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Abstract

D’Alembert’s proof of the fundamental theorem of algalfFTA), the first published, is still widely misunder-
stood. Typical of d’Alembert, his work is bold and imaginative but in need of significant repair. The proof is
examined in detail, in both the 1746 and 1754 versiorm)@lwith commentary over 250 years and recent efforts
to revive d’Alembert’s reputation. A particular challerigeo work with algebraic equations while avoiding depen-
dence on the FTA itself. A repaired version is offered.
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Résumeé

La démonstration de d’Alembert du théoréme fondamental de l'algebre (TFA)—Ila premiére publiée de
ce théoreme—est encore largemerdl momprise. Typique de d’Alembert, ce travail est plein d’audace et
d’'imagination, mais il a besoin d’étre substantiellement rectifié. On examine en détail cette preuve, dans les deux
versions de 1746 et 1754, et 'on commente sa réception sl@plians, y compris les efforts récents pour rétablir
la réputation de d’Alembert. Un défi tout particulier résulte de la nécessité de travailler sur les équations algébriques
tout en évitant I'utilisation du TFA. Une versiaectifiée de la preuve de d’Alembert est donnée.
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1. Introduction

The first published proof of the fundamental theorem of algebra (FTA) was by Jean le Rond
d’Alembert (1717-1783), in an article “Recherches sur le calcul intégdiklembert, 1746] sent to
Berlin in December 1746 for inclusion Memoires de I'’Académie Royale, Berlior 1746, and which
appeared in 1748. It was based on algebraic equations. The FTA is the claim that every real polynomial
has real or complex roots.
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As it turned out, Leonhard Euler (1707-1783) had himself read a proof of the FTA to the Berlin
Academy in November 174fculer, 1980, 254]Euler’'s proof was algebraic, centered on an argument
that if a real polynomial of degree‘ 2k > 1, was written as the product of two polynomials of equal
degree, then the coefficients of the proposed factors could be found as real roots of a system of equations.
His proof was published in thielemoirefor 1749[Euler, 1749] actually issued in 1751.

Over the next decades, other algebraic proofs of the FTA were giv&atigt de Foncenex [1759],
by J.L. Lagrange [1772]and in 1795 by P.-S. Laplac&§1d. C.F. Gauss offered a profBauss, 1799]
based in part on “geometric consideratiofGauss, 1816, 33hnd a second proof, algebraic, of the FTA
in 1815[Gauss, 1816]An important analytic proof was given ly-R. Argand [1806]with an improved
version inArgand [1814/1815]

All these early proofs—the list could be expanded—relied on claims which lacked adequate
justification according to modern standards. All the algebraic proofs mentioned assumed a real root for
every real polynomial of odd degree, and Argand’s proof assumed that a continuous function achieves a
minimum on a closed disk; late 19th-century development of the real numbers and continuity provided
justification. All the algebraic proofs through that of Laplace assumed the existence, in some form,
of roots of a given polynomial; this too would be justified, principally in the work of Kronecker and
Dedekind in the late 19th centufiiernan, 1971] The proofs of Euler and Foncenex and Lagrange
required Lagrange’s theorem on similar functions, stated and proved in Articles 100 to [l&grahge
[1770/1771]) (Seevan der Waerden [1985, 8)]And justification for Gauss’s first proof was finally
provided inOstrowski [1920] The simplest of these proofs, those of Laplace and of Argand, are still
presented, as iBamuel [1967] and Fefferman [196Tgspectively.

D’Alembert’s proof is different. First, there is no broadly accepted understanding of his proof. The
reader may consu[Boyer, 1968, 491; Dieudonné and Guérindon, 1978, 68—69; Stillwell, 1989, 196—
198] for three very different descriptions of d’Alembert’s proof. (I recommgBayli, 1925, 189-192;
Bottazzini, 1986, 15-16; Gilain, 1991, 113-116f accuracy.) Second, unlike all the proofs mentioned
above, d’Alembert’s has not engendered a line of repaired and improved proofs of the FTA. Dieudonné
and Guérindon, among others, have said that the major deficiency of d’Alembert’s proof can be remedied
by “an elementary argument of compactness.” The story is not that simple; care is needed, especially
with algebraic equations, to avoid dependence on the FTA on the way to its proof. This paper is an
attempt to view the history of d’Alembert’s proof in that spirit. Introductory material makeésagtions 2
and 3 Section 4is a detailed summary of d’Alembert’s pro@gctions 5 and fliscuss commentary on
d’Alembert’s proof over 250 years and repair of the proof.

2. Imaginary roots in the 18th century

Before we look at d’Alembert’s proof and its interpretation, it is helpful to consider the 18th-century
understanding of “imaginary,” used as early as Descaki@&éométrie1637. The solution of third and
fourth degree equations by square and cube roots had been known since the publication of Carslano’s
Magnain 1545. It was not generally accepted, however, that the nonreal roots produced this way were
complex, and those roots were simply called “imaginary,” as were the nonreal roots of all polynomials.
Thus, for examplel,agrange [1772¢arried the title “Sur la forme des racines imaginaires des équations”;
the work was a proof that the “imaginary” roots were actually complex. A second meaning is encountered
in 18th-century work: expressions of the forpn+ g+/—1 are called “imaginary” wherp andg are
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real. D’Alembert’s proof of 1746 was followed by a note, disputable, which paired the two meanings
of “imaginary”: “Il est a remarquer que dans les demonstrations precedentes, on n'a point supposé que
la racine imaginaire du multinome, elt ou pdt avoir une expression imaginaire, avant de la reduire a
p+q+/—1" [D’Alembert, 1746, Remark 1, Art. X]Gauss used “imaginary” inlf99 to denote complex
numbers; he later coined the name “complex.”

| will often use “complex” in place of the clumsy “of the form+ ¢+/—1.” | also use “imaginary,” in
quotation marks, in the 18th-century sense of “not real and of indeterminate form.”

3. Euler and d’Alembert, 1746

In hindsight, the near simultaneous appearance of two proofs of the FTA is only a small surprise.
Already in the early years of the calculus, the method of partial fraction expansion posed the question
of whether every real polynomial is the product of real factors of degree one and two. In 1702, in
papers in theActa Eruditorum Johann Bernoulli answered in the affirmative while Leibniz took the
negative position, claiming that* + a* could not be written as the product of two real factfitine,

1972, 411] Over the next four decades, growing experience with complex numbers led the majority
of mathematicians to side with Bernoulli, but often without a clear grasp of the issue. More than a
few simply believed that a process of root extraction such as produced the zeros of the fourth degree
polynomial would be found for higher degrees. Thus the closure of the complex numbers under root
extraction then guaranteed the FTA. D’Alembert seems to have believed this before 1745, and Euler at
least expected it when he wrdfieuler, 1749] this notion seems to be operating in the Abbé de Gua’s
work of 1741, where he even answered Leibniz by settiign = m + n+/—1 and solving for (realj:

andn [de Gua de Malves, 1741, 48@BeeGilain [1991])

With Euler we have finally the clear enunciation and claim for the FTA, the earliest known in a letter
to Johann Bernoulli in 173fFauvel and Gray, 1987, 448nd the first published i&uler [1743] The
FTA guaranteed the real factorization needed in Euler’s solution of linear differential equations with
constant coefficients. It was time for a proof. Euler wrote to Clairaut on 14 August 1742 that the FTA
is “indubitable, quoique je ne le puisse démontrer parfaitemgler, 1980, 137] Through Euler’s
correspondence with Nicolas Bernoulli over late 1742 and 1743, Bernoulli become convinced of the
FTA and an outline of Euler’'s proof emerged, including ideas in a letter from Bernoulli of 29 November
1743[Euler, 1998, 596-599JAgain, the issue began with just a fourth degree polynomial.

D’Alembert faced the FTA in his work on integration. This was the subject of his first remarks to the
French Royal Academy of Sciences, notedHistoire de ’Académie Royal&739, of his two earliest
mathematical papers, unpublished but registered in IMAéhkins, 1970, 239]and the subject of the
1746 paper which included his proof of the FTA. In this last paper he explicitly referred to Bernoulli's
1702 article. A preliminary version of the 1746 “Recherches sur le calcul intégral” was announced before
the Royal Academy in December 1744 and read from 6 March to 7 April 1745; an initial fragment
survives and has been publishpgilain, 1991, 133-136]In the fragment, d’Alembert showed that
algebraic operations on complex numbers, including taking rational and complex powers, produced
complex numbers. Then, in Article 9, the FTA is stated, that every real equation with imaginary roots
can be factored into real trinomials, but justified only by the just proven closure of numbers of the form
p +q~/—1. Thus, d’Alembert had little more than a year to comprehend what the FTA entails and to
produce a direct proof.
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D’Alembert was emerging in 1746 as a leading mathematician and physicist. After treatises on
dynamics and hydraulics, in 1746 he won the prize of the Berlin Academy for his Réflexions
sur la cause générale des verjid’Alembert, 1747] Although naive on the actual causes of wind,
this publication included groundbreaking work in partial differential equatjbesnidov, 1982] along
with demonstrations of the closure of the complex numbers under algebraic operations [Art. 79]. Euler
acknowledged him as a master of calculation. Euler wrote d’Alembert (29 December 1746) that his
reduction of integrals to the rectification of the ellipse and hyperbola is “comme un chef d’ceuvre de votre
penetration,” and (15 April 1747) “votre superiorité dans les calculs les plus difficiles y eclate partout”
[Euler, 1980, 252, 266]Around that time, d’Alembert submitted to the Berlin Academy his important
work on the vibrating string, and he was then beginning works on the movements of the planets and of
the moon. His work in celestial mechanics resulted in astonishing success when in May 1749, ahead of
Euler and Clairaut, he presented to the Paris Academy an explanation of the nutation of the earth’s axis
[Euler, 1980, 24]

D’Alembert’s limitations are often mentiond@antor, 1901, 585; Hankins, 1970, 63-64; Truesdell,
1954, lviii]. His work was careless and rushed, not well thought through; “his continual switching from
one object to another did not permit him to give all the development and simplicity necessary for making
the abstract matters that he treated understandable to the greatest number of readers” [d’Alembert’s
friend, the Abbé Bossut, quoted litankins [1970, 63] Nevertheless, he was an intense and imaginative
discoverer, and in 1746, in command of the fields of mathematics and physics, he had entered his short
period of great mathematical production.

4. D’Alembert’s proof

There are two complete versions of d’Alembert’s proof, together with two theorems from an
unpublished manuscript of 15 June 17&2ler, 1980, 344]The first version, mentioned above, is from
1746. The second is found in the lohgroduction of the Traité de calcul intégralby Louis-Antoine de
Bougainville, of 1754. In the preface, Bougainville indicated at the end of his list of sources: “finally,
several memoires of M. d’Alembert, not published and which he has kindly wished to communicate
to me.” He went on to declare that “nothing in this work is mine, if not for the order which | have
attempted to place in the various methods, and the form that | give tfgsnBougainville, 1754]After
the proof of the FTA, he wrote that it is taken from the 1746 work of d’Alembert: “I have extended the
demonstrations, and put them in a form that | believe is most appropriate to place them within the reach
of everyone” [Art. LXXXIV]. The clearest evidence that the 1754 version represented d’Alembert’s
thinking lies in the manuscript of 1752, apparently sent by d’Alembert to Berlin for publication. The
crucial Article LXXIX of 1754 appears virtually word for word as Theorem 1 of the manustrigty
unlikely unless, as noted in tHereface Bougainville saw this or a related unpublished manuscript by

1 Observation 11, ofObservations sur quelques mémoires, imprimés dans le volume de 'acad&fipar M. d’Alembert
dated 1752: ler Theoréme. Seita valeur de I'abscisse dans une courbe geometrique, lorsque 1'ordonnpasse du réel a
I'imaginaire, je dis qu’on peut supposer a I'abscissene valeut + b, telle que I'ordonnée correspondante soit- Bv/—1,

b etant une quantité qui peut etre trés petite, mais toujours[finiler, 1980, 344]
Article LXXIX Lemme 2, of Traité de Calcul Intégral, Introductigrof L.-A. de Bougainville: Soit la valeur de I'abscisse
dans une courbe géométrique ; lorsque I'ordonnée passéetia Fimaginaire, on pourra toujours supposer a I'abscisse une
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d’Alembert. Finally, d’Alembert himself referred to Bougainville’s work as containing his argument of
1746, as in th&ncyclopédiarticle "Equations” of 1755D’Alembert, 1755]

(Note on notation: The two variables of the algebraic equation differ throughout the work of
d’Alembert, Gauss, and others. | have chosen to leave the variables as in the original works; however,
with the modernF (v, w) to denote the algebraic expression, the first input is always the variable of the
polynomial and the second is the undetermined constant, preceded eitheasrby.)

After his 1746 work, d’Alembert restricted his argument to algebraic functions. In proving the FTA,
the problem is to show that the equation

F(y,2)=y"+Ay" '+ By"24...4z=0 (no constant, coefficients real

has, for every real, a solutiony(z), wherey is complex. D’Alembert’s plan began with the observations
thaty = 0 is a solution when = 0 and that solutions(z) vary continuously with;. He argued that we
can continue a real or complex solution(z) from y,(0) = 0 asz ranges along the entire real axis.

D’Alembert’s proof comprises two major claims, which | presentlsorem ALocal) andTheorem B
(Global).

Theorem A (Local). If y andz are related by the equatioR'(y,z) =0, andy =0, z = 0 is a solution,
then there is a complex solutionfor all real z sufficiently small. There is a corresponding result at any
real y and z satisfying F(y, z) = 0. (In the 1754 version, F must be a polynomial. ThE746 version
allowed fory = 0o, z =0, but did not develop this case. The same is suggested in Ardct&/1 of the
1754version)

The proof is based on the series expansion of z, in which it is assumed that the coefficients are
real. D’Alembert argued that farinfinitely small and real, the series produgethat is real or complex.

In D’Alembert [1746]the argument is found in Articles Il, Ill, and IV. In the last, the conclusion was
simply extended to small and finite a jump which Gauss later criticized.

Art. Il. Propos. I.

Let TM be a curve sg = 0 or oo whenz = 0. [T = origin] If one takes; positive or negative, but infinitely small, the valueyah
z can always be expressed by a real quantity whenpositive and, whery, is negative, by a real quantity or a quantipy+ g+/—1,
wherep andgq are both real?

Proof. For z infinitely small, y = az/" + bz'/* + cz'/*, etc., a “serie trés convergente,” where the
exponents increase.

(1°) If all terms remain positive in making negative, thery can be expressed ag”/" since “all the
other terms are null in ratio to the first.”

valeura + b, telle que I'ordonnée correspondante sbit- By/—1 ; b etant une quantité qui peut etre trés-petite, mais toujours
finie [de Bougainville, 1754]

211, Propos. . Soit TM une courbe quelcongue dont les coordonnées ZAPM = y, & dans laquelley = 0 ou oo lorsque
z =0. Si on prend; positive ou negative, mais infiniment petite, la valeuryden z pourra toujours étre exprimée par une
quantité réelle, lorsque sera positive &, lorsquez sera negative, paune quantité réelle, ou par une quantipé+ g+/—1,
dans laquellep& g seront 'un& I'autre réels[D’Alembert, 1746]
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(2°) If z/» becomes “imaginary” in making negative, which occurs if is even andn odd, then it can
always be reduced to the form+ g+ —1.

“...itis clear that as-z is infinitely small, then one can not only neglect all real terms except one,
but also all imaginary terms except one.tJ

Art. 1ll. Cor. I.  If we consider another point on the curve, with real coordinAtesCT, an abscissaQ
greater tharAC by infinitely little has an imaginary ordinate only of the fopry g+/—1.

Proof. Transpose axes and apply Art. 1O

Art. IV. Cor. Il.

Now if AC is augmented by a finite quanti§Q up to a certain size, then the ordinate can be assumed totbg+/—1. [Proof:]
For if there is no finite valu€Q such that the corresponding ordinate can be expregsed+/—1 then this ordinate could not be
expressed by + ¢g+/—1 for CQinfinitely small... 3

The 1754 proof included a similar argumentArticles LXXVI and LXXIX. This time, in Article
LXXVILemma 1, a specific algorithm, “the paraligram of M. Newton, or on the Analytic Triangle of
M. 'Abbé de Gua, in the manner taught by M. Cram&nélyseChapt. Il p. 54)"[Cramer, 1750was
cited to derive from equatiog” + bz”"*u + --- + Kz 4+ gu + F =0 the series (assunmé = 0)

z=Du* +CuFtP 4 ...

The argument then continued as in 1746, but without the infinitely small: wlignegative and “tres-
petite, quoique finie,” the individual terms of the series have fdrm B+/—1, as do finite sums of those
terms, andd and B decrease since they are “of the same number of dimensiaRs’gsso the series “is
the true value of” and is of the formA + B/—1. [Article LXXVI.]

For Article LXXIX Lemma 2, we imagine the real abscissa increasing to a certain wadtwevhich
the ordinate “passe du réel a 'imaginaire”—we must understand “imaginaire” to mean “of indeterminate
form.” Then, by Article LXXVI, “one can always suppose for the abscissa a valdeb such that the
ordinate will beA + B+/—1, b a quantity which can be very small [trés petite], but always finite.”

Despite his denial in Art. X, d’Alembert did seem to assume, as Gauss accused, that everyagal
a corresponding roat, real or “imaginary,” which he then argued must be real or complex.

Theorem B (Global).Let F(x, y) = 0 be the(algebraig equation of a curve:(y) in the complex plane,
wherey ranges along a segment of the real axis. Then ordindt® can be continuedaking on only
real and complex valuess abscissa ranges along thentire real axis. The FTA follows immediate)y.

In the 1746 proof, the argument is found in Articles V and VI.

3 1V. Cor. II. Donc si on augmente I'abscis#eC d’'une quantité finieCQ, au moins jusqu’a un certain terme, I'ordonnée
correspondante pourra etre supposée+ g+/—1. Car s'il n’y avoit aucune valeur finie d@Q, telle quep + p+/—1 [sic] pQt
exprimer 'ordonnée correspondante, cette ordonnée ne pourroit pas non plus etre expriméeg par1, CQ etant infiniment
petite.. [D’Alembert, 1746]
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Art. V. Cor. lll.  For any finiteCQ that augments abscisé& the “imaginary” ordinate that corresponds
is of the formp 4+ g~/ —1.

Proof. For if not, there is a greatest value ©f, namely«x, whose corresponding ordinate has the form
p + g+/—1. Now apply Articles II, Ill, and IV top and g as separate functions. In adding doan
infinitely small quantity then the value @f can be supposed+ i+/—1, and the value af = g + §+/—1.

“So in augmentingx by an infinitely small quantity and, consequently (art. 4) by a finite quantity, the
corresponding ordinate can be supposed~/—1+ (8 +8+v/—1)v/—1=---e+ f/—1 wheree and f

are real.” And this contradicts the hypothesisa

Art. VI. Propos. Il.

Letx™ +ax"~1 4 bx™=2 4 ... 4 fx 4 g be a polynomial which vanishes for no real number in place;ahen | say that there is
always a quantityy 4+ ¢+/—1 which makes the polynomial equal to z&ro

Proof. (1°) The last termg [assume it gives an “imaginary” solution] can be changed so that there is a
real solution: if we take any realand then také™ + ah™ =1 + .- + fh as the real numbek, then

X" Fax™ x4 fx— K

has a real root;.

(2°) On line BAD [A is assumed to be the originR corresponding to-K and D to g, erect as
perpendiculars, real or “imaginary,” the corresponding quantities which make the polynomial vanish.
It is evident that the real ordinates form a curve; by Art. V the “imaginary” ordinate corresponding to
abscissa\D can always be supposed equapte- g/—1. O

In the 1754 version, Article LXXX Theorem 2 is essentially the same as Article VI of 1746. Its proof
depends on Article LXXIX as Art. VI of 1746 depends on Art. V, although the details are different. In the
equationx” +ax” 1+ bx"2+4...+ fx+g =0, theg is replaced by reat, and we lett = p 4+ g+/—1,
where p andg are indeterminate, of a form “tout-a-fait inconnue,” yielding eventually—the details are
sketchy—a pair of equations, one pfin y and a second af in y. Now p andg, real for realy in at
least some interval, can only cease to have real values at aypeirt if, by Art. LXXIX, they become
complex on an interval abowt= L; but thenx = p + g+/—1 is still complex, meaning andq stay real.

So L cannot exist. Thus for all real there isx of form m +n/—1.

5. Commentary on D’Alembert’s proof

D’Alembert’s proof met a mixed reception in the 18th century. The first criticisms, by Euler, Foncenex,
and Lagrange, were aimed at the series development of axroéli] felt that some claims were not
justified.

Euler wrote d’Alembert on 29 December 1746

4 VI. Propos. II. Soit un multinome quelconqu® + ax™~1 4+ bx"=2 ... 4 fx + g, tel qu'il Ny ait aucune quantité

réelle qui etant substituée a la place dgy fasse evanouir tous les termes, je dis qu'dura toujours une quantit@ + g+/—1
a substituer a la place de, & qui rendra ce multinome egal a z€fid’Alembert, 1746]
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I have read with as much profit [fruit] as sd#istion your last piece with which you hatenored our Academy [Berlin]. The manner
in which you prove that every expressiofi + Ax"~1 + etc = 0 which has no real roots must have them of the foraa ¢ /—1:

and consequently that it should have a factor of the foxm- ax + b fully satisfies me; but as it proceeds from the resolution of the
value ofx in an infinite series, | do not know if everyone will be convincfgller, 1980, 252]

In his own proof of the FTA, Euler is more direct; no one had yet “with sufficient rigor” shown the
truth of the FTA[Euler, 1749, Art. 7]

The exact reason for Euler’'s doubt about the development of thexpas a series iy, is unclear,
but the breadth of d’Alembert’s claim was good reason. Gauss later provided counterexpbapiss,
1799, Art. 5] D’Alembert soon admitted in a letter of 20 July 17fRuler, 1980, 302that he should
restrict his claim to “geometric” [algebraic] curves.

In his proof of the FTA of 1759, Daviet de Foncenex questioned d’Alembert’s claim that the series for
rootx in y guaranteed a complex numbewheny is negative.

Since the imaginary value that he finds by this method is onlyaggired, one might suspect that the neglected quantity, however
small it might be, could be precisely that which makes impossible the finite expression of the unknown.

...it often happens that a term which one believed could be neglected in a series is, however, that which changessits nature.
[Foncenex, 1759, 115]

J.L. Lagrange wrote in the second paragraph of his first proof of the [Ed§range, 1772}hat
d’Alembert’s “demonstration is very ingenious and leaves, it seems to me, nothing to be desired in
exactitude; but it is indirect, being drawn from the consideration of curves and of infinite series....”
By 1798, Lagrange was more hesitant:

This proof is incomplete, for, although in an equation of two tedminates one can always express one by a series of ascending
powers of the other, it can happen that the coefficients of thissdepend themselves on equations which do not have real roots and
which introduce into the series othenaginaries besides those which cofrem the powers of the indeterminafagrange, 1798,

Art. 7]

C.F. Gauss (1777-1855) presented, in his doctoral disserf@aurss, 1799]a penetrating and highly
influential analysis of d’Alembert’s proof. The same paper is widely considered to contain the first
“substantial’[Kline, 1972, 598]proof of the FTA. Gauss carried his criticismTheorem B

Gauss accurately described d’Alembert’s proof. In Article 510f99, Gauss wrote [concerning the
equationp(x) — X =0]:

Finally, d’Alembert declared that i is supposed to be able to run through théireninterval between two real value®, S
[inclusive]. .. wherex always has the formp + ¢+/—1, then functionX can be increased or diminished. .. by a real finite ¢jan
holding x always in the formp + g+/—1.8 [Gauss then presentetiAdembert's justification from 1746, Art. 5.]

5 puisque la valeur imaginaire qu'il trouve par cette méthaééant qu'approkée, on pourrait soupgner que la quantité
gue I'on néglige, quelque petite qu’elle soit, ne fit précisémeli¢ qui empécheroit qu’on rElt exprimer I'inconnue par une
expression finie : ... il arrive souvent qu’un terme qu’on cropaitivoir négliger dans une série, est cependant celui qui la fait
changer de natuffoncenex, 1759, 115]

6 Tandem affirmat ill.D’A LEMBERT, si X totum intervallum aliquod inter duos valores realRs S percurrere posse
supponatur (i.e., tum ipsk, tum ipsi S, tum omnibus valoribus realibus intermediis aequalis fieri) ; tribuendoxipsilores
semper in forma + ¢+/—1 contentos ; functionerl quavis quantitate finita reali adhaageri vel diminui posse (prost> R
vel § < R), manentex semper sub forma + ¢+/—1 [Gauss, 1799, Art. 5]
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Gauss had opened his paper with a detailed summary and criticism of proofs by d’Alembert, Foncenex,
and Euler (and Lagrange). All were accused of assuming what they were proving, namely, that every
polynomial has roots. This was the first of four objections in Article 6 leveled at d’Alembert’s argument.

Gauss's second objection was that the series developmentiganot possible for all transcendental
functions—he offered the counterexample= ¢*/*, with x = 1/log y—although the claim is true when
only algebraic functions are considered, asi@nBougainville [L754] And even then, d’Alembert gave
no proof.

The third objection was to the free use of the infinitely small and to the unjustified jump from the
infinitely small to the finite. This objection also loses strength for the 1754 version of d’Alembert’s
proof.

The fourth objection is the most serious, although Gauss did not emphasize it. It refers to the crucial
Art. V of d’Alembert’s 1746 proof and the carsponding material, in s. LXXIX and LXXX, of 1754.
Referring to the proof of Article V, Gauss pointed out that the limiting valueof the set of abscissas
that produce complex ordinatgs+ g+/—1 need not itself produce such an ordinate. He went on to
observe that for algebraic functions this case of a limiting valubat is not in that set of abscissas
would not occur; “nevertheless without proof, which is not possible in this case, the method must be held
as incomplete.”

Gauss concluded, in his final paragraph on d’Alembert, in Art. 6, “For these reasons | deny that
d’Alembert’s proof can be held satisfactory.” But then he added, “Nevertheless it seems to me possible
that this can be the true nerve of a proof unaffected by all the objectioRisis, Gauss suggested that
the circular reasoning that was a fatal flaw in the other proofs considered (Arts. 6—12) could be avoided in
d’Alembert’s. Gauss finished with a promise of a proof on a later occasion and told readers to “compare
[conf.], meanwhile, Article 24 below.” The proof never appeared, but the point was taken up by later
commentators.

It should be noted that Gauss'’s opinion of d’Alembert could be harsher than his 1799 judgment. He
wrote in Gauss [1815, 106)while reporting on his own second proof of the FTA, that the charge of
circular reasoning applied to d’Alembert’s proof as much as to those of Euler, Foncenex, Lagrange, and
Laplace.

At the opening of the 19th century, Gauss was not accorded primacy with theGaihy [1817,

217], for example, listed Lagrange, Laplace, and Gauss as having established the theorem, without
emphasizing Gauss’s place. However, by the end of the 19th century, the history of the FTA generally
followed the outline provided by Gauss. Gauss'’s evaluation of his predecessors was taken up by the
most respected historians, including Gino Loria, Moritz Cantor, Florian CjJagjori, 1908, 139]and
Eugene Netto. They joined in crediting to Gauss the first rigorous proof of thglEdr, 1891, 203] or

at least “stronger claims to a satisfactory proof” than his predecefsett®, 1898, 234]They accepted
Gauss’s opinion that the algebraic proofs of Euler, Lagrange, and Laplace were fatally flawed by circular
reasoning; Loria emphasized Gauss’s comment that d’Alembert’s offered the possibility of a sound proof.

Loria’s influential article (sedGilain [1991, 121) argued that d’Alembert’s proof was essentially
correct, only lacking justification for some of its (true) claims, while the other early proofs were
essentially flawedlLoria, 1891] Loria said that Gauss, in the final Article 24 of his 1799 paper,

7 Propter has rationes demonstrationei LEMBERTianam pro satisfaciente habere nequeo. Attamen hoc non obstante
verus demonstrationis nervus probandi per omnes obiectiones infringi mini videtiauss, 1799, Art. 6]
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traced the general course of a proof modeled on that of the eteorof the Encyclopedia [d'&imbert], a sign which—although
leaving considerable labor to one who wishes to transformtd arigorous and complete argument—is sufficient to serve as
confirmation of the favorable judgment pronaed by Gauss on the inquiry of d’Alembejttoria, 1891, 189]

Loria’s reading of Gauss’s Article 24 is hard to accept. Gauss did say in Article 23 that his argument
of Article 24 is “nevertheless in particular essential aspects like the d’Alembertian.” But Gauss was
arguing (in modern notation) that jf (x + y~/—1) is represented a&(x, y) + U (x, y)~/—1, then one
can continuously follow the value @f (x, y) along the curve§ (x, y) = 0 to a point wherd/ (x, y) = 0.

There is something d’Alembertian in that one follows a curve, but this is not a proof following the course
set out by d’Alembert. (Variations on this argument are fourideiVavasseur [1907, 192hdDieudonné
and Guérindon [1978, 68—69]

Cantor provided a very good short account of d’Alembert’s proof, one not so generous as Loria’s. After
an unflattering description of d’Alembert’s mathematical style, Cantor gave an outline of d’Alembert’s
1746 proof. Unlike Loria, he did not argue that d’Alembert’s argument could be repaired. His comments,
on both Eule[Cantor, 1901, 602hnd d’Alembert’s proofs, recognized the influence of Gauss.

Gauss had remarked about this that even if all d’Alembert’s aibggctives were granted, the assumption could not be justified that
if a function ¢ (x) takes a value§ and does not take a valdé, then there must be a valdebetweenS andU which ¢ (x) achieves
but does not surpass. It is more likely thigtc) approached” without reaching it[Cantor, 1901, 587]

And Netto’s brief evaluation of d’Alembert’s proof is no more than a reference to Gauss: “Gauss, who
showed [d’Alembert’s proof] to be inadequate in several points, declared at the same time that it could
be converted to a fuller rigoffNetto, 1898, 234]

In recent decades, several historians have reexamined the early proofs of the FTA and Gauss'’s
objections to those proofs. Where Cauchy, ¥817, traced the history of the FTA without even
mentioning d’Alembert, some modern evaluations give d’Alembert’'s proof a special place among the
early efforts, even before Gauss in the cas¢Stillwell, 1989, 195-198]“We can now fill the gaps
in d’Alembert (1746) by appeal to standard methods and theorems, whereas there is still no easy way
to fill the gap in Gauss (1799)[Bottazzini, 1986, 15-16, 40-41; Dieudonné and Guérindon, 1978;
Gigli, 1925, 189-192; Gilain, 1991; Houzel, 1989; Petrova, 19aA§l J&kevic and Tator{Euler, 1980,
253]all present d’Alembert’s argument as containing unproven claims but fundamentally sound. | accept
the conclusion but believe that the justifications must be examined with care.

Where assuming the existence of roots of some form was regarded as circular reasoning by Gauss,
subsequent construction of the splitting field lets us view this defect as a lacunaB&Skemacova
[1960, 211]) Christian Gilain takes the question of existence of roots in another direction. He argues that
d’Alembert’s proof is “a true theorem on the existence of roots” [p. 117], in that way superior to the proofs
of Euler and Lagrange, who had assumed that any polynomial could be wittes) (x — 8)(x —y) - - -.

One interpretation of d’Alembert’s proof, found, for example[Delone, 1956, 281; Petrova, 1974;
Stillwell, 1989} centers on a “Lemma of d’Alembert.” From Stillwell:

... The key to d’Alembert’s proof is a pposition now known as d’Alembert’'s lemmazifz) is a polynomial function ang(zg) # O,
then any neighborhood af) contains a point; such that p(z1)| < |p(z0)|. ...
A simple elementary proof of d’Alembertlemma was given by Argand (1806). ... [pp. 196-197]

Stillwell finishes the proof of the FTA as Argand diti§14/181%
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Now, d’Alembert's Lemma, without that name, is the basis of a proof of the FTArgand [1806]
and, successfully (except for a result of continuity)Amgand [1814/1815]and later byCauchy [1817]
Argand used the series fpraboutzg to argue that for some nearby, | p(z1)| < | p(zo0)|, whenp(zg) # 0.
But d’Alembert, in arguing for a complex solution, of p(z) = y for all real y, had only represented
by the inverse serieg(y). D’Alembert was not concerned witly(z)| or |¢(y)| or with inequalities. He
had just argued that i (z) = y gives a real or complex corresponding to a real, thenz stays real or
complex asy increases or decreases by some small real number.

The modern works which correctly report d’Alembert’s proof still provide little help in understanding
the repairs that are required.

One difficulty lies in justifying, forp(z) = y, the expansion of in fractional powers ofy. Puiseux
[1850] is often cited, for example iDieudonné and Guérindon [1978flowever, Puiseux, the pioneer
in this topic, simply observed [Articles 17-24] that each compleautside the finite set of singular
points gives as many roots(y), z2(y), ..., as the degree gf(z), and then argued that each ragty)
is analytic away from the singular points and that the roots are represented by a fractional power series
about each of the singular points. Thus, Puiseux very openly assumed the FTA; he was not proving it.

Likewise, analytic continuation and compactness—called on by various writers—are typically
employed with algebraic equations only after one has established, usually by the FTA, a collection of
complex pairsy and z satisfying p(z) = y. Even Gigli's generally excellent discussion calls on the
permanence of functional equatignasithout first justifying the existence of an analytic continuation
[Gigli, 1925, 192]

6. A d’Alembertian proof of the fundamental theorem of algebra

We take up the FTA in this form:

The fundamental theorem of algebra.Given F(z, y) = p(z) — vy, wherep(z) is a real polynomial of
degreen with p(0) = 0. Then for each real value* of y there is a complex solutionof F(z, y*) = 0.

A d’Alembertian proof of the FTA requires a real starting pointor interval of such points, to which
corresponds a complex so F(z1, y1) = 0, together with an appropriate path fromto y*. We then
show thaty can move on this path all the way from to y* while keeping a corresponding complex
which satisfiesF'(z, y) = 0.

The greatest difficulty concerrssngular points

Definition. y; is a singular pointof polynomial F(z, y) iff F(z,y;) has a multiple zero iry. An
equivalent condition is thaf (z, y;) and(d/dz) F (z, y;) have a nontrivial common factor.

Lemma. If y* is singular, thenp(z) — y* = F(z, y*) has a complex roaf.

Proof. The Euclidean algorithm op(z) — y* and p’(z) produces a nontrivial real polynomial factor of
p(z) — y*, and so by induction on the degreeuf;) there is a complex root gi(z) — y*. O
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TheFirst Proof employs a path which avoids singular points but may have to venture into the complex
plane off the real axis. Th8econd Progfwhich assumes the first, holds to d’Alembert’s plan of a path
along the real axis.

First proof. If y* is not singular, then we can choose rgabnd the entire path (in the complex plane)
from y; to y* avoiding the finite set of singular points; is selected from the interval of valuggz)
for z on areal interval.

There is a bound on|y| on the path, and a bour@[Hille, 1959, 208]on the modulus of any complex
roots of p(z) = y for |y| < B. Then for anyy, on the path fromy; to y* which yields a real or complex
root z = z», there is a convergent series expressing a ramtp(z) = y as a function ofy for eachy in
a disk|y — y»| < r, wherer depends orB, C, and the coefficients gf(z) but not ony,. A “majorant”
argument, as found ioursat [1904, 394-401] or Hille [1962, Ch., @an produce such an as can
theImplicit Function TheorenfHille, 1962, Ch. 9] (See theviajorant Argumenin Appendix A below.)
Either approach depends on the boundedness of a continuous function on a compact set.

Now, starting with a disk centered &, then a disk centered &b, where|y, — y»| = /2, etc., one
builds a chain of overlapping disks of radiusintil y* is reached, with complex* sop(z*) =y*. O

Second proof. We now allow for a singular poing, on the path, and thus keep thepath on the real
axis. As in the case, above, of singuldr, p(z) — y, has a complex roaf, (of multiplicity & > 1). We
can suppose, =z, =0, so

p(2) = y2=p() =az*[1+q()], a#0, ¢(0)=0.
Let 4(z) be akth root of p(z). Then

o0
h(z):=a*z[1+4 q@)]" = a¥*2 |:1+ Zc.,-zjj| for |z| < K, a¥/* anykth root ofa,
j=1

K a positive constant, = 0 is nonsingular for:(z), so the relatior(z) = w can be inverted [seEirst
Proof] in an analytic function ofw in a neighborhood of the origin:

z=g(w)=dw+ dow? +dswd+ -+ if |w| < 81.
Sincep(z) = [h(2)]*, thenp(g(w)) = wk. Letw be akth root of y. Thenp(g(y**)) = y. So
z=g(y*) = diyY* + doy¥* + day¥* + ... inthe diskly| < 5%,

wherey/* denotes any of théth roots ofy. (A different choice of theth root ofa produces the same
k different values ot. SeeHille [1962, Theorem 9.4.3].)

Therefore ag, on the real path frony; to y*, approaches the singular poipt, one of the disks of
radiusr or smaller must overlap the disk just found of radd§sabouty,, without meetingy,. Thus we
have a continuous path of complex valuesorresponding to the-path right through and beyong.
At a nonsingular real point of the-path beyondy, we can again build the chain of disks of radiuer
smaller.

In this way, we follow d’Alembert’s original plan of a-path on the real axis from initial poin to
the giveny*, to which there is a corresponding real or comptegath of solutions ofp(z) = y. This
proves the Fundamental Theorem of Algebra
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Appendix A. Majorant argument

Let p(z) be a real polynomial of degree with p(0) = 0, y complex,C a bound on any complex
roots of p(z) — y, where|y| < B. For a given real value, of y, |y,| < B, suppose; = z, is a simple
complex root ofp(z) — y» = 0. We then claim that there is a positivedepending only oB, C, and the
coefficients ofp(z), such that whemy — y,| < r, then there is a complex rogtof p(z) = y expressed as
a convergent series in

Proof. Assumez; = 0= y,. Rewritep(z) = y in terms of a series aroungd= 0:
2=G(z,y) =coy + 222+ 32>+ - -+ 2",
which is possible since is not singular. Let (formally)
z=b1y+boy* + b3y +- -, (A1)

and then by substitution into the series= G(z, y), we can formally solve fob,, then forb,, then for
b3, etc.
We also consider the equation

z=doy +doz? +dsz®+--- +d,7", whered; :=|c;]|. (A.2)
Setz = biy + bsy? + b3y3 + - - -, substitute intdEq. (A.2), and solve fow}, b3, b3, etc. By induction,
b1, by, by, etc. are all nonnegative anbl;| < b7 for all ;. (A.3)

In |z2] < C, |y2] < B, there is a bound/ on the coefficients ofi (z, y), since the coefficients are based
on (continuous) partial derivatives 6f(z, y). Then

2l =[G | < M[Iy|+ 12+ 1zl + - 4 f2l" +-]. A4

Note that|c;| < M.
We can assume (justified beloy) < 1. Replacingz| by ¢z, and|y| by s, inequality(A.4) is

2
t<M . A.5
|:s+1_t] (A.5)

Inequality (A.5) is satisfied by = 0. The corresponding equality gives, by the quadratic formula,

r_l+Ms—JMh+1ﬂ—4Mﬁ+DMs
- 2(M +1) ’

(A.6)
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choosing the minus over the plus so that- 0 ass — 0. The radical can be expanded as a convergent
series in (nonnegative)iff —1 < 2Ms + M?s?> — 4Ms — 4M?s < 1. Both inequalities are satisfied iff

1+2M — /A +2M)2 — 1
v .

If » > 1, setr := 1. Fors satisfying 0< s < r, the series development o& || as a function of = |y|,
given by Eq. (A.6) converges. Because of inequal{#.3), and sincelc;| < M, the seriegA.1) also
converges forry| < r. And since the series formally solves= G(z, y), it is an analytic solution of that
equation. O

O<s<r:= (A7)
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