
Stochastic Programming (SP) with EMP

1 Introduction

This chapter1 describes the stochastic programming (SP) extension of GAMS EMP. We build a stochastic model based on a
deterministic model by defining model parameters to be uncertain. Then GAMS EMP replaces these uncertain parameters
by random variables. The distribution of the random variables is controlled by the user. Note that these random variables
are not variables in the sense of mathematical optimization, but they can be understood as random parameters.

The chapter is organized as follows: In section 2 the basic principles are introduced with the well known news vendor
problem, in section 3 a multi-stage model is discussed, in section 4 a class of models with chance constraints is presented,
while how to model risk measures is the topic of section 5. In section 6 a summary of keywords and possible solver
configurations is given and finally more details on scenarios and output extraction follow in section 7.

2 The News Vendor

Suppose a news vendor wants to maximize his profit z. He has to decide how many newspapers to buy from a distributor to
satisfy demand d. He buys x newspapers at a cost of c per unit. He manages to sell s newspapers at a price of v per paper.
If the demand is less than his expectations (d < x), then the number i of left-over newspapers are stored in an inventory at
a holding cost of h per unit. If the demand exceeds his expectations (d > x), then there will be l customers whose demand
cannot be met and a penalty of p per unit of unsatisfied demand has to be paid. Assuming that the demand is known the
optimization problem can be expressed mathematically as follows:

Maxx,s,i,l z = vs− cx−hi− pl
s.t. d = s+ l

i = x− s
x,s, l, i≥ 0.

(2.1)

The objective is to maximize the profit z. Here x, s, i, l are the decision variables and the demand d is a known parameter.
The demand d equals the sum of the satisfied demand s (papers sold) and the unsatisfied demand l (lost sales). The inventory
i equals the difference between the number of papers bought x and those sold s. Note that x,s, l, i≥ 0 .

This can easily be translated into GAMS. We assume that the values for c, p, h, v and d are given. Note that our mathematical
formulation is case-sensitive but the GAMS code is not .

1 Scalar

2 c Purchase costs per unit / 30 /

3 p Penalty shortage cost per unit / 5 /

4 h Holding costper unit leftover / 10 /

5 v Revenue per unit sold / 60 /

6 * Random parameters

7 d Demand / 63 /;

8

9 Variable Z Profit;

10 Positive Variables

1This version created by Martha Loewe and Michael Ferris in June 2013.
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11 X Units bought

12 I Inventory

13 L Lost sales

14 S Units sold;

15

16 Equations Profit, Row1, Row2;

17

18 * Profit, to be maximized

19 Profit.. Z =e= v*S - c*X - h*I - p*L;

20 * demand = UnitsSold + LostSales

21 Row1.. d =e= S + L;

22 * Inventory = UnitsBought - UnitsSold

23 Row2.. I =e= X - S;

24

25 Model nb / all /;

26 solve nb max Z use lp;

Since the demand d is known there is no uncertainty in this model and the optimal solution is obvious: the best decision
is to buy exactly as many newspapers as are demanded. Now we move to more realistic assumptions and consider several
examples where the demand is not known from the outset.

2.1 Uncertain demand: discrete distribution

Consider the case when the buying decison should be made before a realization of the demand d becomes known. In our
example, the news vendor has to buy newspapers in the morning without knowing the precise demand. However, given his
experience he expects the demand to be 45 in 70% of all cases, 40 with a probability of 20% and 50 with a probability of
10%. One way to model such a situation is to regard the demand D as a random variable. By D, we denote the demand
when viewed as a random variable in order to distinguish it from a particular realization d. We assume that the probability
distribution of D can be estimated from experience or historical data and is therefore known. Suppose that the set of all
realizations of D is finite and given by Ω:

Ω = {d1,d2, ...,d|Ω|}.

Each realization of D is called a scenario. So there is a finite set of scenarios, each associated with probability p j, where
∑ j p j = 1. In our example, the random variable D takes the values d1 = 45, d2 = 40 and d3 = 50 with respective probabilities
p1 = 0.7, p2 = 0.2 and p3 = 0.1. The decision x has to be made before the realization of the demand D is known.

After the news vendor has made the decision of how many newspapers x to buy on a particular day the actual demand is
disclosed. He may have bought more that he can sell and may have to store the surplus in his inventory or he may not have
bought enough and some demand may remain unsatisfied. We can translate this situation into a model with two stages: in
stage 1 a decision x is made without knowing the future, then one realization of the future unfolds and in stage 2 a second
period decision s, i, l is made that attempts to react to the new situation. The action taken in stage 2 is called recourse. The
key idea in this approach is the evolution of information.

We express this two stage model mathematically in the following way :

Maxx Z(x,D) =−cx+E[Q(x,D)], x≥ 0, (2.2)

where

Q(x,D) =Maxs,i,l vsD−hiD− plD
s.t. x− sD− iD = 0 (2.3)

sD + lD = D

sD, iD, lD ≥ 0.

Given the uncertainty of the demand we aim to maximize the expected value of the profit, denoted by E[Z(x,D)]. The ex-
pected value of the profit is the profit on average. Note that since we have a finite number of scenarios and their probabilities



Stochastic Programming (SP) with EMP 597

1st stage decision variable 2nd stage decision variable Probabilities
Ω = {d1,d2,d3}

yd1 = (sd1 , ld1 , id1) Scenario 1: p1 = 0.7
x yd2 = (sd2 , ld2 , id2) Scenario 2: p2 = 0.2

yd3 = (sd3 , ld3 , id3) Scenario 3: p3 = 0.1

Table 31.1: Two stages in news vendor problem

are known, the expected value of the profit E[Z(x,D)] can be expressed as a weighted sum:

E[Z(x,D)] =− cx+E[Q(x,D)]

− cx+
3

∑
k=1

pkQ(x,dk). (2.4)

Notice that we have separated the original optimization problem into two different problems that are solved at two stages.
The decision variable in the first problem (at stage 1) is x and it is the vector yD = (sD, iD, lD) in the second problem (at stage
2). We introduce additional notation to explicitly represent the underlying structure of the problem. Let

qD =

 v
−h
−p

 , TD =

[
I
0

]
, WD =

[
−I −I 0
I 0 I

]
, hD =

[
0
D

]
.

Using this new notation the second stage optimization problem from (2.3) becomes:

Q(x,D) =MaxyD qT
DyD

s.t. TDx+WDyD = hD, yD ≥ 0. (2.5)

Note that in our specific example TD ≡ T , WD ≡W and qD ≡ q since they are independent of the demand D. The general
two stage optimization problem is given here:

Maxx∈Rn Z(x,ζ ) =−cT x+E[Q(x,ζ )]
s.t. Ax = b, x≥ 0, (2.6)

where

Q(x,ζ ) =Maxy∈Rm qT
ζ

y (2.7)

s.t. Tζ x+Wζ y = hζ , y≥ 0,

and
ζ = (q,h,T,W ),

the data of the second stage problem. Note that in our news vendor example there are no first stage equations Ax = b. Table
31.1 summarizes the two stages in our example. The problem as stated in (2.6), (2.7 ) can be converted to a single large
scale optimization problem. The extended form is given below:

Maxx −cT x+∑i pi[MaxyqT
ζi

y]
s.t. Ax = b

Tζ x+Wζ y = hζ

x,y≥ 0.

(2.8)

Finally, we present the problem in matrix form, a notation that has the advantage of explicitly displaying the structure of the
second stage:

Maxx,y − cT x+∑i pζiq
T
ζi

y

s.t.


A

Tζ1
Wζ1

Tζ2
Wζ2

...
. . .

Tζm Wζm




x

yζ1
yζ2
...

yζm

 =


b

hζ1
hζ2

...
hζm

 , x,yζi ≥ 0.
(2.9)
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To formulate this 2-stage-model in GAMS we introduce the notions of a core problem and annotations. The core problem
defines q, h, T , W as parameters instead of having them as random variables. It can be written as follows:

Maxx,y − cT x+qT y

s.t.
(

A 0
T W

)(
x
y

)
=

(
b
h

)
, x,y≥ 0. (2.10)

The annotations give details about the various realizations of the random variable ζ , the scenarios.

For our news vendor example the core model is precisely the model given on page 595. Then we add the annotations: the
distribution of the random variable (in our case the demand which is part of the variable h) has to be specified as random
and every variable and equation must be assigned to one of the two stages. This information is introduced by writing a text
file named %emp.info%. Here is the file for our model:

1 file emp / ’%emp.info%’ /; put emp ’* problem %gams.i%’/;

2 $onput

3 randvar d discrete 0.7 45 0.2 40 0.1 50

4 stage 2 I L S d

5 stage 2 Row1 Row2

6 $offput

7 putclose emp;

First, we define the parameter d to be a random variable (randvar) with a discrete distribution: with probability 0.7
it takes a value of 45, with probability 0.2 it takes a value of 40, and with probability 0.1 it takes a value of 50. Then
the variables and equations of stage 2 are listed. The variables and equations not listed in the %emp.info% file are
automatically assigned to a stage, with a default assumed to be stage 1. Note that the objective variable (in our case Z)
and the profit equation are thus assigned to the highest stage specified (stage 2 in this example). Observe that Z is in fact a
random variable since it is a function of the random variable D. As such it cannot be maximized, EMP implicitly maximizes
the expected value of Z. We believe this might lead to some confusion since the expected value of Z belongs to stage 1.
We show later how to specify more clearly the fact that we are maximizing E(Z). All keywords that can be used in the
emp.info file are introduced in subsequent examples and summarized in section 6 on page 620.

Given the probability distribution the solvers of stochastic programming models create various scenarios and evaluate them.
Where should the details of these scenarios be stored (or communicated to the modeler)? In deterministic models the
modeler does not need to specify how the output should be stored. Using EMP for stochastic programming the modeler can
store the results for each scenario in standard parameters. Here is how it is done:

1 Set scen Scenarios / s1*s3 /;

2 Parameter

3 s_d(scen) Demand realization by scenario

4 s_x(scen) Units bought by scenario

5 s_s(scen) Units sold by scenario;

6

7 Set dict / scen .scenario.’’

8 d .randvar .s_d

9 s .level .s_s

10 x .level .s_x /;

11

12 solve nb max z use emp scenario dict;

The size of the set scen defines the maximal number of scenarios we are willing to store results for. The three dimensional
set dict contains mapping information between symbols in the model (in the first position) and symbols to store solution
information (in the third position), and the type of storing (in the second position). An exception to this rule is the tuple
with label scenario in the second position. This tuple determines the symbol (in the first position) that is used as the
scenario index. This scenario symbol can be a multidimensional set. A tuple in this set represents a single scenario. In our
example, we want to store the realization for each sceanrio for the random variable d in the parameter s_d and the levels of
the variables s and x in the parameters s_s and s_x respectively. A more detailed description on scenarios and how this set
works can be found in section 7.
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Finally, the solve statement needs to be adjusted: we use emp instead of lp and add scenario dict to indicate that a
stochastic problem should be solved.

2.2 Uncertain demand: continuous distribution

Now let’s assume that the random variable D has a continuous distribution, say a Normal distribution with mean 45 and
standard deviation 10. This problem has the same structure as the problem discussed in section 2.1, where the random
variable D has a discrete distribution. The difference is that the set Ω, that is the set of all realizations of D, contains an
infinite number of scenarios. There are various ways of modeling this, one of which is a sampling procedure implemented
in the solver. A finite number of scenarios is generated to approximate Ω and thus the problem is converted to a problem as
discussed in section 2.1.

In GAMS we can model a continuous distribution of the random variable by changing the randvar line in the emp.info file
in the following way:

randvar d normal 45 10

Note that currently only the solver LINDO has implemented a sampling procedure for parametric distributions. More details
about sampling are given in the next section. In Table 31.2 all parametric distributions that can be modeled are listed.

Distribution Parameter 1 Parameter 2 Parameter 3
Beta shape 1 shape 2
Cauchy location scale
Chi Square deg. of freedom
Exponential lambda
F deg. of freedom 1 deg. of freedom 2
Gamma shape scale
Gumbel location scale
Laplace mean scale
Logistic location scale
LogNormal mean std dev
Normal mean std dev
Pareto scale shape
StudentT deg. of freedom
Triangular low mid high
Uniform low high
Weibull shape scale
Binomial n p
Geometric p
Hyper Geometric total good trials
Logarithmic p-factor
Negative Binomial failures p
Poisson lambda

Table 31.2: Parametric distributions supported by LINDO

We have to inform GAMS that we want the solver LINDO to be used. There are two ways to do this: we either state in the
command line emp=lindo or we insert the following statement before the solve statement in the GAMS file :

option emp = lindo;

2.3 Sampling

Currently only the solver LINDO has the ability to perform sampling for continuous distributions. It generates 6 samples
by default. There are three ways to customize sampling: 1) adding additional information to the emp.info file, 2) generating
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a sample with the LINDO library lsadclib and then using this sample in any solver with EMP capabilities and 3) setting
various options in the solver LINDO. We will discuss each method in more detail in the remainder of this section.

2.3.0.1 Customizing sampling with EMP Observe that customizing sampling with EMP is currently experimental,
feedback is requested, and possible changes might occur when its notation becomes fixed. Currently, EMP provides two
keywords to enable users to customize sampling: sample and setSeed. The keyword sample allows the user to customize
the size of the sample in the emp.info file. Consider the following example:

randvar d normal 45 10

sample d 9

The second line determines the size of the sample of the distribution of the random variable D to be 9. Note that currently
the LINDO Sampling library is used for this sampling. Users who don’t have a valid LINDO license are limited to the
Normal and Binomial distributions with a maximum sample size of 10.

The keyword sample also offers the possibility to determine a mathematical variance reduction method to be applied.
Variance reduction is a procedure used to increase the precision of the estimated values from the distribution. LINDO
provides three methods for reducing the variance: Monte Carlo sampling, Latin Square sampling and Antithetic sampling.

Consider a stochastic model with four random variables: E, F , G and H. Assume that E follows a Normal distribution with
mean 23 and standard deviation 5, F follows a Normal distribution with mean 37 and standard deviation 8, G is uniformly
distributed on the interval [0,1] and H is binomially distributed with n = 100 and p = 0.55. We want for each random
variable a sample size of 10 and we want to apply the three variance reduction methods in the following way: LINDO shall
use Antithetic sampling for E and F , Monte Carlo sampling for G and Latin Square sampling for H. To model this we insert
the following lines in the emp.info file:

1 randvar e normal 23 5

2 randvar f normal 37 8

3 randvar g uniform 0 1

4 randvar h binomial 100 55

5 sample e f 10 method1

6 sample g 12 method2

7 sample h 8 method3

In lines 1 to 4 the random variables and their distributions are defined, in lines 5 to 7 details about the sampling procedures
are given. Note that the keyword sample can take more than one random variable (line 5) if the sample size and the variance
reduction method for these random variables are the same. We need to add the following lines before the solve statement
to specify the content of method1, method2 and method3 (we assume that the name of the model is nb):

1 $onecho > lindo.opt

2 SVR_LS_ANTITHETIC=method1

3 SVR_LS_MONTECARLO=method2

4 SVR_LS_LATINSQUARE=method3

5 $offecho

6 nb.optfile=1;

If the Latin Square sampling should also be used for E and F , we would simply change the emp.info file to replace the label
method 1 with the label method 3. For more details on variance reduction methods please consult the LINDO manual.

A further way to customize the sampling procedure is the keyword setSeed:

setSeed <seed>

This sets the seed for the random number generator of the sampling routines called using the sample keyword. If setSeed
is used in the emp.info file, the seed is set once before we generate all samples. Please note that setSeed only works with
a valid LINDO license.
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2.3.0.2 Separating sampling and solving A user may want to sample from a distribution with the LINDO system and
solve the model with another solver, say DE. This is possible with the sampling routines from the LINDO library lsadclib.
We could solve the news vendor model by first drawing a sample from a Normal distribution with mean 45 and standard
deviation 10 and then using the sample in the emp.info file. Here is the GAMS code for sampling from a Normal distribution
where the sample size is 9:

1 $funclibin msllib lsadclib

2

3 function setSeed / msllib.setSeed /

4 sampleNormal / msllib.sampleLSNormal /

5 getSampleValues / msllib.getSampleValues /;

6

7 scalar k;

8 k = sampleNormal(45,10,9);

9

10 set g /1*9/; parameter sv1(g);

11 loop(g,

12 sv1(g) = getSampleValues(k);

13 );

14 display sv1;

The directive in the first line makes the LINDO sampling library available, msllib is the internal library name. For further
details and a list of the available distributions please consult the LINDO manual.

In the following lines we demonstrate how the sample is used in the emp.info file:

1 file emp / ’%emp.info%’ /; put emp ’* problem %gams.i%’/;

2 put ’randvar d discrete ’; loop(g, put (1/card(g)) ’ ’ sv1(g) ’ ’);

3 $onput

4 stage 2 I L S d

5 stage 2 Row1 Row2

6 $offput

7 putclose emp;

Line 2 states that the random variable D follows a discrete distribution and the probabilites and values are taken from the
previously generated sample. The other lines of the emp.info file remained unchanged.

2.3.0.3 Sampling options in the LINDO solver There are some customizable sampling options in LINDO. The user
could control the number of sampled scenarios by setting any of the following LINDO/SP options in the lindo.opt file:

STOC_NSAMPLE_PER_STAGE - list of sample sizes per stage (starting at stage 2)

STOC_NSAMPLE_SPAR - common sample size per stochastic parameter

STOC_NSAMPLE_STAGE - common sample size per stage

For example, we could insert the following three lines before the solve statement:

option emp = lindo;

$echo STOC_NSAMPLE_STAGE = 100 > lindo.opt

nb.optfile = 1;

The first line tells GAMS to solve the empmodeltype using the LINDO solver, the second line writes “STOC NSAMPLE STAGE
= 100” to the lindo.opt file, which indicates the solver to generate 100 samples per stage, and the third line informs GAMS
to use the solver option file (i.e. lindo.opt). For more details about LINDO options please consult the user manual.

3 Multistage Models

In models with more than two stages the same principle applies as in 2-stage models: new information is revealed at the
beginning of the stage and recourse decisions or adjustments are made after this information is available. At the point where
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decisions are made only outcomes of the current stage and previous stages are available. In (3.11) this logic is pictured
schematically.

Make decision︸ ︷︷ ︸
Stage 1

→ Random Variable is realized → Make decision︸ ︷︷ ︸
Stage 2

→ ··· → Random Variable is realized → Make decision︸ ︷︷ ︸
Stage n

(3.11)

Observe that random variables which are realized in stage k are fixed parameters in stage k+ 1; stage 1 random variables
are in fact simply given deterministic values.

Consider an inventory problem where the decision must be made at the end of each week how many hats should be bought
in order to satisfy the stochastic demand in the following week with the aim to maximize the profit. We assume that the
stochastic demand can be modeled using a Gamma distribution. The planning horizon is 3 weeks. Before the first week
starts an initial purchase decision has to be made and the goods are stored in the inventory for use in week 1. At this point
only the distribution of the demand of the first week is known. During the first week the actual demand is revealed and
some items that were stored in the inventory are sold. Some items may be left over; they are stored as the inventory for the
second week. In addition, a purchase decision for the second week has to be made given the size of the inventory and the
distribution of the demand in the second week. Again, the actual demand is revealed in the course of the second week. The
same holds for the third week.

We will model the problem with 4 stages, where the first stage corresponds to the preparation time before the first week,
the second stage corresponds to decisions made in the first week, the third stage corresponds to decisions made the second
week and the fourth stage corresponds to decisions made in the third week. Let t denote the stages. Note that while the
stages range from t = 1 to t = 4, demand variables are realized only at t = 2 to t = 4. Let yt be the amount bought and it the
amount stored at the end of each stage and let Dt denote the demand in each week and st the amount sold each week. Note
that we denote the demand with a capital D since it is a random variable. Let α = 10 be the cost per hat bought, β = 20 the
revenue per hat sold and δ = 4 the storage cost per unit. Further, in the storage facility a maximum of κ = 5000 hats can be
stored.

As discussed in section 2.2 above the solvers use a sampling procedure to approximate a problem with a continuous random
variable such as a Gamma distributed random variable by a problem with a discrete distribution. Figure 31.1 illustrates the
stages assuming a sample size of 6.

The stochastic optimization problem can be expressed as follows:

Maxst ,yt ,it z =−αy1− γi1 +E[Max β s2(D2)−αy2(D2)−δ i2(D2)+ · · ·+
E[Max β s4(D4)+−αy4(D4)−δ i4(D4)] . . . ]

s.t. i1 = y1
it−1 + yt = st + it
st ≤ it−1
st ≤ Dt
it ≤ κ

y1, i1,st ,yt , it ≥ 0,

(3.12)

where t = 2, . . . ,4 and Dt follows a Gamma distribution. Note that st , yt and it depend on the realization of Dt .

The GAMS code follows.

1 set t "stages" /1*4/;

2 set st(t) "stages where sales occur" /2*4/ ;

3

4 scalars

5 kappa capacity of storage building

6 alpha cost per unit bought

7 beta revenue per unit sold

8 delta cost per unit stored at the end of time period;

9

10 parameters

11 k "shape of demand (1st parameter of gamma distribution)"



Stochastic Programming (SP) with EMP 603

Figure 31.1: Stages in the inventory model

12 d_theta(st) "scale of demand (2nd parameter of gamma distribution)"

13 d(st) "demand";

14

15 positive variables

16 y(t) units to be bought in time period t

17 i(t) ending inventory in period t

18 s(t) units sold in time period t;

19 free variable profit;

20

21 * Now assign all the data

22 k = 16;

23 parameter d_theta(st) / 2 208.3125, 3 312.5, 4 125 /;

24 d(st) = k * d_theta(st);

25 display d;

26 kappa = 5000;

27 alpha = 10;

28 beta = 20;

29 delta = 4;

30

31 equations

32 profit_eq profit to be max

33 Bal_eq(t) balance equation

34 Sales_eq1(st) sales cannot exceed demand

35 Sales_eq2(t) sales cannot exceed inventory of previous time period;

36

37 profit_eq.. profit =e= sum(t, beta * s(t)$st(t) - alpha * y(t) - delta * i(t));

38

39 Bal_eq(t).. i(t-1) + y(t) =e= s(t)$st(t) + i(t) ;

40

41 Sales_eq1(st).. s(st) =l= d(st);

42
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43 Sales_eq2(t)$st(t).. s(t) =l= i(t-1);

44

45 i.up(t) = kappa;

46 model inventory /all/;

47

48 file emp / ’%emp.info%’ /; put emp ’* problem %gams.i%’/;

49 put emp; emp.nd=6;

50 put "randvar d(’2’) gamma ", k d_theta(’2’) /;

51 put "randvar d(’3’) gamma ", k d_theta(’3’) /;

52 put "randvar d(’4’) gamma ", k d_theta(’4’) /;

53 $onput

54 stage 1 y(’1’) i(’1’) Bal_eq(’1’)

55 stage 2 y(’2’) d(’2’) s(’2’) i(’2’) Bal_eq(’2’) Sales_eq1(’2’) Sales_eq2(’2’)

56 stage 3 y(’3’) d(’3’) s(’3’) i(’3’) Bal_eq(’3’) Sales_eq1(’3’) Sales_eq2(’3’)

57 stage 4 y(’4’) d(’4’) s(’4’) i(’4’) Bal_eq(’4’) Sales_eq1(’4’) Sales_eq2(’4’)

58 $offput

59 putclose emp;

60

61 Set scen Scenarios / s1*s1000 /;

62 Parameter

63 s_d(scen,st) Demand realization by scenario

64 s_y(scen,t) Units bought by scenario

65 s_s(scen,t) Units sold by scenario

66 s_i(scen,t) Units stored by scenario;

67

68 Set dict /

69 scen .scenario.’’

70 d .randvar .s_d

71 s .level .s_s

72 y .level .s_y

73 i .level .s_i /;

74

75 solve inventory max profit using emp scenario dict;

76

77 display s_d, s_s, s_y, s_i;

Observe that in the core problem the values of the demand d(t) are replsced by the expected values of the random variable
Dt which follows a Gamma distribution. Note that as expected, in stage 1 we have only the variables y and i, but no
variables s and d. Note that currently only the solver LINDO can solve models with parametric distributions (see sections
2.2 and 2.3).

As discussed in section 2.3 above the user could use the LINDO system to generate samples and then solve the optimization
problem with another solver. Here is the GAMS code that allows the user to draw samples for the inventory model (the
sample size is 10). In this code we generate samples from 3 different distributions f, g and h and store the samples in the
parameters sv1, sv2 and sv3.

1 $funclibin msllib lsadclib

2

3 function setSeed / msllib.setSeed /

4 sampleGamma / msllib.sampleLSGamma /

5 getSampleValues / msllib.getSampleValues /;

6

7 $if not set ss $set ss 10

8 scalar f, g, h;

9 f = sampleGamma(16,208.3125,%ss%);

10 g = sampleGamma(16,312.5,%ss%);

11 h = sampleGamma(16,125,%ss%);

12

13 set j /1*%ss%/;

14 parameter sv1(j),sv2(j), sv3(j);

15
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16 loop(j,

17 sv1(j) = getSampleValues(f); );

18 display sv1;

19

20 loop(j,

21 sv2(j) = getSampleValues(g); );

22 display sv2;

23

24 loop(j,

25 sv3(j) = getSampleValues(h); );

26 display sv3;

The user has to modify the emp.info file to use the generated samples (sv1, sv2 and sv3) with probabilites 1
|J| to solve the

model:

1 file emp / ’%emp.info%’ /; put emp ’* problem %gams.i%’/;

2 put emp; emp.nd=6;

3 put "randvar d(’2’) discrete "; loop(j, put (1/card(j)) ’ ’ sv1(j) ’ ’);

4 put "randvar d(’3’) discrete "; loop(j, put (1/card(j)) ’ ’ sv2(j) ’ ’);

5 put "randvar d(’4’) discrete "; loop(j, put (1/card(j)) ’ ’ sv3(j)’ ’);

6 $onput

7 stage 1 y(’1’) i(’1’) Inv1_eq

8 stage 2 y(’2’) d(’2’) s(’2’) i(’2’) Bal_eq(’2’) Sales_eq1(’2’) Sales_eq2(’2’)

9 stage 3 y(’3’) d(’3’) s(’3’) i(’3’) Bal_eq(’3’) Sales_eq1(’3’) Sales_eq2(’3’)

10 stage 4 y(’4’) d(’4’) s(’4’) i(’4’) Bal_eq(’4’) Sales_eq1(’4’) Sales_eq2(’4’)

11 $offput

12 putclose emp;

Note that lines 3-5 are newly inserted in order to use the generated samples; the stages remain unchanged.

In case the modeler wants to use large samples with limited computing capability, LINDO offers the option to approximate
the solution with a Benders decompostion algorithm. The following lines can be inserted to achieve this:

1 $onecho > lindo.opt

2 STOC_MAX_NUMSCENS = 1000000

3 STOC_NSAMPLE_STAGE = 40

4 STOC_METHOD = 1

5 $offecho

6 inventory.optcr=1e-4;

In line 2 we ensure that the maximum number of scenarios is large enough, the option in line 3 states the sample size and the
option in line 4 determines the stochastic method to be used (1 means Nested Benders decomposition). For further details
on LINDO options please consult the LINDO user manual. We add line 6 to ensure that the gap between the true solution
and the approximation is reasonably small.

4 Chance Constraints

A major class of problems in stochastic modeling involves chance constraints. The goal in these problems is to make
an optimal decision prior to the realization of random data while allowing the constraints to be violated with a certain
probability.

Let Ã ∈ Rm×Rn be a random matrix and let b̃ ∈ Rm be a random vector. Then a general stochastic linear program can be
written as:

Minx cT x
s.t. Ãx≤ b̃

x≥ 0.
(4.13)

All feasible solutions satisfy all constraints simultaneously. The distinctive feature of a program with chance constraints is
that we require Ãx ≤ b̃ to be satisfied not in all cases but only with some prescribed probability p, where 0 < p ≤ 1. Note
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that often we are interested in the risk tolerance ε , ε being the probability that a constraint is not satisfied. So p = 1− ε .
Throughout this chapter we use p and 1− ε interchangeably. A general stochastic linear problem with chance constraints
can be written as follows:

Minx cT x
s.t. P(Ãx≤ b̃)≥ p

x≥ 0.
(4.14)

Solvers convert a problem like (4.14) into a mixed-integer problem (MIP) first and then solve the MIP equivalent. They
introduce a vector with binary variables, say yk ∈ Rm, for each scenario k ∈ S. The binary variables take value 1 if the
corresponding constraint is satisfied in a scenario and 0 otherwise. A scenario-based formulation of the chance-constrained
stochastic linear program (4.14) can be written as:

Minx cT x
s.t. Akx≤ bk +Mk(1− yk)

∑k∈S yk ≥ p×|S|
x≥ 0, y ∈ (0,1)|S|,

(4.15)

where Mk ∈ Rm is a chosen big-M vector. The entries of the vector Mk should be chosen such that it does not cut off any
feasible solution if an entry of yk = 0.

We will first discuss the special case where the random matrix Ã is a one-row vector ã ∈Rn, the random vector b̃ is a single
random variable b̃ and we have only one chance constraint. Then we will move on to the two ways to model problems
with multiple chance constraints: using joint chance constraints and using individual chance constraints. Joint chance
constraints require all constraints to be satisfied simultaneously with a given probability. Individual chance constraints
require each constraint to be satisfied with a given probability independent of other constraints. We discuss joint chance
constraints in section 4.2, individual chance constraints in section 4.3 and compare them in section 4.4. Finally, in section
4.5 the option to penalize violation of constraints is introduced.

4.1 Single Chance Constraints

Consider the following chance-constrained stochastic linear problem:

Minx cT x
s.t. P(ãx≤ b̃)≥ p

x≥ 0,
(4.16)

where ã is a random row vector and b̃ is a random variable. Given a set of scenarios S let each scenario k ∈ S be realized
with probability πk. The corresponding realizations of ã and b̃ are denoted by ak and bk respectively. The inequalities of the
|S| scenarios may be expressed as follows:

a1x≤ b1

a2x≤ b2

...
a|S|x≤ b|S|

(4.17)

If each scenario is equally likely to be realized then the decision variable x must be chosen such that the inequality is satisfied
in at least p×|S| scenarios.

Here is an example with two decision variables and 4 scenarios where each scenario is equally likely to be realized (i.e.
πk = 1

4 ) :
Min x1 + x2
s.t. P(ωx1 + x2 ≥ 7)≥ 0.75, ω ∈Ω = {1,2,3,4}

x1,x2 ≥ 0.
(4.18)

Note that in this example b is fixed at 7. Note further that there are four scenarios since there are four possible realizations
of ω . Since p = 0.75 and each scenario is equally likely to be realized we need to choose x1 and x2 such that the inequality
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is satisfied in at least 3 scenarios. The inequalities for the four scenarios are given below:

k = 1 : ω1 = 1 ω1x1 + x2 ≥ 7
k = 2 : ω2 = 2 ω2x1 + x2 ≥ 7
k = 3 : ω3 = 3 ω3x1 + x2 ≥ 7
k = 4 : ω4 = 4 ω4x1 + x2 ≥ 7.

(4.19)

The MIP equivalent is given below:

Min x1 + x2
s.t. 1x1 + x2 ≥ 7−M(1− y1)

2x1 + x2 ≥ 7−M(1− y2)
3x1 + x2 ≥ 7−M(1− y3)
4x1 + x2 ≥ 7−M(1− y4)

cc1 = 1−∑k πkyk, k = 1, . . . ,4, πk = 1
4

x1,x2 ≥ 0
0≤ cc1 ≤ (1−0.75)
yk ∈ (0,1).

(4.20)

Observe that the first four constraints cover the four possible scenarios with ω taking the values 1, 2, 3 and 4 respectively.
On the right handside we introduce a big-M factor and yk, a binary indicator variable. yk takes the value 1 if the constraint
is satisfied and 0 otherwise. A new variable, cc1, is introduced in the fifth constraint representing the probability that the
constraint is violated. If cc1 = 0 the sum equals 1, indicating that the constraint is satisfied in all four scenarios. If cc1 = 0.25
the constraint remains unsatisfied in one scenario out of four (for this scenario yk = 0).

The problem can be modeled in GAMS as follows:

1 Scalar

2 om / 1 /;

3

4 Variable Z Objective;

5 Positive Variables X1, X2;

6

7 Equations OBJ, E1;

8

9 OBJ.. Z =e= X1 + X2;

10 E1.. om*X1 + X2 =g= 7;

11

12 Model sc / all /;

13

14 file emp / ’%emp.info%’ /; put emp ’* problem %gams.i%’/;

15 $onput

16 randvar om discrete 0.25 1 0.25 2 0.25 3 0.25 4

17 chance E1 0.75

18 $offput

19 putclose emp;

20

21 Set scen scenarios / s1*s12 /;

22 Parameter

23 s_om(scen)

24 x1_l (scen)

25 x2_l (scen)

26 x1_m (scen)

27 e1_l (scen);

28

29 Set dict / scen .scenario.’’

30 om .randvar .s_om
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31 x1 .level .x1_l

32 x2 .level .x2_l

33 x1 .marginal.x1_m

34 e1 .level .e1_l/;

35

36 solve sc min z use emp scenario dict;

37 display s_om, x1_l, x2_l, x1_m, e1_l;

As introduced before we start with a core model and then add annotations and output handling information. Currently,
there are no stages unlike in the problems with recourse. Observe that we introduced the new keyword chance. The
line chance E1 0.75 specifies that the constraint E1 must hold for at least 75% of all scenarios. We can verify that this
requirement has been enforced by checking in the output file the level value of the constraint e1_l, and seeing the first
scenario constraint is violated at the solution of the chance constrained problem.

Note that the default value of M in the solvers Lindo and DE is 10000. Currently it can only be customized in DE. We could
insert the following five lines before the solve statement to set the value of M to 1000:

option emp = de;

$onecho > de.opt

ccreform bigM 1e3

$offecho

sc.optfile = 1;

Alternatively, the first line could be replaced by placing emp=de on the command line. Note that it is important that optca
and optcr are assigned the appropriate values. The GAMS default for the absolute gap optca is 0 and the default for the
relative gap optcr is 0.1.

Observe that in addition to converting the chance-constraint problem to a MIP using M the solver DE offers two further op-
tions to solve chance-constraint problems: a reformulation using a convex hull and a reformulation using indicator variables
and indicator constraints. The following line indicates that a convex hull with M = 1000 and ε = 0.00001 is to be used:

ccreform cHull 1e3 1e-6

For indicator variables and constraints we use the following line:

ccreform indic

Note that currently only the solver CPLEX supports indicator variables, so the resulting reformulated problem has to be
solved with CPLEX.

4.2 Joint Chance Constraints

In this section we discuss the general stochastic linear problem with chance constraints as introduced in (4.14) assuming
that p is the predescribed probability that all constraints are simultaneously satisfied.

Minx cT x
s.t. P(Ãx≤ b̃)≥ p

x≥ 0.
(4.21)

Consider the example (4.18) from the previous section extended by one constraint, so that we have two decision variables
and two constraints. The random data follow discrete uniform distributions so each scenario is equally likely.

Min x1 + x2
s.t. P(ω1x1 + x2 ≥ 7; ω2x1 +3x2 ≥ 12)≥ 0.6, (ω1,ω2) ∈Ω

x1,x2 ≥ 0,
(4.22)

where
Ω = {(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3)} (4.23)
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and
π

k = π(ω1,ω2) =
1
12

for all (ω1,ω2) ∈Ω. (4.24)

Note that in this example b is not random and we have 12 scenarios that are all equally likely. The MIP equivalent is given
below:

Min x1 + x2

s.t. 1x1 + x2 ≥ 7−M(1− y1)
1x1 +3x2 ≥ 12−M(1− y1)
2x1 + x2 ≥ 7−M(1− y2)
1x1 +3x2 ≥ 12−M(1− y2)
...
4x1 + x2 ≥ 7−M(1− y12)
3x1 +3x2 ≥ 12−M(1− y12)

cc1 = 1−∑k πkyk, k = 1, . . . ,12, πk = 1
12

x1,x2 ≥ 0
0≤ cc1 ≤ (1−0.6)
yk ∈ (0,1).

(4.25)

Note that the first set of constraints cover the 12 scenarios, where each scenario has two constraints. The other constraints
are similar to those introduced in (4.20).

The corresponding GAMS model follows.

1 Scalar

2 om1 / 1 /

3 om2 / 1 /;

4

5 Variable Z Objective;

6 Positive Variables X1,X2;

7

8 Equations OBJ, E1, E2;

9

10 OBJ.. Z =e= X1 + X2;

11 E1.. om1*X1 + X2 =g= 7;

12 E2.. om2*X1 + 3*X2 =g= 12;

13

14 Model sc / all /;

15

16 file emp / ’%emp.info%’ /; put emp ’* problem %gams.i%’/;

17 $onput

18 randvar om1 discrete 0.25 1 0.25 2 0.25 3 0.25 4

19 randvar om2 discrete 0.3333 1 0.3334 2 0.3333 3

20 chance E1 E2 0.6

21 $offput

22 putclose emp;

23

24 Set scen scenarios / s1*s12 /;

25 Parameter

26 s_om1(scen)

27 s_om2(scen)

28 x1_l (scen)

29 x2_l (scen)

30 x1_m (scen)

31 e1_l (scen)

32 e2_l (scen);

33

34 Set dict / scen .scenario.’’

35 om1 .randvar .s_om1
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36 om2 .randvar .s_om2

37 x1 .level .x1_l

38 x2 .level .x2_l

39 x1 .marginal.x1_m

40 e1 .level .e1_l

41 e2 .level .e2_l/;

42

43 solve sc min z use emp scenario dict;

44 display s_om1, x1_l, x2_l, x1_m, e1_l, e2_l;

The line chance E1 E2 0.6 specifies that in at least 60% of all scenarios both E1 and E2 must be satisfied at the same
time. There are a total of 12 scenarios, so both constraints must be satisfied in at least 8 (12 ∗ 0.6 = 8) scenarios. We can
verify that this requirement has been enforced by checking in the output file the level values of the constraints, i.e. e1_l
and e2_l. Indeed, in the optimal solution both constraints hold in scenarios 4 to 12, so there are 9 scenarios that satisfy
both inequalities.

4.3 Individual Chance Constraints

In this section we discuss the general stochastic linear problem with chance constraints assuming that there is no correlation
between the probabilities of the rows of the matrix Ã:

Minx cT x
s.t. P(Ãi·x≤ b̃i)≥ pi, i = 1, . . . ,m

x≥ 0.
(4.26)

Consider the example from the previous section, this time with individual chance constraints and extended by one constraint:

Min x1 + x2
s.t. P(ω1x1 + x2 ≥ 7)≥ 0.75, ω1 ∈Ω1 = {1,2,3,4}

P(ω2x1 +3x2 ≥ 12)≥ 0.6, ω2 ∈Ω2 = {1,2,3}
P(ω1x1 +ω2x2 ≥ 10)≥ 0.5, (ω1,ω2) ∈Ω1×Ω2 = Ω

x1,x2 ≥ 0.

(4.27)

Note that Ω is defined as in (4.23) above, we have again 12 scenarios each with probability πk = 1
12 . However, in this

example the first inequality must hold in 9 out of 12 scenarios (0.75∗12 = 9), the second inequality must hold in 8 out of
12 inequalities (0.6 ∗ 12 = 8) and the third inequality must hold in 6 out of 12 scenarios. Note further that we may have
four types of scenarios: scenarios where all constraints are violated, scenarios where two constraints are violated, scenarios
where one constraint is violated and scenarios where all three constraints are satisfied. The only condition is that for each
constraint there is the respective number of scenarios where the constraint is satisfied. Note further that the random data in
the third inequality is a combination of the random data of the first two inequalities. The inequalities for the scenarios are
given below:

k = 1 : ω1
1 = 1, ω1

2 = 1 ω1
1 x1 + x2 ≥ 7

ω1
2 x1 +3x2 ≥ 12

ω1
1 x1 +ω1

2 x2 ≥ 10
k = 2 : ω2

1 = 1, ω2
2 = 2 ω2

1 x1 + x2 ≥ 7
ω2

2 x1 +3x2 ≥ 12
ω2

1 x1 +ω2
2 x2 ≥ 10

...
k = 12 : ω12

1 = 4, ω12
2 = 3 ω12

1 x1 + x2 ≥ 7
ω12

2 x1 +3x2 ≥ 12
ω12

1 x1 +ω12
2 x2 ≥ 10

(4.28)
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The MIP equivalent follows:

Min x1 + x2

s.t. 1x1 + x2 ≥ 7−M(1− y1
1)

1x1 +3x2 ≥ 12−M(1− y2
1)

1x1 +1x2 ≥ 10−M(1− y3
1)

2x1 + x2 ≥ 7−M(1− y1
2)

1x1 +3x2 ≥ 12−M(1− y2
2)

2x1 +1x2 ≥ 10−M(1− y3
2)

...
4x1 + x2 ≥ 7−M(1− y1

12)
3x1 +3x2 ≥ 12−M(1− y2

12)
4x1 +3x2 ≥ 10−M(1− y3

12)

cc1 = 1−∑k πky1
k , k = 1, . . . ,12, πk = 1

12
cc2 = 1−∑k πky2

k , k = 1, . . . ,12, πk = 1
12

cc3 = 1−∑k πky3
k , k = 1, . . . ,12, πk = 1

12

x1,x2 ≥ 0
0≤ cc1 ≤ (1−0.75)
0≤ cc2 ≤ (1−0.6)
0≤ cc3 ≤ (1−0.5)
y j

k ∈ (0,1).

(4.29)

As expected, there are three constraints for every scenario. Note that we introduce three new variables, cc1, cc2 and cc3 and
three corresponding constraints. Each of the variables has a different range mirroring the different probabilities with which
a constraint may be violated.

The core model of the GAMS code is very similar to the core model with joint chance constraints. We just add the third
inequality:

1 Equations OBJ, E1, E2, E3;

2

3 OBJ.. Z =e= X1 + X2;

4 E1.. om1*X1 + X2 =g= 7;

5 E2.. om2*X1 + 3*X2 =g= 12;

6 E3.. om1*X1 + om2*X2 =g= 10;

There is a slight modification in the annotations:

1 file emp / ’%emp.info%’ /; put emp ’* problem %gams.i%’/;

2 $onput

3 randvar om1 discrete 0.25 1 0.25 2 0.25 3 0.25 4

4 randvar om2 discrete 0.3333 1 0.3334 2 0.3333 3

5 chance E1 0.75

6 chance E2 0.6

7 chance E3 0.5

8 $offput

9 putclose emp;

Observe that every constraint is listed separately with its respective probability. Note that in case one constraint has to be
satisfied in all scenarios (so it is strictly speaking not a chance constraint), then it has to be listed with probability 1.0.

Here is a summary of which constraints are satisfied in which scenarios in the optimal solution:

Scenarios where E1 is satisfied: 4,5,6,7,8,9,10,11,12
Scenarios where E2 is satisfied: 2,3,5,6,8,9,11,12
Scenarios where E3 is satisfied: 6,7,8,9,10,11,12.

(4.30)
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Observe that all constraints are satisfied in as many scenarios as required. Note that as predicted there are scenarios where all
three constraints are satisfied (k = 6,8,9,11,12), scenarios where only two constraints are satisfied (k = 5,7,10), scenarios
where only one constraint is satisfied (k = 2,3,4) and one scenario where all constraints are violated (k = 1).

4.4 Joint chance constraints vs. individual chance constraints

The choice whether joint or individual chance constraints should be used depends on the system being modeled. Both
approaches have their own advantages. Individual chance constraints are weaker since not all constraints have to be satisfied
at the same time. This can be clearly observed in the optimal solution for example (4.22). The objective value is 5.20 in the
model with joint chance constraints and 4.75 in the model with individual chance constraints (assuming that each constraint
is satisfied in 60% of all scenarios). Since it is a minimizing problem the model with individual chance constraints yields
the better result. However, in this solution we have only 6 scenarios where both constraints are simultaneously satisfied
while each constraint is satisfied in eight scenarios in total, as required.

4.5 Penalizing violations of chance constraints

EMP SP offers the syntax for a penalty factor for each scenario that violates one or more constraints. Taking the joint chance
constraints example (4.22) the emp.info file of the GAMS code could be modified in the following way:

1 file emp / ’%emp.info%’ /; put emp ’* problem %gams.i%’/;

2 $onput

3 randvar om1 discrete 0.25 1 0.25 2 0.25 3 0.25 4

4 randvar om2 discrete 0.3333 1 0.3334 2 0.3333 3

5 chance E1 E2 0.6 3

6 $offput

7 putclose emp;

Note that in line 5 we added the penalty factor 3. Recall the MIP equivalent (4.25) of the problem:

Min z = x1 + x2
s.t. 1x1 + x2 ≥ 7−M(1− y1)

1x1 +3x2 ≥ 12−M(1− y1)
...
4x1 + x2 ≥ 7−M(1− y12)
3x1 +3x2 ≥ 12−M(1− y12)
cc1 = 1−∑k πkyk, k = 1, . . . ,12, πk = 1

12
x1,x2 ≥ 0
0≤ cc1 ≤ (1−0.6)
yk ∈ (0,1).

(4.31)

The probability with which the constraints were violated is stored in the variable cc1 . The introduction of the penalty factor
on line 5 of the emp.info file causes cc1 multiplied by the penalty factor to be added to the objective function:

z = x1 + x2 +3cc1. (4.32)

Similarly, the lines

chance E1 0.75 5

chance E2 0.6 6

chance E3 0.5 7

in the emp.info file of the GAMS code for the problem with individual chance constraints (4.26) trigger the objective
function in the MIP equivalent to become:

z = x1 + x2 +5cc1 +6cc2 +7cc3. (4.33)
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Scenario Probability ATT GMC USX
s1 1

12 1.300 1.225 1.149
s2 1

12 1.103 1.290 1.260
s3 1

12 1.216 1.216 1.419
s4 1

12 0.954 0.728 0.922
s5 1

12 0.929 1.144 1.169
s6 1

12 1.056 1.107 0.965
s7 1

12 1.038 1.321 1.133
s8 1

12 1.089 1.305 1.732
s9 1

12 1.090 1.195 1.021
s10 1

12 1.083 1.390 1.131
s11 1

12 1.035 0.928 1.006
s12 1

12 1.176 1.715 1.908

Table 31.3: Return by scenario

This can be useful in order to explore sensitivities to slight changes.

There is also a possibility that allows the modeler to use the probability expression as a variable in the original model. For
example, in the joint chance constraints problem above we could introduce a new variable, viol, in the objective function:

Min z = x1 + x2 +3∗ viol (4.34)

Then we replace line 5 in the emp.info file of the GAMS code as follows:

chance E1 E2 0.6 viol

This addition causes cc1 to be replaced by viol in the MIP equivalent. Thus we have:

viol = 1−∑
k

π
kyk, k = 1, . . . ,12, π

k =
1

12
, viol ∈ [0,0.4]. (4.35)

This model is equivalent to the joint chance constraints model with penalty factor 3 with which we started this section.

5 Risk Measures

Risk measures are mechanisms to evaluate the effects of uncertainty in the underlying system on the outcomes of interest.
They can be used to modify the distribution of outcomes. In this section we explore how optimization problems involving
risk measures can be modeled using stochastic programming in GAMS EMP. Specifically, we examine how an investor
might seek to balance expected rewards and the risk of loss when she decides how to allocate assets in a portfolio.

First, we will discuss maximizing the expected value of a portfolio with uncertain returns, then we will briefly introduce
the notion of Value at Risk and finally we will examine optimization problems involving Conditional Value at Risk and a
combination of expected value and Conditional Value at Risk. For simplicity we consider only one period of uncertainty
(0,T ) between the two dates 0 and T . In the examples introduced below the period (0,T ) is the period between investing in
a portfolio of assets and return from this portfolio.

5.1 Expected Value

Suppose an investor has the opportunity to invest a certain amount in three assets. She is given the probability distribution
in Table 31.3 that links each asset with a possible return at time T . The question arises how she should allocate her funds
between the three assets at time 0 in order to maximise her expected return at time T.



614 Stochastic Programming (SP) with EMP

Mathematically, the problem can be expressed as follows:

Max E[R]
s.t R = ∑ j w jv j

∑ j w j = 1
w j ≥ 0,

(5.36)

where the variable R is the return (and is a function of the random variable v), E[R] the expected return, w j the weight
associated with each asset j and v j is the (random variable) return of each asset j. The weights can also be interpreted as
proportions of the amount to be invested, their sum must be 1. Note that the w j’s are the decision variables in this problem.

We present two different ways to model this problem in GAMS using EMP SP. Both models have two stages: in the first
stage the weights are chosen without knowing which scenario will be realized, in the second stage the 12 scenarios are
taken into account. We start with the part of the code where the data is given. It is named data.inc and incorporated in all
models in this section.

1 Set j assets / ATT, GMC, USX /

2 s scenarios / s1*s12 /

3

4 Table vs(s,j) scenario returns from assets

5 att gmc usx

6 s1 1.300 1.225 1.149

7 s2 1.103 1.290 1.260

8 s3 1.216 1.216 1.419

9 s4 0.954 0.728 0.922

10 s5 0.929 1.144 1.169

11 s6 1.056 1.107 0.965

12 s7 1.038 1.321 1.133

13 s8 1.089 1.305 1.732

14 s9 1.090 1.195 1.021

15 s10 1.083 1.390 1.131

16 s11 1.035 0.928 1.006

17 s12 1.176 1.715 1.908;

18

19 Alias (j,jj);

20 Parameter

21 mean(j) mean return

22 dev(s,j) deviations

23 covar(j,jj) covariance matrix of returns

24 totmean total mean return;

25

26 mean(j) = sum(s, vs(s,j))/card(s);

27 dev(s,j) = vs(s,j) - mean(j);

28 covar(j,jj) = sum(s, dev(s,j)*dev(s,jj))/(card(s)-1);

29 totmean = sum(j, mean(j))/card(j);

30 display mean, dev, covar, totmean;

31

32 Parameter

33 p(s) probability / #s [1/card(s)] /

34 v(j) return from assets; v(j) = mean(j);

Here is the first model:

1 $include data.inc

2

3 Variables

4 r value of portfolio under each scenario

5 w(j) portfolio selection;

6 Positive variables w;

7

8 Equations
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9 defr return of portfolio

10 budget budget constraint;

11

12 defr.. r =e= sum(j, v(j)*w(j));

13 budget.. sum(j, w(j)) =e= 1;

14

15 model portfolio / all /;

16

17 Parameter

18 s_v(s,j) return from assets by scenario /s1.att 1/

19 s_r(s) return from portfolio by scenario;

20

21 Set dict / s .scenario.’’

22 v .randvar. s_v

23 r .level. s_r /;

24

25 file emp / ’%emp.info%’ /; emp.nd=4;

26 put emp ’* problem %gams.i%’

27 / ’stage 2 r defr v’

28 / ’jrandvar v(’att’) v(’gmc’) v(’usx’)’

29 loop(s, put / p(s) vs(s,"att") vs(s,"gmc") vs(s,"usx"));

30 putclose emp;

31

32 solve portfolio using emp max r scenario dict;

33 display s_r, w.l;

As usual, an emp.info file is created (lines 25-30) and the set dict is defined (lines 21-23) for output handling. Observe that
the syntax suggests that the return r is maximized. (line 32). However, in fact the expected return is maximized. Note that
the statement emp.nd=4 ensures that 4 decimal places are used for the values of vs in the emp file, the default is 2. Note
further that the solver renormalizes the sum of the probabilities to 1 if some input rounding is performed.

In the second model it is explicitly stated that the expected value of the return is maximized. We introduce a new variable
for the expected return, EV_r, and the new keword ExpectedValue.

1 $include data.inc

2

3 Variables

4 r value of portfolio under each scenario

5 w(j) portfolio selection

6 EV_r expected value of r

7 objective objective variable;

8 Positive variables w;

9

10 Equations

11 defr return of portfolio

12 budget budget constraint

13 obj_eq objective eqn;

14

15 defr.. r =e= sum(j, v(j)*w(j));

16 budget.. sum(j, w(j)) =e= 1;

17 obj_eq.. objective =e= EV_r;

18 model portfolio / all /;

19

20 file emp / ’%emp.info%’ /;

21 emp.nd=4;

22 put emp ’* problem %gams.i%’

23 / ’ExpectedValue r EV_r’

24 / ’stage 2 v defr r’

25 / ’stage 1 objective obj_eq EV_r’

26 / "jrandvar v(’att’) v(’gmc’) v(’usx’)"

27 loop(s,
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28 put / p(s) vs(s,"att") vs(s,"gmc") vs(s,"usx"));

29 putclose emp;

30

31 Parameter

32 s_v(s,j) return from assets by scenario /s1.att 1/

33 s_r(s) return from portfolio by scenario;

34

35 Set dict / s .scenario.’’

36 v .randvar. s_v

37 r .level. s_r /;

38

39 solve portfolio using emp max objective scenario dict;

40 display s_r, w.l;

In this model the objective to be maximized is EV_r, the expected return. In the emp file EV_r is declared as the
ExpectedValue of the random variable r. Note that the variables and the equation of stage 2 remain unchanged, but
the new variables EV_r and obj belong to stage 1. Since the expected value of r is not scenario dependent, its value is
known in the preceding stage to the resolution of r, namely stage 1. Note that in a 3-stage-problem with r in the third stage,
the expected value of r will be known with certainty in the second stage. Both models have the same solution. We prefer
the second model since the syntax is more explicit and clearer.

5.2 Value at Risk (VaR)

Suppose G(x,ξ ) is a real valued function of the decision vector x and a random data vector ξ and that it denotes the loss
function of a portfolio of assets. We aim to restrict potential losses and so we choose a portfolio composition such that the
loss does exceed a certain threshold γ (γ ∈ R) with a probability smaller or equal to α , α ∈ (0,1), where α is small. This
condition can be modeled as a chance constraint (compare section 4 on chance constraints) and has the form

P(G(x,ξ )> γ)≤ α (5.37)

or equivalently,
P(G(x,ξ )− γ ≤ 0)≥ 1−α. (5.38)

Consider the random variable Zx := G(x,ξ )− γ . For a given value of x, let FZ(z) := P(Z ≤ z) be the cumulative distribution
function of Z. Now, the point x satisfies the constraint (5.38) if and only if FZ(0)≥ 1−α . This is equivalent to saying that
x satisfies the constraint (5.38) if and only if F−1

Z (1−α)≤ 0.

The (left-side) quantile F−1
Z (θ) is called Value at Risk. It is denoted by VaRθ (Z), i.e.

VaRθ (Z) = inf{t : FZ(t)≥ θ}. (5.39)

Hence constraint (5.38) can be written in the following equivalent form:

VaR1−α(G(x,ξ ))≤ γ. (5.40)

The figure below illustrates VaR0.05(Z) where Z is normally distributed with mean µ = 0.645 and standard deviation σ = 1.

5.3 Conditional Value at Risk (CVaR)

CVaRα is the expected average return (in a given time period) given that we are in the (α × 100)% left tail of the return
distribution, where α ∈ (0,1). In other words, CVaRα is a mean of the left tail. For example, if we are interested in the 5%
worst cases, i.e. α = 0.05, CVaRα is the conditional expection of the return, given the return is no greater than VaR.

Let ξ be a random variable with probability density function p(ξ ), let G(ξ ) be a function of the random variable ξ denoting
the return of a portfolio of assets and let α ∈ (0,1) be a probability. Then the conditional value at risk of G(ξ ) is defined as

CVaRα(G(ξ )) =
1
α

∫ VaRα

−∞

G(ξ ) · p(ξ )dξ , (5.41)
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Figure 31.2: VaR and CVaR

where VaRα is the value at risk.

In the example above the investor might be interested to make sure that if things get bad she loses as little as possible. She
might consider the worst 10% of possible cases and allocate her funds such that the expected mean return in these cases is
maximized. Mathematically, the problem can be expressed as follows:

Max CVaRθ [R]
s.t R = ∑ j w jv j

∑ j w j = 1
w j ≥ 0,

(5.42)

where E[R] is the expected value of the return and CVaRθ is the CVaR at the confidence level θ .

This problem can be modeled in GAMS by introducing in the emp file a new variable for the conditional value at risk
(CVar_r), a scalar to specify the percentage of the worst cases we are interested in (theta) and cvarlo, a new keyword.

1 $include data.inc

2

3 Scalar

4 theta relative volume / [1-0.9] /;

5

6 Variables

7 r value of portfolio under each scenario

8 w(j) portfolio selection

9 CVaR_r conditional value at risk of r

10 objective objective variable;

11 Positive variables w;
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12

13 Equations

14 defr return of portfolio

15 budget budget constraint

16 obj_eq objective function;

17

18 defr.. r =e= sum(j, v(j)*w(j));

19 budget.. sum(j, w(j)) =e= 1;

20 obj_eq.. objective =e= CVaR_r;

21 model portfolio / all /;

22

23 file emp / ’%emp.info%’ /

24 put emp ’* problem %gams.i%’

25 / ’cvarlo r CVaR_r ’ theta

26 / ’stage 2 r defr v’

27 / ’stage 1 objective obj_eq CVaR_r’

28 / "jrandvar v(’att’) v(’gmc’) v(’usx’)"

29 loop(s,

30 put / p(s) vs(s,"att") vs(s,"gmc") vs(s,"usx"));

31 putclose emp;

32

33 Parameter

34 s_v(s,j) return from assets by scenario /s1.att 1/

35 s_r(s) return from portfolio by scenario;

36

37 Set dict / s .scenario.’’

38 v .randvar. s_v

39 r .level. s_r /;

40

41 solve portfolio using emp max objective scenario dict;

42 display s_r;

Observe that the objective equals the Conditional Value at Risk (the conditional expectation of the left tail, denoted by
CVaR). Line 25 specifies that the variable CVaR_r is the Conditional Value at Risk, r is the random variable and the scalar
theta is the fraction (in range 0 to 1) we consider. As in the previous section, the objective, the objective equation and the
variable of the objective belong to the first stage while the the equation that handles the random data and all its variables
belong to the second stage.

Note that the keyword cvarlo specifies that we are looking at the left tail of the probability distribution. For the right tail
of the distribution the keyword to be used is cvarup. The keyword cvar is identical to cvarup. The conditional value of
risk denoting the mean of the right tail of the distribution can be denoted by CVaR and is defined as:

CVaRα(G(ξ )) =
1

1−α

∫
∞

VaRα

G(ξ ) · p(ξ )dξ . (5.43)

Note that it is only appropriate to maximize CVaRα and minimize CVaRα . Furthermore, CVaRα is a concave function and
so should only be constrained using e.g.

CVaRα ≥ γ

and CVaRα is convex, so should only appear in constraints like

CVaRα ≤ γ.

In a final variation on the example above we consider an investor who aims to take into account both, the expected return
and the Conditional Value at Risk of the return at a certain threshold θ . She combines the two risk measures and uses a
scalar (λ ) to weigh the two summands. A mathematical formulation of the problem reads as follows:

Max λE[R]+ (1−λ )CVaRθ [R]
s.t R = ∑ j w jv j

∑ j w j = 1
w j ≥ 0,

(5.44)
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where E[R] is the expected value of the return and CVaRθ is the CVaR at the confidence level θ .

The GAMS model follows.

1 $include data.inc

2

3 Scalar

4 theta relative volume / [1-0.9] /

5 lambda weight EV versus CVaR / 0.2 /;

6

7 Variables

8 r value of portfolio under each scenario

9 w(j) portfolio selection

10 CVaR_r conditional value at risk of r

11 EV_r expected value of r

12 obj objective variable;

13 Positive variables w;

14

15 Equations

16 defr return of portfolio

17 budget budget constraint

18 defobj convex combination for both risk measures;

19

20 defr.. r =e= sum(j, v(j)*w(j));

21 budget.. sum(j, w(j)) =e= 1;

22 defobj.. obj =e= lambda*EV_r + (1-lambda)*CVaR_r;

23 model portfolio_ext / all /;

24

25 file emp / ’%emp.info%’ /

26 put emp ’* problem %gams.i%’

27 / ’ExpectedValue r EV_r’

28 / ’cvarlo r CVaR_r ’ theta

29 / ’stage 2 r defr v’

30 / ’stage 1 defobj obj’

31 / "jrandvar v(’att’) v(’gmc’) v(’usx’)"

32 loop(s,

33 put / p(s) vs(s,"att") vs(s,"gmc") vs(s,"usx"));

34 putclose emp;

35

36 Set dict / s .scenario.’’

37 v .randvar. s_v

38 r .level. s_r /;

39

40 solve portfolio_ext using emp max obj scenario dict;

41 display s_r;

42 display CVaR_r.l;

43 display EV_r.l;

The scalar lambda is introduced as a weight in the sum in the objective function and in the emp file both keywords
ExpectedValue and cvarlo are used. Other risk measures could be implemented in future versions of EMP SP.

Concluding this section we present an alternative way to model CVaR. The code is identical to the code of the first model
on page 614 except for the scalar theta and the emp.info file. The modification of the code for this alternative way of
modeling CVaR is given below.

1 Scalar

2 theta relative volume / [1-0.9] /;

3

4 file emp / ’%emp.info%’ /

5 put emp ’* problem %gams.i%’

6 / ’cvarlo ’ theta
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7 / ’stage 2 r defr v’

8 / "jrandvar v(’att’) v(’gmc’) v(’usx’)"

9 loop(s, put / p(s) vs(s,"att") vs(s,"gmc") vs(s,"usx"));

10 putclose emp;

11

12 solve portfolio using emp max r scenario dict;

13 display s_r;

Observe that there is no additional variable for CVaR, but the risk measure is simply applied to the objective function.

6 Summary of keywords and solver configurations

The following keywords can be used in the emp.info file to describe the uncertainty of a problem:

chance: This defines individual or joint chance constraints (CC) using the following syntax:

chance equ {equ} [holds] minRatio [weight|varName]

This way one defines that a single constraint equ (individual CC) or a set of constraints (joint CC) does only have
to hold for a certain ratio (0 ≤ minRatio ≤ 1) of the possible outcomes. The keyword holds is optional and
does not affect the solver. If weight is defined, the violation of a CC gets penalized in the objective (weight ∗
violationRatio). Alternatively, the violation can be multiplied by an existing variable if this is defined by varName.

cvarlo: This keyword assigns a variable to have the value CVaRα . α is a scalar that represents the confidence level for the
Conditional Value at Risk. There are two options for the syntax:

cvarlo scalar

and

cvarlo rv var scalar

In the first option the objective function variable is used, whereas in the second option the random variable used is
named explicitly (rv) and a variable for the value of CVaR is added (var), and scalar is the value of α .

cvarup: This keyword assigns a variable to have the value CVaRα . α is a scalar that represents the confidence level for the
Conditional Value at Risk. There are two options for the syntax:

cvarup scalar

and

cvarup rv var scalar

In the first option the objective function variable is used, whereas in the second option the random variable used is
named explicitly (rv) and a variable for the value of CVaR is added (var), and scalar is the value of α . Note that the
keyword cvar is identical to cvarup which refers to the right tail of the distribution.

ExpectedValue: This keyword is used to state that a variable is the expected value of a random variable. The syntax is as
follows:

ExpectedValue rv var

jrandvar: Jrandvar can be used to define discrete random variables and their joint distribution:

jrandvar rv rv {rv} prob val val {val} {prob val val {val}}

At least two random variables rv are defined and the outcome of those is coupled. The probability of the outcomes is
defined by prob and the corresponding realization for each random variable by val.

randvar: This defines both discrete and parametric random variables:



Stochastic Programming (SP) with EMP 621

randvar rv discrete prob val {prob val}

The distribution of discrete random variables is defined by pairs of the probability prob of an outcome and the
corresponding realization val.

randvar rv distr par {par}

A list of all supported parametric distributions can be found in Table 31.2 on page 599. All possible values for distr
and the related parameters par are listed there.

sample: This allows the user to customize the size of the sample of a random variable from a continuous distribution and
there is also the option to determine the variance reduction method to be used:

sample rv1 [rv2 ... rvn] sampleSize [varRedMethod]

In rv the name of the random variable is given. The sample size of more than one random variable can be customized
simultaneously. In this case the names of the random variables are listed. sampleSize is a number, namely the
desired size of the sample and varRedGroup is optional. For more details about variance reduction methods see
section 2.3 and in addition, please consult the LINDO manual.

setSeed: This sets the seed for the random number generator of the sampling routines called using the sample keyword. If
setSeed is used in the emp.info file, the seed is set once before we generate all samples.

setSeed seed

stage: Random variables (rv), equations (equ) and variables (var) are assigned to non-default stages like this:

stage stageNo rv | equ | var {rv | equ | var}

StageNo defines the stage number. The default stage for all random variables, equations and variables not mentioned
with the stage keyword is 1, except for the objective equation. The default for the objective equation is the highest
stage mentioned. Note that the objective variable is in stage 1.

At the moment four GAMS solvers can be used to solve SP models in the way descibed in this document: DE, DECIS,
LINDO and JAMS. Further information about these solvers can be found in the corresponding solver manuals.

Not all keywords mentioned above are supported by all four solvers. The following table specifies which keywords can be
used with which solvers. The keywords not mentioned in the table are supported by all four solvers.

DE DECIS LINDO JAMS
chance

√ √ √

jrandvar
√ √ √

randvar (discrete)
√ √ √

randvar (parametric)
√

sample
√

setSeed
√

cvar
√ √

ExpectedValue
√ √

Table 31.4: Solver Capabilities

The SP options available for the LINDO solver are documented in the LINDO/LINDOGlobal manual.

7 More on scenarios and output extraction

The size of the set scen does not have to match the number of scenarios actually generated in the solution process. For
example, if we set the size of scen to 2 in the news vendor model from section 2.1, then the results of the first two scenarios
will be stored in the parameters s_d, s_x and s_s, and the results of the other scenarios will not be stored. On the other
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hand, if the size of scen is bigger than the number of scenarios generated, then in the parameters (e.g. s_d) the positions of
the surplus elements of scen will be empty.

After solving a SP model only the solution of the expected value problem can be accessed via the regular .L and .M fields.
As described in section 2.1, additional parameters have to be defined to store the results for the different scenarios solved.
The following values can be stored by this approach:

level: Stores the levels of a scenario solution of variable or equation.
marginal: Stores the marginals of a scenario solution of variable or equation.
randvar: Stores the realization of a random variable.
opt: Stores the probability of each scenario.

In the news vendor model from section 2.1 we can use the following:

1 Set scen Scenarios / s1*s6 /;

2 Parameter

3 s_x(scen) Units bought by scenario

4 s_rep(secen,*) Scenario probability / #scen.prob 0/;

5

6 Set dict / scen .scenario.’’

7 x .level .s_x

8 ’’ . opt .s_rep/;

The size of the set scen defines the number of scenarios we are willing to store results for. X is a variable for which we want
to access the level and s_x is the parameter the levels of x are stored in. Note that s_x needs to have the same indices
as x plus the additional index scen in the first position. In the parameter s_rep we store the probabilities of the different
scenarios solved.


