Select Solutions
3. Determine the radius of convergence of the following power series.
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Solution: We apply the generalized ratio test to find the radius of convergence:
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Solution: Using the root test we have that
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so it converges for |z| < 1. Plugging in 1 and —1 shows it does not converge for those
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If we differentiate both sides we have
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Finally, multiplying both sides by x yields the desired result:
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4. (i) (10 pts.) Find the Taylor expansion of f(x) = cos*(z). (Hint: Use the trigono-
metric identity cos® z = (1 + cos 2z))

Solution: Using the fact that cosy = Z;io %, the hint, and the substitution
y = 2z, we have that
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(ii) (10 pts.) Use the Lagrange Remainder formula (i.e. the remainder formula for
Taylor series) to prove that the series converges for all values of z.



Solution: The Lagrange Remainder formula is given by
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We have that our power series is correct for all x if and only if lim,,_,, 7, () = 0 for all
x. To demonstrate this we have the following:
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where the last equality is due to the fact that cosy = ) =0 @ for all y.



