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Abstract

D’Alembert’s proof of the fundamental theorem of algebra (FTA), the first published, is still widely misunde
stood. Typical of d’Alembert, his work is bold and imaginative but in need of significant repair. The pr
examined in detail, in both the 1746 and 1754 versions, along with commentary over 250 years and recent eff
to revive d’Alembert’s reputation. A particular challengeis to work with algebraic equations while avoiding depe
dence on the FTA itself. A repaired version is offered.
 2004 Elsevier Inc. All rights reserved.

Résumé

La démonstration de d’Alembert du théorème fondamental de l’algèbre (TFA)—la première publ
ce théorème—est encore largement mal comprise. Typique de d’Alembert, ce travail est plein d’audac
d’imagination, mais il a besoin d’être substantiellement rectifié. On examine en détail cette preuve, dans
versions de 1746 et 1754, et l’on commente sa réception depuis 250 ans, y compris les efforts récents pour réta
la réputation de d’Alembert. Un défi tout particulier résulte de la nécessité de travailler sur les équations alg
tout en évitant l’utilisation du TFA. Une version rectifiée de la preuve de d’Alembert est donnée.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The first published proof of the fundamental theorem of algebra (FTA) was by Jean le
d’Alembert (1717–1783), in an article “Recherches sur le calcul intégral”[D’Alembert, 1746], sent to
Berlin in December 1746 for inclusion inMemoires de l’Académie Royale, Berlin, for 1746, and which
appeared in 1748. It was based on algebraic equations. The FTA is the claim that every real pol
has real or complex roots.
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As it turned out, Leonhard Euler (1707–1783) had himself read a proof of the FTA to the B
Academy in November 1746[Euler, 1980, 254]. Euler’s proof was algebraic, centered on an argum
that if a real polynomial of degree 2k , k > 1, was written as the product of two polynomials of eq
degree, then the coefficients of the proposed factors could be found as real roots of a system of e
His proof was published in theMemoirefor 1749[Euler, 1749], actually issued in 1751.

Over the next decades, other algebraic proofs of the FTA were given byDaviet de Foncenex [1759
by J.L. Lagrange [1772], and in 1795 by P.-S. Laplace [1812]. C.F. Gauss offered a proof[Gauss, 1799]
based in part on “geometric considerations”[Gauss, 1816, 33], and a second proof, algebraic, of the F
in 1815[Gauss, 1816]. An important analytic proof was given byJ.-R. Argand [1806], with an improved
version inArgand [1814/1815].

All these early proofs—the list could be expanded—relied on claims which lacked ade
justification according to modern standards. All the algebraic proofs mentioned assumed a real
every real polynomial of odd degree, and Argand’s proof assumed that a continuous function ach
minimum on a closed disk; late 19th-century development of the real numbers and continuity pr
justification. All the algebraic proofs through that of Laplace assumed the existence, in some
of roots of a given polynomial; this too would be justified, principally in the work of Kronecker
Dedekind in the late 19th century[Kiernan, 1971]. The proofs of Euler and Foncenex and Lagra
required Lagrange’s theorem on similar functions, stated and proved in Articles 100 to 104 ofLagrange
[1770/1771]. (Seevan der Waerden [1985, 81].) And justification for Gauss’s first proof was final
provided inOstrowski [1920]. The simplest of these proofs, those of Laplace and of Argand, are
presented, as inSamuel [1967] and Fefferman [1967], respectively.

D’Alembert’s proof is different. First, there is no broadly accepted understanding of his proo
reader may consult[Boyer, 1968, 491; Dieudonné and Guérindon, 1978, 68–69; Stillwell, 1989,
198] for three very different descriptions of d’Alembert’s proof. (I recommend[Gigli, 1925, 189–192;
Bottazzini, 1986, 15–16; Gilain, 1991, 113–115]for accuracy.) Second, unlike all the proofs mention
above, d’Alembert’s has not engendered a line of repaired and improved proofs of the FTA. Dieu
and Guérindon, among others, have said that the major deficiency of d’Alembert’s proof can be re
by “an elementary argument of compactness.” The story is not that simple; care is needed, es
with algebraic equations, to avoid dependence on the FTA on the way to its proof. This pape
attempt to view the history of d’Alembert’s proof in that spirit. Introductory material makes upSections 2
and 3; Section 4is a detailed summary of d’Alembert’s proof;Sections 5 and 6discuss commentary o
d’Alembert’s proof over 250 years and repair of the proof.

2. Imaginary roots in the 18th century

Before we look at d’Alembert’s proof and its interpretation, it is helpful to consider the 18th-ce
understanding of “imaginary,” used as early as Descartes’La Géométrie, 1637. The solution of third an
fourth degree equations by square and cube roots had been known since the publication of CardaArs
Magna in 1545. It was not generally accepted, however, that the nonreal roots produced this wa
complex, and those roots were simply called “imaginary,” as were the nonreal roots of all polyno
Thus, for example,Lagrange [1772]carried the title “Sur la forme des racines imaginaires des équatio
the work was a proof that the “imaginary” roots were actually complex. A second meaning is encou
in 18th-century work: expressions of the formp + q

√−1 are called “imaginary” whenp and q are
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real. D’Alembert’s proof of 1746 was followed by a note, disputable, which paired the two mea
of “imaginary”: “Il est à remarquer que dans les demonstrations precedentes, on n’a point supp
la racine imaginaire du multinome, eût ou pût avoir une expression imaginaire, avant de la re
p+q

√−1” [D’Alembert, 1746, Remark 1, Art. X]. Gauss used “imaginary” in [1799] to denote complex
numbers; he later coined the name “complex.”

I will often use “complex” in place of the clumsy “of the formp + q
√−1.” I also use “imaginary,” in

quotation marks, in the 18th-century sense of “not real and of indeterminate form.”

3. Euler and d’Alembert, 1746

In hindsight, the near simultaneous appearance of two proofs of the FTA is only a small su
Already in the early years of the calculus, the method of partial fraction expansion posed the q
of whether every real polynomial is the product of real factors of degree one and two. In 17
papers in theActa Eruditorum, Johann Bernoulli answered in the affirmative while Leibniz took
negative position, claiming thatx4 + a4 could not be written as the product of two real factors[Kline,
1972, 411]. Over the next four decades, growing experience with complex numbers led the m
of mathematicians to side with Bernoulli, but often without a clear grasp of the issue. More t
few simply believed that a process of root extraction such as produced the zeros of the fourth
polynomial would be found for higher degrees. Thus the closure of the complex numbers und
extraction then guaranteed the FTA. D’Alembert seems to have believed this before 1745, and
least expected it when he wrote[Euler, 1749]; this notion seems to be operating in the Abbé de G
work of 1741, where he even answered Leibniz by setting4

√−a = m + n
√−1 and solving for (real)m

andn [de Gua de Malves, 1741, 480]. (SeeGilain [1991].)
With Euler we have finally the clear enunciation and claim for the FTA, the earliest known in a

to Johann Bernoulli in 1739[Fauvel and Gray, 1987, 447]and the first published inEuler [1743]. The
FTA guaranteed the real factorization needed in Euler’s solution of linear differential equation
constant coefficients. It was time for a proof. Euler wrote to Clairaut on 14 August 1742 that th
is “indubitable, quoique je ne le puisse démontrer parfaitement”[Euler, 1980, 137]. Through Euler’s
correspondence with Nicolas Bernoulli over late 1742 and 1743, Bernoulli become convinced
FTA and an outline of Euler’s proof emerged, including ideas in a letter from Bernoulli of 29 Nove
1743[Euler, 1998, 596–599]. Again, the issue began with just a fourth degree polynomial.

D’Alembert faced the FTA in his work on integration. This was the subject of his first remarks
French Royal Academy of Sciences, noted inHistoire de l’Académie Royale1739, of his two earlies
mathematical papers, unpublished but registered in 1741[Hankins, 1970, 239], and the subject of th
1746 paper which included his proof of the FTA. In this last paper he explicitly referred to Berno
1702 article. A preliminary version of the 1746 “Recherches sur le calcul intégral” was announced
the Royal Academy in December 1744 and read from 6 March to 7 April 1745; an initial frag
survives and has been published[Gilain, 1991, 133–136]. In the fragment, d’Alembert showed th
algebraic operations on complex numbers, including taking rational and complex powers, pr
complex numbers. Then, in Article 9, the FTA is stated, that every real equation with imaginary
can be factored into real trinomials, but justified only by the just proven closure of numbers of th
p + q

√−1. Thus, d’Alembert had little more than a year to comprehend what the FTA entails a
produce a direct proof.
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D’Alembert was emerging in 1746 as a leading mathematician and physicist. After treatis
dynamics and hydraulics, in 1746 he won the prize of the Berlin Academy for his workRéflexions
sur la cause générale des vents[D’Alembert, 1747]. Although naive on the actual causes of win
this publication included groundbreaking work in partial differential equations[Demidov, 1982], along
with demonstrations of the closure of the complex numbers under algebraic operations [Art. 79]
acknowledged him as a master of calculation. Euler wrote d’Alembert (29 December 1746) t
reduction of integrals to the rectification of the ellipse and hyperbola is “comme un chef d’œuvre d
penetration,” and (15 April 1747) “votre superiorité dans les calculs les plus difficiles y eclate pa
[Euler, 1980, 252, 266]. Around that time, d’Alembert submitted to the Berlin Academy his impor
work on the vibrating string, and he was then beginning works on the movements of the planets
the moon. His work in celestial mechanics resulted in astonishing success when in May 1749, a
Euler and Clairaut, he presented to the Paris Academy an explanation of the nutation of the ear
[Euler, 1980, 24].

D’Alembert’s limitations are often mentioned[Cantor, 1901, 585; Hankins, 1970, 63–64; Truesd
1954,lviii ]. His work was careless and rushed, not well thought through; “his continual switching
one object to another did not permit him to give all the development and simplicity necessary for m
the abstract matters that he treated understandable to the greatest number of readers” [d’Al
friend, the Abbé Bossut, quoted inHankins [1970, 63]]. Nevertheless, he was an intense and imagina
discoverer, and in 1746, in command of the fields of mathematics and physics, he had entered
period of great mathematical production.

4. D’Alembert’s proof

There are two complete versions of d’Alembert’s proof, together with two theorems fro
unpublished manuscript of 15 June 1752[Euler, 1980, 344]. The first version, mentioned above, is fro
1746. The second is found in the longIntroductionof theTraité de calcul intégral, by Louis-Antoine de
Bougainville, of 1754. In the preface, Bougainville indicated at the end of his list of sources: “fi
several memoires of M. d’Alembert, not published and which he has kindly wished to commu
to me.” He went on to declare that “nothing in this work is mine, if not for the order which I h
attempted to place in the various methods, and the form that I give them”[de Bougainville, 1754]. After
the proof of the FTA, he wrote that it is taken from the 1746 work of d’Alembert: “I have extende
demonstrations, and put them in a form that I believe is most appropriate to place them within th
of everyone” [Art. LXXXIV]. The clearest evidence that the 1754 version represented d’Alemb
thinking lies in the manuscript of 1752, apparently sent by d’Alembert to Berlin for publication.
crucial Article LXXIX of 1754 appears virtually word for word as Theorem 1 of the manuscript,1 very
unlikely unless, as noted in thePreface, Bougainville saw this or a related unpublished manuscrip

1 Observation III, ofObservations sur quelques mémoires, imprimés dans le volume de l’académie1749,par M. d’Alembert,
dated 1752: 1er Theorême. Soita la valeur de l’abscissex dans une courbe geometrique, lorsque 1’ordonnéey passe du réel à
l’imaginaire, je dis qu’on peut supposer à l’abscissex une valeura + b, telle que l’ordonnée correspondante soitA + B

√−1,
b etant une quantité qui peut etre très petite, mais toujours finie[Euler, 1980, 344].

Article LXXIX Lemme 2, ofTraité de Calcul Intégral, Introduction, of L.-A. de Bougainville: Soita la valeur de l’abscisse
dans une courbe géométrique ; lorsque l’ordonnée passe du réel à l’imaginaire, on pourra toujours supposer à l’abscisse
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d’Alembert. Finally, d’Alembert himself referred to Bougainville’s work as containing his argume
1746, as in theEncyclopédiearticle ”Equations” of 1755[D’Alembert, 1755].

(Note on notation: The two variables of the algebraic equation differ throughout the wo
d’Alembert, Gauss, and others. I have chosen to leave the variables as in the original works; h
with the modernF(v,w) to denote the algebraic expression, the first input is always the variable
polynomial and the second is the undetermined constant, preceded either by+ or −.)

After his 1746 work, d’Alembert restricted his argument to algebraic functions. In proving the
the problem is to show that the equation

F(y, z) = ym + Aym−1 + Bym−2 + · · · + z = 0 (no constant, coefficients real)

has, for every realz, a solutiony(z), wherey is complex. D’Alembert’s plan began with the observatio
thaty = 0 is a solution whenz = 0 and that solutionsy(z) vary continuously withz. He argued that we
can continue a real or complex solutiony1(z) from y1(0) = 0 asz ranges along the entire real axis.

D’Alembert’s proof comprises two major claims, which I present asTheorem A(Local) andTheorem B
(Global).

Theorem A (Local). If y and z are related by the equationF(y, z) = 0, andy = 0, z = 0 is a solution,
then there is a complex solutiony for all real z sufficiently small. There is a corresponding result at a
real y and z satisfyingF(y, z) = 0. (In the 1754version,F must be a polynomial. The1746version
allowed fory = ∞, z = 0, but did not develop this case. The same is suggested in ArticleLXXVI of the
1754version.)

The proof is based on the series expansion ofy in z, in which it is assumed that the coefficients a
real. D’Alembert argued that forz infinitely small and real, the series producesy that is real or complex

In D’Alembert [1746]the argument is found in Articles II, III, and IV. In the last, the conclusion w
simply extended to small and finitez, a jump which Gauss later criticized.

Art. II. Propos. I.

Let TM be a curve soy = 0 or ∞ whenz = 0. [T = origin] If one takesz positive or negative, but infinitely small, the value ofy in
z can always be expressed by a real quantity whenz is positive: and, whenz is negative, by a real quantity or a quantityp + q

√−1,
wherep andq are both real.2

Proof. For z infinitely small, y = azm/n + bzr/s + czt/u, etc., a “serie trés convergente,” where
exponents increase.

(1◦) If all terms remain positive in makingz negative, theny can be expressed asazm/n since “all the
other terms are null in ratio to the first.”

valeura + b, telle que l’ordonnée correspondante soitA + B
√−1 ; b etant une quantité qui peut etre très-petite, mais touj

finie [de Bougainville, 1754].
2 II. Propos. I. Soit TM une courbe quelconque dont les coordonnées TP= Z, PM = y, & dans laquelley = 0 ou∞ lorsque

z = 0. Si on prendz positive ou negative, mais infiniment petite, la valeur dey en z pourra toujours être exprimêe par un
quantité réelle, lorsquez sera positive: & , lorsquez sera negative, parune quantité réelle, ou par une quantitép + q

√−1,
dans laquellep&q seront l’un& l’autre réels[D’Alembert, 1746].
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(2◦) If zm/n becomes “imaginary” in makingz negative, which occurs ifn is even andm odd, then it can
always be reduced to the formp + q

√−1.

“ . . . it is clear that as−z is infinitely small, then one can not only neglect all real terms except
but also all imaginary terms except one.”�
Art. III. Cor. I. If we consider another point on the curve, with real coordinatesAC, CT, an abscissaAQ
greater thanAC by infinitely little has an imaginary ordinate only of the formp + q

√−1.

Proof. Transpose axes and apply Art. II.�
Art. IV. Cor. II.

Now if AC is augmented by a finite quantityCQ up to a certain size, then the ordinate can be assumed to bep + q
√−1. [Proof:]

For if there is no finite valueCQ such that the corresponding ordinate can be expressedp + q
√−1 then this ordinate could not be

expressed byp + q
√−1 for CQ infinitely small.. . .3

The 1754 proof included a similar argument in Articles LXXVI and LXXIX. This time, in Article
LXXVI Lemma 1, a specific algorithm, “the parallelogram of M. Newton, or on the Analytic Triangle o
M. l’Abbé de Gua, in the manner taught by M. Cramer (AnalyseChapt. III p. 54)”[Cramer, 1750]was
cited to derive from equationzm + bzm−1u + · · · + Kz + gu + F = 0 the series (assumeF = 0)

z = Duk + Cuk+p + · · · .
The argument then continued as in 1746, but without the infinitely small: whenu is negative and “tres

petite, quoique finie,” the individual terms of the series have formA + B
√−1, as do finite sums of thos

terms, andA andB decrease since they are “of the same number of dimensions asDuk,” so the series “is
the true value ofz” and is of the formA + B

√−1. [Article LXXVI.]
For Article LXXIX Lemma 2, we imagine the real abscissa increasing to a certain valuea at which

the ordinate “passe du réel à l’imaginaire”—we must understand “imaginaire” to mean “of indeterm
form.” Then, by Article LXXVI, “one can always suppose for the abscissa a valuea + b such that the
ordinate will beA + B

√−1, b a quantity which can be very small [trés petite], but always finite.”
Despite his denial in Art. X, d’Alembert did seem to assume, as Gauss accused, that every reu has

a corresponding rootz, real or “imaginary,” which he then argued must be real or complex.

Theorem B (Global).LetF(x, y) = 0 be the(algebraic) equation of a curvex(y) in the complex plane
wherey ranges along a segment of the real axis. Then ordinatex(y) can be continuedtaking on only
real and complex valuesas abscissay ranges along theentire real axis. (The FTA follows immediately.)

In the 1746 proof, the argument is found in Articles V and VI.

3 IV. Cor. II. Donc si on augmente l’abscisseAC d’une quantité finieCQ, au moins jusqu’à un certain terme, l’ordonn
correspondante pourra etre supposée= p + q

√−1. Car s’il n’y avoit aucune valeur finie deCQ, telle quep + p
√−1 [sic] pût

exprimer l’ordonnée correspondante, cette ordonnée ne pourroit pas non plus etre exprimée parp+q
√−1,CQetant infiniment

petite. . .[D’Alembert, 1746].
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Art. V. Cor. III. For any finiteCQ that augments abscissaAC the “imaginary” ordinate that correspon
is of the formp + q

√−1.

Proof. For if not, there is a greatest value ofCQ, namelyα, whose corresponding ordinate has the fo
p + q

√−1. Now apply Articles II, III, and IV top and q as separate functions. In adding toα an
infinitely small quantity then the value ofp can be supposedt + i

√−1, and the value ofq = β + δ
√−1.

“So in augmentingα by an infinitely small quantity and, consequently (art. 4) by a finite quantity
corresponding ordinate can be supposedt + i

√−1+ (β + δ
√−1)

√−1= · · · e + f
√−1 wheree andf

are real.” And this contradicts the hypothesis.�
Art. VI. Propos. II.

Let xm + axm−1 + bxm−2 + · · · + f x + g be a polynomial which vanishes for no real number in place ofx; then I say that there is
always a quantityp + q

√−1 which makes the polynomial equal to zero.4

Proof. (1◦) The last termg [assume it gives an “imaginary” solution] can be changed so that ther
real solution: if we take any realh and then takehm + ahm−1 + · · · + f h as the real numberK , then

xm + axm−1 + bxm−2 + · · · + f x − K

has a real root,h.
(2◦) On line BAD [A is assumed to be the origin],B corresponding to−K and D to g, erect as

perpendiculars, real or “imaginary,” the corresponding quantities which make the polynomial v
It is evident that the real ordinates form a curve; by Art. V the “imaginary” ordinate correspondi
abscissaAD can always be supposed equal top + q

√−1. �
In the 1754 version, Article LXXX Theorem 2 is essentially the same as Article VI of 1746. Its p

depends on Article LXXIX as Art. VI of 1746 depends on Art. V, although the details are different. I
equationxm +axm−1 +bxm−2 +· · ·+f x +g = 0, theg is replaced by realy, and we letx = p+q

√−1,
wherep andq are indeterminate, of a form “tout-à-fait inconnue,” yielding eventually—the details
sketchy—a pair of equations, one ofp in y and a second ofq in y. Now p andq, real for realy in at
least some interval, can only cease to have real values at a pointy = L if, by Art. LXXIX, they become
complex on an interval abouty = L; but thenx = p +q

√−1 is still complex, meaningp andq stay real.
SoL cannot exist. Thus for all realy there isx of form m + n

√−1.

5. Commentary on D’Alembert’s proof

D’Alembert’s proof met a mixed reception in the 18th century. The first criticisms, by Euler, Fonc
and Lagrange, were aimed at the series development of a root,x. All felt that some claims were no
justified.

Euler wrote d’Alembert on 29 December 1746

4 VI. Propos. II. Soit un multinome quelconquexm + axm−1 + bxm−2 + · · · + f x + g, tel qu’il n’y ait aucune quantité

réelle qui etant substituée à la place dex, y fasse evanouir tous les termes, je dis qu’ily aura toujours une quantitép + q
√−1

à substituer à la place dex, & qui rendra ce multinome egal à zero[D’Alembert, 1746].
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I have read with as much profit [fruit] as satisfaction your last piece with which you havehonored our Academy [Berlin]. The manner
in which you prove that every expressionxn + Axn−1 + etc. = 0 which has no real roots must have them of the formp ± q

√−1:
and consequently that it should have a factor of the formxx + αx + b fully satisfies me; but as it proceeds from the resolution of the
value ofx in an infinite series, I do not know if everyone will be convinced.[Euler, 1980, 252]

In his own proof of the FTA, Euler is more direct; no one had yet “with sufficient rigor” shown
truth of the FTA[Euler, 1749, Art. 7].

The exact reason for Euler’s doubt about the development of the root,x, as a series iny, is unclear,
but the breadth of d’Alembert’s claim was good reason. Gauss later provided counterexamples[Gauss,
1799, Art. 5]. D’Alembert soon admitted in a letter of 20 July 1749[Euler, 1980, 302]that he should
restrict his claim to “geometric” [algebraic] curves.

In his proof of the FTA of 1759, Daviet de Foncenex questioned d’Alembert’s claim that the ser
root x in y guaranteed a complex numberx wheny is negative.

Since the imaginary value that he finds by this method is only approached, one might suspect that the neglected quantity, however
small it might be, could be precisely that which makes impossible the finite expression of the unknown.

. . . it often happens that a term which one believed could be neglected in a series is, however, that which changes its na5

[Foncenex, 1759, 115]

J.L. Lagrange wrote in the second paragraph of his first proof of the FTA[Lagrange, 1772]that
d’Alembert’s “demonstration is very ingenious and leaves, it seems to me, nothing to be des
exactitude; but it is indirect, being drawn from the consideration of curves and of infinite serie
By 1798, Lagrange was more hesitant:

This proof is incomplete, for, although in an equation of two indeterminates one can always express one by a series of ascendin
powers of the other, it can happen that the coefficients of this series depend themselves on equations which do not have real roots an
which introduce into the series other imaginaries besides those which comefrom the powers of the indeterminate.[Lagrange, 1798,
Art. 7]

C.F. Gauss (1777–1855) presented, in his doctoral dissertation[Gauss, 1799], a penetrating and highl
influential analysis of d’Alembert’s proof. The same paper is widely considered to contain th
“substantial”[Kline, 1972, 598]proof of the FTA. Gauss carried his criticism toTheorem B.

Gauss accurately described d’Alembert’s proof. In Article 5 of [1799], Gauss wrote [concerning th
equationp(x) − X = 0]:

Finally, d’Alembert declared that ifX is supposed to be able to run through the entire interval between two real valuesR, S

[inclusive]. . . wherex always has the formp + q
√−1, then functionX can be increased or diminished. . . by a real finite quantity

holdingx always in the formp + q
√−1.6 [Gauss then presented d’Alembert’s justification from 1746, Art. 5.]

5 Puisque la valeur imaginaire qu’il trouve par cette méthoden’étant qu’approchée, on pourrait soupçonner que la quantité
que l’on néglige, quelque petite qu’elle soit, ne fût précisémentcelle qui empêcheroit qu’on nepût exprimer l’inconnue par un
expression finie : . . . il arrive souvent qu’un terme qu’on croyoitpouvoir négliger dans une série, est cependant celui qui la
changer de nature[Foncenex, 1759, 115].

6 Tandem affirmat ill.D’A LEMBERT, si X totum intervallum aliquod inter duos valores realesR, S percurrere poss
supponatur (i.e., tum ipsiR, tum ipsiS, tum omnibus valoribus realibus intermediis aequalis fieri) ; tribuendo ipsix valores
semper in formap+q

√−1 contentos ; functionemX quavis quantitate finita reali adhucaugeri vel diminui posse (proutS > R

vel S < R), manentex semper sub formap + q
√−1 [Gauss, 1799, Art. 5].
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Gauss had opened his paper with a detailed summary and criticism of proofs by d’Alembert, Fon
and Euler (and Lagrange). All were accused of assuming what they were proving, namely, tha
polynomial has roots. This was the first of four objections in Article 6 leveled at d’Alembert’s argu

Gauss’s second objection was that the series development forx is not possible for all transcendent
functions—he offered the counterexampley = e1/x, with x = 1/ logy—although the claim is true whe
only algebraic functions are considered, as inde Bougainville [1754]. And even then, d’Alembert gav
no proof.

The third objection was to the free use of the infinitely small and to the unjustified jump from
infinitely small to the finite. This objection also loses strength for the 1754 version of d’Alemb
proof.

The fourth objection is the most serious, although Gauss did not emphasize it. It refers to the
Art. V of d’Alembert’s 1746 proof and the corresponding material, in Arts. LXXIX and LXXX, of 1754.
Referring to the proof of Article V, Gauss pointed out that the limiting value,α, of the set of abscissa
that produce complex ordinatesp + q

√−1 need not itself produce such an ordinate. He went o
observe that for algebraic functions this case of a limiting valueα that is not in that set of absciss
would not occur; “nevertheless without proof, which is not possible in this case, the method must
as incomplete.”

Gauss concluded, in his final paragraph on d’Alembert, in Art. 6, “For these reasons I den
d’Alembert’s proof can be held satisfactory.” But then he added, “Nevertheless it seems to me p
that this can be the true nerve of a proof unaffected by all the objections.”7 Thus, Gauss suggested th
the circular reasoning that was a fatal flaw in the other proofs considered (Arts. 6–12) could be avo
d’Alembert’s. Gauss finished with a promise of a proof on a later occasion and told readers to “co
[conf.], meanwhile, Article 24 below.” The proof never appeared, but the point was taken up b
commentators.

It should be noted that Gauss’s opinion of d’Alembert could be harsher than his 1799 judgme
wrote in Gauss [1815, 106], while reporting on his own second proof of the FTA, that the charg
circular reasoning applied to d’Alembert’s proof as much as to those of Euler, Foncenex, Lagran
Laplace.

At the opening of the 19th century, Gauss was not accorded primacy with the FTA.Cauchy [1817,
217], for example, listed Lagrange, Laplace, and Gauss as having established the theorem,
emphasizing Gauss’s place. However, by the end of the 19th century, the history of the FTA ge
followed the outline provided by Gauss. Gauss’s evaluation of his predecessors was taken up
most respected historians, including Gino Loria, Moritz Cantor, Florian Cajori[Cajori, 1908, 139], and
Eugene Netto. They joined in crediting to Gauss the first rigorous proof of the FTA[Loria, 1891, 203], or
at least “stronger claims to a satisfactory proof” than his predecessors[Netto, 1898, 234]. They accepted
Gauss’s opinion that the algebraic proofs of Euler, Lagrange, and Laplace were fatally flawed by
reasoning; Loria emphasized Gauss’s comment that d’Alembert’s offered the possibility of a sound

Loria’s influential article (seeGilain [1991, 121]) argued that d’Alembert’s proof was essentia
correct, only lacking justification for some of its (true) claims, while the other early proofs
essentially flawed[Loria, 1891]. Loria said that Gauss, in the final Article 24 of his 1799 paper,

7 Propter has rationes demonstrationemD’A LEMBERTianam pro satisfaciente habere nequeo. Attamen hoc non obs
verus demonstrationis nervus probandi per omnes obiectiones infringi mini videtur, . . .[Gauss, 1799, Art. 6].
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traced the general course of a proof modeled on that of the geometer of the Encyclopedia [d’Alembert], a sign which—although
leaving considerable labor to one who wishes to transform it into a rigorous and complete argument—is sufficient to serve as
confirmation of the favorable judgment pronounced by Gauss on the inquiry of d’Alembert.[Loria, 1891, 189]

Loria’s reading of Gauss’s Article 24 is hard to accept. Gauss did say in Article 23 that his arg
of Article 24 is “nevertheless in particular essential aspects like the d’Alembertian.” But Gaus
arguing (in modern notation) that iff (x + y

√−1) is represented asT (x, y) + U(x, y)
√−1, then one

can continuously follow the value ofU(x, y) along the curvesT (x, y) = 0 to a point whereU(x, y) = 0.
There is something d’Alembertian in that one follows a curve, but this is not a proof following the c
set out by d’Alembert. (Variations on this argument are found inLe Vavasseur [1907, 192]andDieudonné
and Guérindon [1978, 68–69].)

Cantor provided a very good short account of d’Alembert’s proof, one not so generous as Loria’s
an unflattering description of d’Alembert’s mathematical style, Cantor gave an outline of d’Alem
1746 proof. Unlike Loria, he did not argue that d’Alembert’s argument could be repaired. His com
on both Euler[Cantor, 1901, 602]and d’Alembert’s proofs, recognized the influence of Gauss.

Gauss had remarked about this that even if all d’Alembert’s otherobjectives were granted, the assumption could not be justified that
if a functionφ(x) takes a valueS and does not take a valueU , then there must be a valueT betweenS andU which φ(x) achieves
but does not surpass. It is more likely thatφ(x) approachesT without reaching it.[Cantor, 1901, 587]

And Netto’s brief evaluation of d’Alembert’s proof is no more than a reference to Gauss: “Gaus
showed [d’Alembert’s proof] to be inadequate in several points, declared at the same time that
be converted to a fuller rigor”[Netto, 1898, 236].

In recent decades, several historians have reexamined the early proofs of the FTA and
objections to those proofs. Where Cauchy, in [1817], traced the history of the FTA without eve
mentioning d’Alembert, some modern evaluations give d’Alembert’s proof a special place amo
early efforts, even before Gauss in the case of[Stillwell, 1989, 195–198]: “We can now fill the gaps
in d’Alembert (1746) by appeal to standard methods and theorems, whereas there is still no ea
to fill the gap in Gauss (1799).”[Bottazzini, 1986, 15–16, 40–41; Dieudonné and Guérindon, 1
Gigli, 1925, 189–192; Gilain, 1991; Houzel, 1989; Petrova, 1974], and Jûskevîc and Taton[Euler, 1980,
253]all present d’Alembert’s argument as containing unproven claims but fundamentally sound. I
the conclusion but believe that the justifications must be examined with care.

Where assuming the existence of roots of some form was regarded as circular reasoning by
subsequent construction of the splitting field lets us view this defect as a lacuna. (SeeBachmacova
[1960, 211].) Christian Gilain takes the question of existence of roots in another direction. He argu
d’Alembert’s proof is “a true theorem on the existence of roots” [p. 117], in that way superior to the p
of Euler and Lagrange, who had assumed that any polynomial could be written(x−α)(x−β)(x−γ ) · · · .

One interpretation of d’Alembert’s proof, found, for example, in[Delone, 1956, 281; Petrova, 197
Stillwell, 1989]; centers on a “Lemma of d’Alembert.” From Stillwell:

. . . The key to d’Alembert’s proof is a proposition now known as d’Alembert’s lemma: ifp(z) is a polynomial function andp(z0) �= 0,
then any neighborhood ofz0 contains a pointz1 such that|p(z1)| < |p(z0)|. . . .

A simple elementary proof of d’Alembert’slemma was given by Argand (1806). . . . [pp. 196–197]

Stillwell finishes the proof of the FTA as Argand did [1814/1815].
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Now, d’Alembert’s Lemma, without that name, is the basis of a proof of the FTA inArgand [1806]
and, successfully (except for a result of continuity), inArgand [1814/1815], and later byCauchy [1817].
Argand used the series forp aboutz0 to argue that for some nearbyz1, |p(z1)| < |p(z0)|, whenp(z0) �= 0.
But d’Alembert, in arguing for a complex solution,z, of p(z) = y for all realy, had only representedz
by the inverse seriesq(y). D’Alembert was not concerned with|p(z)| or |q(y)| or with inequalities. He
had just argued that ifp(z) = y gives a real or complexz corresponding to a realy, thenz stays real or
complex asy increases or decreases by some small real number.

The modern works which correctly report d’Alembert’s proof still provide little help in understan
the repairs that are required.

One difficulty lies in justifying, forp(z) = y, the expansion ofz in fractional powers ofy. Puiseux
[1850] is often cited, for example inDieudonné and Guérindon [1978]. However, Puiseux, the pione
in this topic, simply observed [Articles 17–24] that each complexy outside the finite set of singula
points gives as many rootsz1(y), z2(y), . . . , as the degree ofp(z), and then argued that each rootzj(y)

is analytic away from the singular points and that the roots are represented by a fractional powe
about each of the singular points. Thus, Puiseux very openly assumed the FTA; he was not prov

Likewise, analytic continuation and compactness—called on by various writers—are typ
employed with algebraic equations only after one has established, usually by the FTA, a collec
complex pairsy and z satisfying p(z) = y. Even Gigli’s generally excellent discussion calls on
permanence of functional equations, without first justifying the existence of an analytic continuat
[Gigli, 1925, 192].

6. A d’Alembertian proof of the fundamental theorem of algebra

We take up the FTA in this form:

The fundamental theorem of algebra.GivenF(z, y) = p(z) − y, wherep(z) is a real polynomial of
degreen with p(0) = 0. Then for each real valuey∗ of y there is a complex solutionz of F(z, y∗) = 0.

A d’Alembertian proof of the FTA requires a real starting pointy1, or interval of such points, to whic
corresponds a complexz1 so F(z1, y1) = 0, together with an appropriate path fromy1 to y∗. We then
show thaty can move on this path all the way fromy1 to y∗ while keeping a corresponding complexz

which satisfiesF(z, y) = 0.
The greatest difficulty concernssingular points:

Definition. y1 is a singular point of polynomial F(z, y) iff F(z, y1) has a multiple zero inz. An
equivalent condition is thatF(z, y1) and(d/dz)F (z, y1) have a nontrivial common factor.

Lemma. If y∗ is singular, thenp(z) − y∗ = F(z, y∗) has a complex rootz.

Proof. The Euclidean algorithm onp(z) − y∗ andp′(z) produces a nontrivial real polynomial factor
p(z) − y∗, and so by induction on the degree ofp(z) there is a complex root ofp(z) − y∗. �
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TheFirst Proof employs a path which avoids singular points but may have to venture into the co
plane off the real axis. TheSecond Proof, which assumes the first, holds to d’Alembert’s plan of a p
along the real axis.

First proof. If y∗ is not singular, then we can choose realy1 and the entire path (in the complex plan
from y1 to y∗ avoiding the finite set of singular points.y1 is selected from the interval of valuesp(z)

for z on a real interval.
There is a boundB on |y| on the path, and a boundC [Hille, 1959, 208]on the modulus of any comple

roots ofp(z) = y for |y| < B. Then for anyy2 on the path fromy1 to y∗ which yields a real or comple
root z = z2, there is a convergent series expressing a rootz of p(z) = y as a function ofy for eachy in
a disk|y − y2| < r , wherer depends onB, C, and the coefficients ofp(z) but not ony2. A “majorant”
argument, as found inGoursat [1904, 394–401] or Hille [1962, Ch. 9], can produce such anr , as can
theImplicit Function Theorem[Hille, 1962, Ch. 9]. (See theMajorant Argumentin Appendix A, below.)
Either approach depends on the boundedness of a continuous function on a compact set.

Now, starting with a disk centered aty1, then a disk centered aty2, where|y1 − y2| = r/2, etc., one
builds a chain of overlapping disks of radiusr until y∗ is reached, with complexz∗ sop(z∗) = y∗. �
Second proof. We now allow for a singular pointy2 on the path, and thus keep they-path on the rea
axis. As in the case, above, of singulary∗, p(z) − y2 has a complex rootz2 (of multiplicity k > 1). We
can supposey2 = z2 = 0, so

p(z) − y2 = p(z) = azk
[
1+ q(z)

]
, a �= 0, q(0) = 0.

Let h(z) be akth root ofp(z). Then

h(z) := a1/kz
[
1+ q(z)

]1/k = a1/kz

[
1+

∞∑
j=1

cj z
j

]
for |z| < K, a1/k anykth root ofa,

K a positive constant.z = 0 is nonsingular forh(z), so the relationh(z) = w can be inverted [seeFirst
Proof] in an analytic function ofw in a neighborhood of the origin:

z = g(w) = d1w + d2w
2 + d3w

3 + · · · if |w| < δ1.

Sincep(z) = [h(z)]k, thenp(g(w)) = wk. Let w be akth root ofy. Thenp(g(y1/k)) = y. So

z = g
(
y1/k

) = d1y
1/k + d2y

2/k + d3y
3/k + · · · in the disk|y| < δk

1,

wherey1/k denotes any of thekth roots ofy. (A different choice of thekth root ofa produces the sam
k different values ofz. SeeHille [1962, Theorem 9.4.3].)

Therefore asy, on the real path fromy1 to y∗, approaches the singular pointy2, one of the disks o
radiusr or smaller must overlap the disk just found of radiusδk

1 abouty2, without meetingy2. Thus we
have a continuous path of complex valuesz corresponding to they-path right through and beyondy2.
At a nonsingular real point of they-path beyondy2 we can again build the chain of disks of radiusr or
smaller.

In this way, we follow d’Alembert’s original plan of ay-path on the real axis from initial pointy1 to
the giveny∗, to which there is a corresponding real or complexz-path of solutions ofp(z) = y. This
proves the Fundamental Theorem of Algebra.�



426 C. Baltus / Historia Mathematica 31 (2004) 414–428

reading,
lpful.

x

s

ed
Acknowledgments

Through a long review process, the referees have provided valuable comments and suggested
much of which is incorporated into this work. Editor Umberto Bottazzini has been especially he
I am very grateful. The deficiencies are, of course, my responsibility.

Appendix A. Majorant argument

Let p(z) be a real polynomial of degreen with p(0) = 0, y complex,C a bound on any comple
roots ofp(z) − y, where|y| < B. For a given real valuey2 of y, |y2| < B, supposez = z2 is a simple
complex root ofp(z)− y2 = 0. We then claim that there is a positiver , depending only onB, C, and the
coefficients ofp(z), such that when|y − y2| < r , then there is a complex rootz of p(z) = y expressed a
a convergent series iny.

Proof. Assumez2 = 0 = y2. Rewritep(z) = y in terms of a series aroundz = 0:

z = G(z, y) = c0y + c2z
2 + c3z

3 + · · · + cnz
n,

which is possible sincey is not singular. Let (formally)

(A.1)z = b1y + b2y
2 + b3y

3 + · · · ,
and then by substitution into the seriesz = G(z, y), we can formally solve forb1, then forb2, then for
b3, etc.

We also consider the equation

(A.2)z = d0y + d2z
2 + d3z

3 + · · · + dnz
n, wheredj := |cj |.

Setz = b∗
1y + b∗

2y
2 + b∗

3y
3 + · · · , substitute intoEq. (A.2), and solve forb∗

1, b∗
2, b∗

3, etc. By induction,

(A.3)b∗
1, b

∗
2, b

∗
3, etc. are all nonnegative and|bj | � b∗

j for all j.

In |z2| � C, |y2| < B, there is a boundM on the coefficients ofG(z, y), since the coefficients are bas
on (continuous) partial derivatives ofG(z, y). Then

(A.4)|z| = ∣∣G(z, y)
∣∣ � M

[|y| + |z|2 + |z|3 + · · · + |z|n + · · ·].
Note that|cj | � M .

We can assume (justified below)|z| < 1. Replacing|z| by t , and|y| by s, inequality(A.4) is

(A.5)t � M

[
s + t2

1− t

]
.

Inequality(A.5) is satisfied byt = 0. The corresponding equality gives, by the quadratic formula,

(A.6)t = 1+ Ms − √
(Ms + 1)2 − 4(M + 1)Ms

,

2(M + 1)
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choosing the minus over the plus so thatt → 0 ass → 0. The radical can be expanded as a conver
series in (nonnegative)s iff −1< 2Ms + M2s2 − 4Ms − 4M2s < 1. Both inequalities are satisfied iff

(A.7)0� s < r := 1+ 2M − √
(1+ 2M)2 − 1

M
.

If r > 1, setr := 1. Fors satisfying 0� s < r , the series development oft = |z| as a function ofs = |y|,
given byEq. (A.6), converges. Because of inequality(A.3), and since|cj | � M , the series(A.1) also
converges for|y| < r . And since the series formally solvesz = G(z, y), it is an analytic solution of tha
equation. �
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