
MATH 141 Exam 4 Solutions

1. (i)(15 pts) Find all z so that

z2

z2 + i
= −1.

SOLUTION: After multiplying both sides by z2 + i, we have

z2 = −z2 − i ⇐⇒ 2z2 = −i ⇐⇒ z2 = − i
2
.

Since −i = cos(3π/2) + i sin(3π/2) = ei3π/2 and |−i
2
| = 2−1, we have

z = 2−1/2ei3π/4 and z = 2−1/2ei7π/4.

(ii) (15 pts) Find 5 distinct z such that z7 = −i.
SOLUTION: Since −i is on the unit circle we know that all of its roots are also on the
unit circle. Hence the modulus of z will also be one (i.e. z = eiθ). From the previous
problem, we know −i = ei3π/2 so we have

z7 = −i ⇐⇒ eiθ7 = ei3π/2 ⇒ θ = 3π/14.

Now for k = 0, 1, ..., 6 we also have −i = ei(3π/2+k2π), so by the same method we have

zk = ei(3π/14+k2π/7).

Any subset of five of these is sufficient.
2. For (i), (ii), and (iii) determine whether the series diverges, converges conditionally,
or converges absolutely.

(i) (5 pts.)
∞∑
n=1

sinnπ
n+1

SOLUTION: For all natural numbers n, sinnπ = 0 so the sum converges to zero
absolutely.

(ii) (5 pts.)
∞∑
n=2

(−1)n
(n5−1)1/4

SOLUTION: Using the generalized limit comparison test with bn = 1/n5/4, we have

lim
n→∞

1
(n5−1)1/4

1
n5/4

= lim
n→∞

n5/4

(n5 − 1)1/4
= lim

n→∞

1
n5/4

n5/4 (1− 1
n5 )1/4

= 1 > 0.

Since
∑∞

n=2
1

n5/4 converges, we know by the limit comparison test that
∞∑
n=2

(−1)n
(n5−1)1/4

converges absolutely.

(iii) (10 pts.)
∞∑
n=1

(−1)n n!
nn .

SOLUTION: Using the generalized ratio test we have

lim
n→∞

(n+1)!
(n+1)n+1

n!
nn

= lim
n→∞

(n+ 1)!nn

n!(n+ 1)n+1
= lim

n→∞

n+ 1

n+ 1

(
n

n+ 1

)n
=

1

e
< 1.



Hence, we have absolute convergence by the generalized ratio test.

(iv) (5 pts.) Find the sum of the series
∞∑
n=0

4n+5n

4n5n
.

SOLUTION: We have

∞∑
n=0

4n + 5n

4n5n
=
∞∑
n=0

4n

4n5n
+
∞∑
n=0

5n

4n5n
=
∞∑
n=0

1

5n
+
∞∑
n=0

1

4n
=

1

1− 1
5

+
1

1− 1
4

=
5

4
+

4

3
,

where the last equality comes from the geometric series formula.
3. Determine the radius of convergence of the following power series.

(i) (5 pts.)
∞∑
n=1

5x2n

3nn2

SOLUTION: Using the generalized root test we have

lim
n→∞

∣∣∣∣5x2n3nn2

∣∣∣∣1/n = lim
n→∞

∣∣∣∣51/nx2

3n2/n

∣∣∣∣ =
1

3
|x|2 < 1 ⇐⇒ |x| <

√
3 = R.

(ii) (10 pts.)
∞∑
n=1

x(n
2).

Using the generalized root test, we have

lim
n→∞

|x|n2/n = |x|n =


0 |x| < 1

1 |x| = 1

diverges |x| > 1

.

Therefore, the radius of convergence is R = 1.

(iii) (10 pts.)For what values of x does
∞∑
n=0

xn converge? Use the geometric series

formula to show what function it converges to. Show that for the x values that you

found,
∞∑
n=0

(−1)n x
2n+1

2n+1
= tan−1(x).

SOLUTION: For |x| < 1, we have

∞∑
n=0

xn =
1

1− x

by the geometric series formula. Since d
dx

tan−1 t = 1
1+t2

, substituting t2 = −x in
∞∑
n=0

xn,

and integrating yields
∞∑
n=0

(−1)n
t2n+1

2n+ 1
= tan−1(t)

as desired.
4. (i) (10 pts.) Find the Taylor expansion of f(x) = cos(x2).

SOLUTION: Using the power series cos(y) =
∑∞

n=0(−1)n y2n

(2n)!
, and the substitution

y = x2 yields

cos(x2) =
∞∑
n=0

(−1)n
x4n

(2n)!
.

(ii) (10 pts.) Use the Lagrange Remainder formula (i.e. the remainder formula for
Taylor series) to prove that the series converges for all values of x.



SOLUTION: The Lagrange Remainder formula for a function f is given by rj(x) =∣∣∣f (j+1)(tx)
(j+1)!

xj+1
∣∣∣ =

∣∣∣f(x)−
∑j

n=0
f (n)(x0)

n!
xn
∣∣∣ , for some unknown tx on the interval [x0, x].

For f(x) = cos(x2) we have

rj(x) =

∣∣∣∣∣cos(x2)−
j∑

n=0

(−1)n
x4n

(2n)!

∣∣∣∣∣ =

∣∣∣∣∣cos(y)−
j∑

n=0

(−1)n
y2n

(2n)!

∣∣∣∣∣→ 0

as j →∞. Therefore we have the correct power series.


