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Fermat and the Quadrature of the 
Folium of Descartes 

Jaume Paradis, Josep Pla, and Pelegri Viader 

1. INTRODUCTION. The seventeenth was a century rich in mathematical discov- 
eries and also rich in mathematical discussions and controversies. One of these famous 
confrontations took place between Fermat and Descartes over the problem of tracing 
tangents to a curve (see the letter of 18 January 1638 [23, vol. 2, pp. 129-130] and the 
letter of 12 November 1638 [23, vol. 2, p. 35]). Descartes did not fully understand Fer- 
mat's method for the tracing of tangents, and he believed his own solution (presented in 
La Gdomitrie [13, pp. 95-115]) far better. Many of the controversies of the time took 
the form of challenges: one mathematician, usually in possession of a problem (and 
a solution to the problem), challenged a colleague or even the whole scientific com- 
munity to solve the problem. Following this custom, Descartes challenged Fermat to 
find the tangents to an especially complicated curve that he (Descartes) had invented. 
That curve has ever since borne his name: the folium of Descartes. The name "folium" 
comes from the leaf shape of the curve's loop in the first quadrant (see Figure 1). 

Figure 1. The folium of Descartes, x3 + y3 = 3axy. 

The difficulty that Descartes thought would be impossible for Fermat to overcome 
was that the proposed curve was a cubic given by an implicit equation: x3 + y3 = 
3axy. Descartes was very proud of his own method for drawing tangents to curves. In 
his own words: "And I dare say that this is not only the most useful and most general 
problem in geometry that I know, but even that I have ever desired to know" [13, p. 95]. 
It is not strange then that, when he heard of a method devised by a relatively obscure 
amateur, Descartes thought that the alleged solution would be just a poor construction 
that would not pass his test. When Fermat provided the required tangents not only at 
the vertex of the folium (the only point at which Descartes's method was applicable) 
but also at any other point of the curve, Descartes was obliged to acknowledge the 
superiority of Fermat's method and his intellectual greatness. See [8] to learn more 
about the problem of tangents and [19], [14], or [18, p. 181] to find out what the 
controversy was. 
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What is not nearly so well known, however, is that Fermat solved another problem 
related to the folium of Descartes: to find the area enclosed by the loop or, in the 
language of the time, to "square" the loop of the folium. Fermat solved this problem 
in a paper written in 1658 or 1659 (the exact date is uncertain), in which he collected 
some results concerning the "quadrature of curves." The paper is known as the Treatise 
on Quadrature, the short form for its puzzling and overwhelmingly long title (see [15]). 

Today the problem as such is nothing more than a classic exercise that appears in 
many calculus textbooks, usually in the chapter on the use of polar coordinates in 
integration. It has even been the object of attention in this MONTHLY, either in the 
form of a problem (see [3], [4], [22], and [24]) or in the form of a short note (see [17]). 
Other problems related to the folium, such as computing its length, the plotting of its 
graph, or finding its center of gravity have also been tackled (see [16], [5], [6], [7], [1], 
[11], and [12]). 

Returning to the folium itself (about which further details can be found at the web- 
site [20]), we recall that its Cartesian equation is 

x3 + y3 = 3axy, 

where a is a positive parameter. The loop appears in the first quadrant, (0, 0) is a double 
point, and each of the two branches of the folium is asymptotic to the line x + y = -a, 
all as shown in Figure 1. (A good reference for the main issues concerning real plane 
algebraic curves, such as multiple points, asymptotes, behavior near the origin, and so 
forth, is [21, chap. 1].) 

Wilson's solution [24] to the problem of finding the area enclosed by the loop uses 
the parametric equations of the folium: 

3at 

1 + t3 
' 

3at2 

I 1 + t3' 

The loop is drawn for t varying from 0 to oc and the area within is found with the help 
of a formula, a consequence of Green's theorem, for the area as a curvilinear integral 
(see [9, p. 347]): 

A 
t=oo 

xdy 
= - ydx =- a2 (2) 

L=o t=o 2 

Bullard [3] generalizes the folium and asks for the area enclosed by the loop of the 
curve with equation 

x2q+l + y2q+1 = (2q + 1)axqyq, (3) 

where q is a positive integer. His problem also asks one to find the area trapped be- 
tween the generalized folium and its asymptote, the line x + y = (-1)qa. 

Bullard's own solution [4] changes the folium equation to polar coordinates (r, 0) 
and uses the formula for the area enclosed by the arc of a polar curve and the radius 
vectors from the origin to the endpoints of the arc (see [10, p. 275]): 

1 92 
A=- r2dO. 
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In the case of the generalized folium (3), the equation in polar coordinates is 

(2q + 1)a tanq 0 sec 0 
r 

1 + tan2q+l 0 
and the corresponding area within the loop is 

1 Ir/2 2q + 12 A(q) r2- da2 
2 

Jo 
2 

Remark. The area between the curve and its asymptote is exactly the same as the area 
of the loop. 

Lastly, Johnson [17] uses the parametric equations (1) again, but he finds the area 
of the loop thanks to the symmetric form of the expression for the area given by (2) 
(see [10, p. 273]): 

A t2 

A -- -• 
(x dy - y dx), 

an expression that, as t = y/x and dt = (x dy - y dx)/x2 along the curve under con- 
sideration, reduces to 

A = 2 x2 dt. 

This makes the calculation of A very easy in the case of the folium of Descartes, 

9 
0 

t2 3 
A = - a 

(Idt 
- a2 

2 Jo (1 + t3)2 2 

In the case of Bullard's generalization (3), the parametric equations are 

(2q + l)atq 
x 2 1 + 

t2q+l 
' 

(2q + 1)atq+l S 
1 + t2q+1l 

and the area of the loop is calculated as easily as in the case of the folium: 

(2q+1)2 
t00 

2q 2q + 1 2 
A(q)= 

(a2ql 

dt = a . 
2 Jo (1 + t2q+1)2 2 

2. FERMAT'S METHOD OF QUADRATURE. In the first part of the Treatise on 
Quadrature, Fermat obtains formulas to square all the "higher parabolas" with equa- 
tions y = xm/n for positive integers m and n, 

xm/n dx= 
n 

b(m+n)/n 

0o m+n 

and to square all the "higher hyperbolas," whose equations are y = 
x-m/n with m and 

n positive integers and m > n, 

00 
n 1 x-m/n dx = 

b m - n b(m-n)/n 
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(The case of the hyperbola y = x-I/n for m < n can be reduced to the quadrature of 
the hyperbola x = y-n/m obtained by interchanging the coordinate axes. In this way, 
the only hyperbola that eludes Fermat's grasp is, obviously, y = x-'. See [2] for the 
details.) 

In the second part of the Treatise, Fermat tackles the quadrature of more compli- 
cated curves. Fermat considers only curves drawn in the first quadrant, and the areas 
he finds are of two types: the area enclosed by a simple curve and its intersections with 
the coordinate axes (see Figure 2) and the area enclosed by a curve, its asymptote, and 
a given finite ordinate (see Figure 3). His method is based essentially on a particular 
case of what is today known as the formula for integration by parts. 

b 

y = f(x) 

a 

Figure 2. 

x = g(y) 

a 

Figure 3. 

Theorem 1 (Parts Theorem). If a positive decreasing function cuts the x-axis on a 
and the y-axis on b (see Figure 2), then 

ym dx = 
mf ym-lxdy. (4) 

c0 0O 

Fermat presents this important tool for the squaring of curves without proof. It 
is very likely, though, that Fermat had learned of the method from Pascal, who had 
corresponded with him about it (see the letter of 16 February 1659 [23, vol. 2, pp. 430 
and 436]). Fermat's formulation is geometric but with a good dose of algebra, whereas 
Pascal's formulation and proof are purely geometric. 

The result of the Parts Theorem really is a special case of integration by parts. 
Referring to Figure 2, we integrate by parts and obtain 

ja a 

Oyd 
[xymo 

= 

m 
xymly'dx 

The term in brackets is 0. Applying the change of variable 

x = f-l(y), y'dx = dy, (5) 

to the integral on the right-hand side, we find that 

Ja 

oa 

p0 b 
ym 

dx= -m 
xym-ydx -m xym-dy m xym-'ydx=-m fydy=mf byrldy. 

O Jo b 
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Fermat had no problem applying the result even when one of the integral limits was 
oo. That is to say, the conclusion of the Parts Theorem is valid even in the case where 
the curve has an asymptote, as shown in Figure 3: 

moo da I 'dy = m xm-lydx. 
0 J0 

We should remark in passing that Fermat did not give priority to one coordinate axis 
or the other. In each problem he used whichever axis was most convenient for his 
purposes. 

y 

Yo 

I 2 

a 
= 
x(x) 

a xo x 

Figure 4. 

If a function was not decreasing, Fermat appealed to his method of maxima and 
minima to determine a point such that the graph could be separated into pieces to 
which the Parts Theorem was directly applicable (see Figure 4). Formula (4), in this 
case, must be applied separately to each monotone portion of the graph, 

fymdx 
= 

yYm 
dx + ym dx. (6) 

For the first integral on the right-hand side of (6), we must consider xl = g-'(y), 
where g = fl [a, xo0], in order to apply the change of variable (5): 

fO =[] XO = 
ym 

Sym dx = 
[xym]x 

- m 
xym-ly' dx = 

xoy - 
m y-lx dy. (7) 

a 

a fa 
Y 

0 

As for the second summand in (6), the inverse function to be taken in (5) is x2 
h-' (y), where h = f [xo, 00]: 

ym dx = [xym] 
- m 

xym-ly' dx = -xoy + m ym -1x2dy. (8) 
x0 xo00 

Adding (7) and (8) we finally obtain 

ym dx = m m (x2 
-Xl) dy. (9) 
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In fact, Fermat considered only the case in which the function has two monotone por- 
tions, but there is no reason why it should not be applicable to a function with any 
finite number of monotone pieces. In this case, in order to obtain the equivalent of for- 
mula (9), careful attention must be paid to the different pieces and their corresponding 
limits of integration. 

3. THE QUADRATURE OF THE FOLIUM. We are now ready to see how Fermat 
applied his method. We consider the loop of the folium whose equation is x3 + y3 = 

3axy (see Figure 5). Notice that in Figure 5, yo denotes the y-coordinate of the highest 
point of the folium. To begin, Fermat made the change of variable 

x = uy2, (10) 

after which the equation of the folium becomes 

u3y6 ? y3 = 3auy3 

or, in a different form, 

_ 3au - 1 

y3 u3 

The graph of the function f(u) = (3au - 1)/u3 is seen in Figure 6. Fermat asserted 
that the region enclosed by the loop of the folium had been transformed into the region 
between the graph of f (u) and its asymptote (the x-axis) over the interval [1/3a, oo). 

Yo 

xI x2 

R 

Figure 5. x3 + y3 = 3axy. 

Yo 

Ui U2 

S 

1/3a 

Figure 6. f (u) = (3au - 1)/u3. 

The variables xi and ui in Figures 5 and 6 are related by 

Xi = ui y2. 

Denoting by A the area within the loop of the folium, we can write 

A= (x2- Xl) dy = (u2 - ul)y2 dy. 

We now apply the Parts Theorem (9) backwards, 

f oy 
100ydu. S(u2 - ul)y2 dy = - y3du. 

O 3 J1/3a 
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For Fermat there was no problem in integrating y3 as a function of the variable u: 

[0 
"f 3au - 1 3 

y3du 3 du = 
- 

a2 
J1/3a J1/3a U3 2 

The weak point in Fermat's reasoning was his assertion that the area of the trans- 
formed region is the same as the area of the loop of the folium. We can justify this 

assumption by thinking of Fermat's change of variable x = uy2 as the transformation 
of plane coordinates 

(x, y) 
?+ (u, y). 

The Jacobian of this mapping (i.e., the factor that determines how areas transform) is 

readily computed: 

ax ax 
a(x, y) au a y y2 2uy 
a (u, y) ay ay 0 1 

au ay 

The region R of the xy-plane enclosed by the loop of the folium, 

R = {(x, y) : x< x < x2, O < y 
_ 

Yo}, 

is transformed into the region S of the uy-plane 

S =(u, y) : ul < u < u2, O < y < Yo), 

which can also be described as 

1 3au - 1/3y 
S (u, y) : 

-uu00, 
O<y< 3 3a u I 

The area of the loop can then be calculated as follows: 

A = dxdy = 
f 

o3a•(3 

)1/3 y2 dy du 
R fJ %1/3a 

(3 
3au-1 

11/3du 3a 

- d 
-/ 

y3 u3 f1 
3au-2 1/3a 3 

1/3a 

3 2 

4. GENERALIZED FOLIA. Bullard's generalized folium with equation (3), can be 
treated in exactly the same way. Proceeding a la Fermat we make the following change 
of variable: 

x = uy(q+l 

Fermat himself would never have made such a change of variable involving a fractional 

exponent. Instead, he might have used xq = 
uqyq+l, but nowhere in the Treatise is 

there such a change with q > 2. 
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The folium (3) is transformed into the curve with equation 

(2q+l)/q _ (2q + l)auq - 1 

u2q+1 

a curve whose graph is similar to the one in Figure 6. The chain of integrals that arose 
in Fermat's method translates in the generalized setting to 

fYO f YO 

A(q) = (x2 - x) dy = (u2 - UO)y(q+l)/q dy 

S 1 0qq+l 

q+l 1 ((2q+l)a)-l/q q 

_ 
q f0 (2q + 1)auq 

- 
1 2q + 1 2 

2q + 1 
((2q+l)a)-1/q 2q+l du 2 

The step (*) is the only one that Fermat would not have been prepared to accept. 
Fermat's (and Pascal's) Parts Theorem was clearly a theorem valid only for positive 
integer exponents. 

So much for Bullard's generalized folia. But we can go a little further than Bullard 
and "generalize" his folia even more. We consider the following one-parameter family 
of "loops": 

x 
a 

+ ya = 
x(a-1)/2y( (-1)/2 (11) 

We restrict attention to the first quadrant (otherwise xa and y' do not make sense), 
and we take the coefficient of the monomial on the right-hand side to be 1 in order to 
simplify matters. 

The graphs of these equations really are loops contained in the unit square [0, 1] x 
[0, 1]. To convince oneself of this fact, it is enough to intersect the curve (11) with the 
straight line y = kx (k > 0) to see that it has exactly two intersection points, namely, 

( k(a-1)/2 k(a+1)/2 
(0,0), 1k' I+ka 

As for containment in the unit square, assume that y > x > 0 (the dual case is similar). 
Then using (11) we can write 

y < x"o + yo = x(t-1)/2y(a-1)/2 < ya-i 

As a > 1 the fact that ya < ya-1 implies that y < 1, and consequently x < 1. The 
loops in this one-parameter family of loops can be considered continuous deformations 
of the triangle in the first quadrant that is bounded by the line x + y = 1 and the 
coordinate axes (see Figure 7). 

Again exploiting Fermat's method, we perform the change of variable 

x - uy(+1)/(-1) 

which maps the loop (11) to the curve with equation 

, 

U(a -1)/2 
2 1 

2a/(a -1)I 
yUa 

ua 
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Figure 7. xa (-1 1). Figure 7. x' + y• = x -- y--7 (- > 1). 

whose graph is once more similar to the one pictured in Figure 6. The chain of integrals 
that leads to the area of the loop is, as before, 

y 
YO r Yo 

A(a) =] (x2 - xl)dy = J (u2 - Ui)y(a+l)/(a-1) dy 

1 
0 1+1 la - u(a- 1)/2 1 

=+1 
y-r+l du 

=- 
du = 

t- + I I 2ot u I 2ao 

5. A NEW FAMILY OF FOLIA. Bullard's generalization of the folium of Descartes 
is a very natural one for two reasons. In the first place, the shape of the generalized 
folium is very similar to the original. Second, and more important, is the fact that the 
equation of the generalized folium follows the pattern 

P2q+1 (x, ) = P2q(X, y), 

where Pn denotes a homogeneous polynomial of degree n. This pattern allows for the 
parametrization of the curve through the parameter t = y/x. As a result, either the 
change to polar coordinates or the method used in Johnson's note [17] is applicable. 

There is, however, another natural family of curves that generalize the folium of 
Descartes-namely, the curves defined by equations of the type 

x2q+l + y2q+l =axy, 

where a > 0 and q is a positive integer, whose graphs are depicted in Figures 8 and 9. 
(Figure 8 exhibits the global character of such a curve, while Figure 9 plots the folia 
corresponding to various values of q.) We consider only the case a = 1 for the sake of 
simplicity. 

For q > 1, the asymptote of the curve is the line x + y = 0 and, as q increases, 
the loop seems to approach the boundary of the unit square in the first quadrant, as 
Figure 9 suggests. 

Following Fermat's procedure, we make the change of variable 

x = uy2q 
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q=2 

Figure 8. X2q+l + y2q+l 1 xy. 

q=2 

q=1 

1 
Figure 9. X2q+l +y2q+l _ xy. 

After simplification, the equation of the transformed curve becomes 

u2q+ly(2q+l)(2q-1) + 1 = U, 

or, thinking of Fermat's chain of integrals, 

y2q+l 

- 

• 

/(2q - 1) 

y2q+12q+1 ) 

The graph of a function 

u - 1 
1/(2q-1) f (u) = u (u2q+l) 

for u between 1 and ox is similar to the one shown in Figure 6 (which is precisely 
the case q = 1, the folium of Descartes). As earlier, the region within the loop is 
transformed into the region between the graph of f and the asymptote y = 0 above 
the interval [1, oo). 

As before, we apply (9) to each of the intervals on which f is monotone and make 
in the two integrals so obtained the change of variable 

Xi = 
uiy2q. 

If A(q) denotes the area within the loop, we obtain 

A(q) = (X2- xi) dy = (u2 
-l)2q dy - 2q1 y2q+1 du. 

fo fo 2q + 

But 

y2q+l 

u - 
11/(2q-1) 

y2q+1 
U2q+l ) 

SO 

1 

fl 

u 
--1 

1/(2q-1) 
A(q) = 2 1 

U2q+l 

du. 
2q + 1 J1 u2q+1 
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This last integral is not trivial and requires some work. First of all, the change of 
variables u - 1 = t transforms it into 

1 00 t 1/(2q -1) 

(q) -- 2q + 1 (1 + t)(2q+1)/(2q-1) dt, (12) 

which is related to Euler's beta function. We remind the reader of the latter function's 
definition (see [9, pp. 335-339]). For real x and y, 

B(x, y) = tx-l(1 - t)y-1 dt. (13) 
011 

If either x or y is less than 1, the integral is improper but convergent. It is also common 
to present (13) as follows: for real numbers m and n, 

B(m + 1, n +1) = xm(1 -x)n dx. 
JO1 

With the change of variable x = t/(1 + t) we can rewrite this in the form 

B(m + 1, n + 1) t 2 dx. 
0f (1 + t)m+n+2 

Motivated by this last representation of the beta function, in (12) we set 

1 
2q 

- -m, 2q - 1 

which gives 

2q + 1 
=2m+ 1 = m + (m- 1)+2. 

2q - 1 

Equation (12) can thus be restated as 

1 f00 t 1 
A(q) = I tm = B(m + 1, m). (14) 

2q + 1 o (1 + t)m+(m-1)+2 2q + 1 

We recall two properties of the beta function: 

(i) B(p, q) = B(q, p); 

(ii) B(p, q + 1) =P B (p, q). p • 

Using (i) and (ii) in (14), we arrive at 

1 1 1 1 
(q) = B(m + 1, m) = B(m, m + 1) - B2(m, m). 

2q+1 2q + 1 2q+1 2 

Finally, we obtain a compact expression for A (q): 

S1 1 ) 

i(q)- 
=2(2q +1)B 2q - ' 2q -1 
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As a particular case, for q = 1 we obtain the area of the loop of a folium of 
Descartes (for the parameter a = 1/3): 

1 1 
A(1) =- B(1, 1)= - 

6 6 

It is also easy to see that, as we had suspected for graphical reasons, for large q the 
loop tends to exhaust the unit square: 

lim A(q) = lim 1 - B 11. 
q->oo q--oo 2(2q + 1) 2q - 12q - 1 

Further generalization of this new family of folia would lead us to consider curves 
with equations 

x +y = xy yY (a > 2; P, y > 0; p + y < a), 

which can be shown to include loops contained in the unit square [0, 1] x [0, 1] similar 
to the ones considered hitherto. With the same type of arguments and self-explanatory 
notation we would obtain 

1 a-fl+y a+-Y 
A(a, P, y)=-B BI , 

2a \a(a -/3Y), (a - -lY)) 

6. CONCLUDING REMARKS. It is really surprising that, with the help of very ele- 
mentary geometric and algebraic notions, Fermat managed to develop such an original 
technique for the quadrature of curves. We must admit that, even with our powerful al- 
gebraic notation and the still more powerful identification area = integral, the method 
we have presented is already quite original. Imagine then, how difficult it would have 
been for Fermat, who spoke in a predominantly geometric language only about squar- 
ing x and squaring y! We cannot but stand in awe and admiration of his genius. 

It is worthwhile mentioning that the Treatise on Quadrature [15] is a quite obscure 
paper that is difficult to read. The great Huygens remarked, in reference to this paper: 
"[T]his treatise has been published with many mistakes and it is so obscure (with 
proofs redolent of error) that I have been unable to make any sense of it" (letter of 
Huygens to Leibniz, 1 September 1691, [23, vol. 4, p. 137]). Since then, the more 
obscure parts of the Treatise have been largely ignored by historians of mathematics: 
only two authors seem to have glimpsed the possibilities of the method, Zeuthen [25] 
and Mahoney [18], though both were far from exhausting its possibilities. 

The method of Fermat, of which we have only seen a small part, deserves further 
study. In some instances, as is the case of the generalized folia (11), the area enclosed 
by the loop is not easy to obtain, either by changing to polar coordinates or by any 
traditional method of the calculus. In these cases, Fermat's simple change of variable 
and his clever use of the Parts Theorem offer an unexpected way to solve them. 
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ACROSS 
1 lock key 
5 Hold fast to the truth as (Buddha) 
10 Not 27 down 
14 Concerning; or, broken part of a bridle? 
15 Daughter of Aeetes and wife of Jason 
16 Not odd 
17 Not now and not much later 
18 Nor' 
19 Pistol or malt liquor 
20 Conjunctive battle at the Little Bighorn? 
23 2.54 centimeters or 1/198 rod 
24 Scheme or outline 
25 Re or se follower 
26 Fabric, not 51 down 
30 Avoid or eschew 
32 Cactus-like lilies or myrrh's partner 
33 Org. for teachers and staff 
34 Alexander the Great's negative stroke? 
38 Word with old or iron 
39 O.K. gunfighters Morgan, Virgil, 

and Wyatt 
40 Meaning for 35 down 
41 Equivalent to Lake Constance 
43 Den of fox or lion 
45 "Very interesting" actor Johnson 
46 Coke or Pepsi 
49 Oliver Twist's disjunctive supplication? 
52 Not warp 
53 Double-reed woodwinds 
54 Type of dropper or plate 
55 South African archbishop, or ballet skirt 
56 Branch of peace or salad oil 
57 Oxalis crenata and tuberosa; or, Maple 

and Mathematica in the voc. case? 
58 October birthstone, not tourmaline 
59 Not insertions 
60 Not ones and not hundreds 

DOWN 
1 Networking company; or, defective shortening? 
2 Singular subject or object 
3 William Jennings Bryan did it to Scopes and 

Marcia Clark did it to O.J. 
4 Descartes was, so he was 
5 Fine or mulct 
6 Restraining strap or three of a kind 
7 Broadband from AOL or SBC 
8 Do not mix these 
9 Having a petroselinum garnish, as potatoes 

or carrots 
10 Disavow or unsay 
11 Shakespeare's river or cosmetics company 
12 Neuter; or, German money 
13 Tolkien tree creature or otolaryngologist 
21 Not the beginning and not the middle 
22 Ankles and the bones thereof 
26 A vertical line does not have one 
27 Goal of yoga or Zen 
28 Type of Dodge or sign 
29 Ship channel and gangster's pistol 
30 Strike breaker or skin disease 
31 French novelist or science fiction award 
32 Not uncongenial 
35 Matisse or Poincar6 
36 Spaghetti western actor Clint 
37 of the world (John 17:14) 
42 Scolding, or surprising news 
43 Not gains 
44 Hustle and bustle 
46 Jobs or Wozniak 
47 James Bond or one of the same rank? 
48 Muscle-building exercise or politician's bane 
49 Hot and sour or egg drop 
50 Small quantity or Greek letter 
51 This and 26 across are fabrics 
52 Controversial trade assn.; or, binary permutation? 

Contributed by Harold Boas, Texas A & M University 
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