = 2. We easily find that corresponding

eigenvectors are
1 1
Vlz(_l), andv2:(1>.

i
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They are each of length /2, so we have the orthonormal basis

-

You should check that if U = (elleg), then

e (00
= (00,

Now, in the same situation as in the theorem, suppose there are k distinct eigenvalues with
multiplicities m,. Then renumber the eigenvectors so that the first m; are the orthonormal
basis of F),, the next my form an orthonormal basis of E, and so on. This of course changes
the matrix U by permuting its columns. We will still call it U. In the reordered basis, we
then have

ExXAMPLE: Let

We compute < vi,vy >= vivy = (—i, 1) ( B ) = 0, so the eigenvectors are orthogonal.

M, 0 0
0 Molp, - 0
: : . 0
0 0 o Al

where the “0”s are block matrices of zeros with the appropriate dimension.
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Notice that the orthogonal projection onto F), is given by
m1

I, (v) = Z <v,e > €
i=1

independent of the basis for V. In the orthonormal basis U, this projection just picks off the
first m; components of the vector v, so that, in this basis, the matrix representation of II,,
is just the n x n matrix with 7,,,, in the upper left hand block and zeros everywhere else. The
matrix of T, in the basis {ei,...,, ey, } is just A1, and this is true for each 7,1 <14 < k.
In terms of the linear transformations themselves, rather than their matrix representatives,
we have

COR. 1: The identity transformation on V can be expressed as [ = Zle IT,, where II,, is
the orthogonal projection onto the eigenspace E),. This is sometimes called the “resolution
of the identity” corresponding to the self-adjoint transformation 7.

COR.2: (The spectral theorem) Let T be a self-adjoint linear transformation on V. Then V'
is the orthogonal direct sum of the eigenspaces of 7" and T" = A\ 11, + oIy, + - - + Aglly, .

REMARKS ON THE CASE F = R:

Everything is still true. T is self-adjoint in this case means that in any orthonormal basis,
its matrix representative is symmetric: A® = A. The matrix U in the theorem is now real,
so U = U, and U* = U~'. A matrix with this property is said to be orthongonal. So the
corresponding results in this case are

1. Any self-adjoint linear transformation on a finite-dimensional real inner product space
can be diagonalized by an orthogonal matrix.

2. The resolution of the identity and the spectral theorem are the same.

Commuting operators: Suppose 7' is self-adjoint, as above, and the eigenvalues \; have
multiplicites m; > 1. In the physical sciences, multiplicities are known as degeneracies. For
instance, the possible values of the energy of a bound electron in the hydrogen atom are
all degenerate. Sometimes, it’s possible to “resolve” the degeneracies by introducing one or
more additional self-adjoint operators which commute with 7. We illustrate the process for
one such operator S.

So suppose S and T" are two self-adjoint operators satisfying 7'S = ST (i.e., they commute
under multiplication; recall that this is not the case for most operators). Now suppose we've
decomposed V into the mutually orthogonal sum of eigenspaces of T', as above. Let A be an
eigenvalue of 7" and v € F), the corresponding eigenspace. We then have



T(S(v)) = S(T(v)) = S(Av) = AS(v).

So Sv € F, if v € E). And this means that F), an eigenspace of T, is invariant under S as
well. This does not mean that F) is an eigenspace of S, only that it’s S-invariant. But since
S = 5%, the characteristic polynomial of Sg, splits over R, and by the spectral theorem, we
can write F) as the orthogonal direct sum

By = Exjp © Exjpy @ -+ © By,

where p1, ..., pu; are the different eigenvalues of Sg, and the sum of the multiplicities of the
eigenvalues ji1, ..., t; equals the dimension of Ey

So at this point, it’s natural to replace the original orthonormal basis for E\ with orthonormal
eigenvectors in each S-eigensubspace. In this new basis, which is still orthonormal, instead
of (say) k arbitrary o.n. vectors spanning E, we’ll have for each i, n,, eigenvectors which
are orthonormal, and are in E\(T) N E,,(S). So if the eigenvalues of T" are {\;} and those
of S are {u;}, we have a decomposition of V' into the mutually orthogonal eigenspaces
Ey,(T) N E,,(S). We say that T and S can be simultaneously diagonalized. Depending on
T,S, and V, there may still be joint eigenspaces with dimension > 1. If so, one can try to
find a third self-adjoint operator R, which commutes with the other two, and further refine
the eigenspaces into things like £y, (7)) N £, (S) N E,, (R). If, at some point, we arrive at
a situation in which all of the joint eigenspaces have dimension 1, then we say we have a
complete set of commuting operators.

Example (simple): Let 7" have the matrix

S OO N
S O N O
O = O O
_ o O O

where the orthonormal basis has already been chosen to diagonalize T, and in this same
basis, let S have the matrix

12 0 O
21 0 0
b= 00 2 -3
00 -3 2

Both eigenvalues of T are twofold degenerate. It is easily checked that both A and B are
self-adjoint (symmetric, in this case), and that AB = BA. The eigenspace FEy(T') is spanned
by {e1, e}, and for any vector v € Fy with coordinates (a,b,0,0), Bv = 2v € Ey(T). So,
as advertised, E»(T') is S-invariant, and Sg,(r) has the matrix

1 2
B1:<21)7



with characteristic polynomial A\ — 2\ — 3, eigenvalues p; = 3, s = —1, and corresponding

unit eigenvectors
1 1 do6, — 1 1
e = E 1 , anda eg = E _1 .

Both these vectors lie in Ey(T), so if we replace the original {e;, es}, the matrix representa-
tion of 7', namely A, is unchanged, while the upper 2 x 2 block of the matrix representation

of S is now given by
3 0
0 -1 )°

& Exercise: Complete the process for the lower right 2 x 2 block

2 -3
BQ_(_?) 2)7

and find orthonormal vectors €3, €, so that in the basis {€;, €,,€3,64}, the matrix of T is
given by A, while that of S is given by

B=

S O O W
|
—_
o oo O
_— o O O

So this is an orthonormal basis in which both linear transformations are simultaneously
diagonalized. Each common one-dimensional eigenspace is uniquely labelled by a pair of
eigenvalues: Physicists and chemists would write something like

€ = |273>
é2: |2,—1 >
€3 = ’1,5>

ey = |17—1 >



