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Hamilton, Rodrigues, and the 
Quaternion Scandal 

What went wrong with one of the major mathematical discoveries 
of the nineteenth century* 

SIMON L. ALTMANN 
Brasenose College 

Oxford OX1 4AJ, UK 

Some of the best minds of the nineteenth century-and this was the century that saw 
the birth of modern mathematical physics-hailed the discovery of quaternions as just 
about the best thing since the invention of sliced bread. Thus James Clerk Maxwell, 
[31, p. 226], the discoverer of electromagnetic theory, wrote: 

The invention of the calculus of quaternions is a step towards the knowledge of 
quantities related to space which can only be compared, for its importance, with 
the invention of triple coordinates by Descartes. The ideas of this calculus, as 
distinguished from its operations and symbols, are fitted to be of the greatest use 
in all parts of science. 

Not everybody, alas, was of the same mind, and some of the things said were pretty 
nasty: 

Quatemions came from Hamilton after his really good work had been done; and, 
though beautifully ingenious, have been an unmixed evil to those who have 
touched them in any way, including Clerk Maxwell. (Lord Kelvin, letter to 
Hayward, 1892; see [38, vol. II, p. 1070].) 

Such robust language as Lord Kelvin's may now be largely forgotten, but the fact 
remains that the man in the street is strangely averse to using quaternions. Side by 
side with matrices and vectors, now the lingua franca of all physical scientists, 
quaternions appear to exude an air of nineteenth-century decay, as a rather unsuccess- 
ful species in the struggle-for-life of mathematical ideas. Mathematicians, admittedly, 
still keep a warm place in their hearts for the remarkable algebraic properties of 
quaternions, but such enthusiasm means little to the harder-headed physical scientist. 

This article will attempt to highlight certain problems of interpretation as regards 
quaternions which may seriously have affected their progress, and which might 
explain their present parlous status. For claims were made for quaternions which 
quaternions could not possibly fulfil, and this made it difficult to grasp what quater- 
nions are excellent at, which is handling rotations and double groups. It is 

*This article follows closely material from Chapters 1 and 12 of Rotations, Quaternions, and Double 
groups, by Simon L. Altmann, Clarendon Press, Oxford, 1986. 
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essentially the relation between quaternions and rotations that will be explored in this 
paper and the reader interested in double groups will find this question fully discussed 
in my recent book [1]. 

The Men Involved: Hamilton and Rodrigues 

It is not possible to understand the quaternions' strange passage from glory to decay 
unless we look a little into the history of the subject, and the history of quaternions, 
more perhaps than that of any other nineteenth-century mathematical subject, is 
dominated by the extraordinary contrast of two personalities, the inventor of quater- 
nions, Sir William Rowan Hamilton, Astronomer Royal of Ireland, and Olinde 
Rodrigues, one-time director of the Caisse Hypothecaire (a bank dedicated to lending 
money on mortgages) at the Rue Neuve-Saint-Augustin in Palis [4, p. 107]. 

Hamilton was a very great man indeed; his life is documented in minute detail in 
the three volumes of Graves [15]; and a whole issue in his honour was published in 
1943, the centenary of quaternions, in the Proceedings of the Royal Irish Academy, 
vol. A50 and, in 1944 in Scripta Mathematica, vol. 10. There are also two excellent 
new biographies' [23], [33] and numerous individual articles (see, e.g. [26]). Of 
Hamilton, we know the very minute of his birth, precisely midnight, between 3 and 4 
August, 1805, in Dublin. Of Olinde Rodrigues, despite the excellent one-and-only 
published article on him by Jeremy Gray [16], we know next to nothing. He is given a 
mere one-page entry in the Michaud Biographie Universelle [32] as an 'economist and 
French reformer'. So little is he known indeed, that Cartan [6, p. 57] invented a 
nonexistent collaborator of Rodrigues by the surname of Olinde, a mistake repeated 
by Temple [37, p. 68]. Booth [4] calls him Rodrigue throughout his book, anld Wilson 
[41, p. 100] spells his name as Rodriques. 

Nothing that Rodrigues did on the rotation group-and he did more than any manl 
before him, or than any one would do for several decades afterwards- brought him 
undivided credit; and for much of his work he received no credit at all. This Inivisible 
Man of the rotation group was probably born in Bordeaux on 16 October 1794, the 
son of a Jewish banker, and he was named Benjamin Olinde, although he never used 
his first name in later life. The family is often said to have been of Spanish origin, but 
the spelling of the family name rather suggests Portuguese descent (as indeed asserted 
by the Enciclopedia Universal Illustrada Espasa-Calpe). He studied mathematics at 
the Ecole Normale, the Ecole Polytechnique not being accessible to him owing to his 
Jewish extraction. He took his doctorate at the new University of Paris in 1816 with a 
thesis which contains the famous 'Rodrigues formula' for Legendre polynomials, for 
which he is mainly known [14]. 

The next 24 years or so until, out of the blue, he wrote the paper on rotations which 
we shall discuss later, are largely a blank as far as Rodrigues's mathematics is 
concerned. But he did lots of other things. The little that we know about Rodrigues 
relates to him mainly as a paranymph of Saint-Simon, the charisinatic Utopian 
Socialist, whom he met in May, 1823, two months after Saint-Simon's attempted 
suicide. So, we read [40, p. 30] that the banker Rodrigues helped the poor victim in 
his illness and destitution, and supported him financially until his death in 1825. That 
Rodrigues must have been very well off we can surmise from Weill's reference to him 
as belonging to high banking circles, on a par with the wealthy Laffittes [40, p. 238]. 
After Saint-Simon died, with Rodrigues by his bedside, the latter shared the headship 
of the movement with Prosper Enfantin, an old friend and disciple of Saint-Simon. 
Thus he became Pere Olinde for the acolytes. But the union did not last very long: in 
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1832 Rodrigues repudiated Enfantin's extreme views of sexual freedom and he 
proclaimed himself the apostle of Saint-Simonism. In August of that year he was 
charged with taking part in illegal meetings and outraging public morality, and was 
fined fifty francs [4]. Neither of the two early historians of Saint-Simonism, Booth and 
Weill, even mention that Rodrigues was a mathematician: the single reference to this 
is that in 1813 he was Enfantin's tutor in mathematics at the Ecole Polytechnique. 
Indeed, all that we know about him in the year 1840 when he published his 
fundamental paper on the rotation group is that he was 'speculating at the Bourse' 
[4, p. 216]. 

Besides his extensive writings on social and political matters, Rodrigues published 
several pamphlets on the theory of banking and was influential in the development of 
the French railways. He died in Paris almost forgotten, however [32]. Even the date of 
his death is uncertain: 26 December 1850, according to the Biographie Universelle 
[32], or 17 December 1851, according to Larousse [27]. Sebastien Charlety [9, pp. 
26,294], although hardly touching upon Rodrigues in his authoritative history of 
Saint-Simonism, gives 1851 as the year of Rodrigues's death, a date which most 
modern references seem to favour. 

Hamilton survived Rodrigues by fourteen years and had the pleasure, three months 
before his death in 1865, to see his name ranked as that of the greatest living scientist 
in the roll of the newly created Foreign Associates of the American National Academy 
of Sciences. And quite rightly so: his achievements had been immense by any 
standards. In comparison with Rodrigues, alas, he had been born with no more than a 
silver-plated spoon in his mouth: and the plating was tarnishing. When he was three 
the family had to park various children with relatives and William was sent to his 
uncle, the Rev. James Hamilton, who ran the diocesan school at Trim. That was an 
intellectually explosive association of child prodigy and eccentric pedant: at three 
William was scribbling in Hebrew and at seven he was said by an expert at Trinity 
College, Dublin, to have surpassed the standard in this language of many Fellowship 
candidates. At ten, he had mastered ten oriental languages, Chaldee, Syriac, and 
Sanscrit amongst them plus, of course, Latin and Greek and various European 
languages. This is, at least, the received wisdom on Hamilton and it may contain an 
element of legend: it is pretty clear, e.g., that his knowledge of German was not all 
that strong in later life and the veracity of the reports on these linguistic feats is 
disputed by O'Donnell [33]. Mathematics-if one does not count mental arithmetic, 
at which he was prodigious-came late but with a bang when, at seventeen, reading 
on his own Laplace's M&anique Celeste, he found a mistake in it which he 
communicated to the President of the Irish Academy. His mathematical career was 
already set in 1823 when, still seventeen, he read a seminal paper on caustics before 
the Royal Irish Academy. 

From then on Hamilton's career was meteoric: Astronomer Royal of Ireland at 22, 
when he still had to take two quarterly examinations as an undergraduate, knight at 
30. Like Oersted, the Copenhagen pharmacist who had stirred the world in 1820 with 
his discovery of the electromagnetic interaction, Hamilton was a Kantian and a 
follower of the Naturphilosophie movement then popular in Central Europe. For 
Hamilton 'The design of physical science is ... to learn the language and to interpret 
the oracles of the universe' (Lecture on Astronomy, 1831, see [15, vol. I, p. 501]). He 
discusses in 1835, prophetically (because of the later application of quaternions in 
relativity theory), " Algebra as the Science of Pure Time". He writes copiously both in 
prose and in stilted verse, engages in a life-long friendship with Wordsworth, and goes 
to Highgate in the spring of 1832 to meet Coleridge, whom he visits and with whom 
he corresponnds regularly in the next few years, the poet praising him for his 
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understanding 'that Science... needs a Baptism, a regeneration in Philosophy' or 
Theosophy [15, vol. I, p. 546]. 

The Discovery of Quaternions 

Hamilton had been interested in complex numbers since the early 1830's and he was 
the first to show, in 1833, that they form an algebra of couples. (See [22, vol. III].) I 
shall review briefly his ideas so as to lead the way to quaternions, but, here and 
hereafter, I shall use my own notation in order to avoid ambiguities. First, we define 
imaginary units, 1 and i with the well-known multiplication rules in TABLE 1. Then 
the elements of the algebra are the complex numbers A = al + Ai, with a and A real. 

TAB LE 1. Multiplication table 
of the imaginary units. 

1i 

1 , 1i 

Of course, to say that they form an algebra merely means that the formal rules of 
arithmetical operations are valid for the objects so defined. Thus, given A and a 
similarly defined B, their product is 

AB = ab-AB + i(aB + bA). (1) 

We can now write the complex numbers A and B as couples (or ordered pairs) 

A = [a, Al, B = [b, BJ, (2) 

and their product is also a couple: 

AB=I[ab-AB,aB+bAM. (3) 

Hamilton also recognized that the real number a can be written as the complex 
couple 

a = [a,01. (4) 

For the next ten years Hamilton's mind was occupied, if not obsessed, with two 
problems. On the one hand, Hamilton tried to extend the concept of the complex 
number as a couple in order to define a triple, with one real and two imaginary units. 
This however, not even he could do. On the other hand, the concept of a vector was 
beginning to form in his mind. It must be remembered that in the 1830's not even the 
word vector existed, although people were playing about, in describing forces and 
such other quantities, with concepts that we would recognize today as at least vector 
like. It is pretty clear that during this gestation period, as a result of which Hamilton 
would eventually invent the notion of vector, he had built up in his mind a picture of 
the addition and of some form of multiplication of vectors, but there was an operation 
which baffled him in the extreme: coming down the stairs for breakfast, Hamilton 
often could hear his elder son asking: 'Father, have you now learned how to divide 
vectors?'. Out of this preoccupation Hamilton was to invent the most beautiful algebra 
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of the century, but he was also to feed the fever that eventually led him to corrupt his 
own invention. 

We must now come to Monday, 16 October 1843, one of the best documented days 
in the history of mathematics and which, by one of those ironies of fate, happened to 
be the 49th birthday of Olinde Rodrigues, whose work, however ignored, was to give a 
new meaning to Hamilton's creation. Hamilton's letter to his youngest son, of 5 
August 1865 [15, vol. II, p. 434], is almost too well known, but bears brief repetition. 
The morning of that day Hamilton, accompanied by Lady Hamilton, was walking 
along the Royal Canal in Dublin towards the Royal Irish Academy, where Hamilton 
was to preside at a meeting. As he was walking past Broome Bridge (referred to as 
Brougham Bridge by Hamilton and called by this name ever since), Hamilton, in a 
flash of inspiration, realized that three, rather than two, imaginary units were needed, 
with the following properties: 

j2= j2= k2= 1, ij = k, ji =-k, (5) 

and cyclic permutation. As everyone knows, and de Valera was to do almost one 
century later on his prison wall, Hamilton carved these formulae on the stone of the 
bridge: poor Lady Hamilton had to wait. Armed now with four units, Hamilton called 
the number 

A=ala+A i+Aj+ Ak, (6) 

where the coefficients here are all real, a quatemion. Thus were quaternions born and 
baptized: it was entered on the Council Books of the Academy for that day that Mr. 
W. R. Hamilton was given leave to read a paper on quaternions at the First General 
Meeting of the Session, 13 November 1843. 

One of the various falsehoods which have to be dispelled about quaternions is the 
origin of their name, since entirely unsupported sources are often quoted, in particular 
Milton, Paradise Lost, vol. 181 [28, p. 70] and the Vulgate, Acts 12:4 [37, p. 46]. Of 
course, we know that Milton was a favourite poet of Hamilton at 24 [15, vol. I, 
p. 321], and to suggest that he was not aware of Acts and the apprehension of Peter 
by a quaternion of soldiers would be absurd. (These references appear in fact in Dr. 
Johnson's Dictionary, which was familiar to every schoolboy of the time.) But no one 
with the slightest acquaintance with Hamilton's thought would accept the obvious 
when the recondite will do. In his Elements of Quatemions [21, p. 114]) we find our 
first clue: 'As to the mere word, quatemion, it signifies primarily (as is well known), 
like its Latin original, "Quaternio" or the Greek noun T-TpaXTVS, a Set of Four'. The 
key word here is 'tetractys,' and there is evidence for this coming from Hamilton's 
closest, perhaps his only real pupil, P. G. Tait, who, writing in the Encyclopaedia 
Britannica (see article on Quaternions in the XIth edition) says: 'Sir W. R. Hamilton 
was probably influenced by the recollection of its Greek equivalent the Pythagorean 
Tetractys..., the mystic source of all things...'. That Tait very much believed in this 
is supported by the unattributed epigraph in Greek in the title page of his own 
treatise on quaternions [36]: these are verses 47 and 48 of Carmen Aureum (Golden 
Song), a Hellenistic Pythagorean poem much in vogue in the Augustan era, the full 
text of which appears in Diehl [11, p. 45]. Of course, the concept of the tetractys 
embodying, as we shall see, multiple layers of meaning in a single word, must have 
attracted Hamilton: for Pythagoras, having discovered that the intervals of Greek 
music are given by the ratios 1: 2.3: 2.4: 3 made it appear that kosmos, that is, order 
and beauty, flow from the first four digits, 1, 2,3,4, the sum of which gives the perfect 
number 10, and is symbolized by the sacred symbol, the tetractys: 
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(A famous depiction of the tetractys can be seen in the School of Athens, the fresco 
by Raphael at the Vatican where, anachronistically, the sacred symbol is given in 
Latin numerals in the figure held in front of Pythagoras.) The Pythagoreans used to 
take an oath by the tetractys, as recorded by Sextus Empiiicus (see [24, p. 233]): 'The 
Pythagoreans are accustomed sometimes to say "All things are like number" and 
sometimes to swear this most potent oath: 'Nay, by him that gave to us the tetractys, 
which contains the fount and root of ever-flowing nature.' That the tetractys exercised 
the imagination of Hamilton, there is no doubt: besides the cryptic footnote in the 
Elements, already quoted, we find Augustus DeMorgan (with whom Hamilton enter- 
tained a very copious correspondence) acknowledging on 27 December 1851 a sonnet 
from Hamilton (apparently lost) on the tetractys. It is tempting to speculate that 
Hamilton might have been introduced to the tetractys by Coleridge, who called it 'the 
adorable tetractys, or tetrad' (see [2, p. 252]) and who referred to it many times. 

In Praise of Hamilton: the Algebra of Quaternions 

In comparison with the binary form (2) of a complex number, the quatemion (6) can 
also be written as a couple of a real nuumber a and a vector A of components 
AX, AY) AZ, (as already said, we use modem rather than historical notation): 

A = a,AJ, A= (Ax, AY,Az). (7) 

Just as for the complex numbers, in order to multiply two such objects we need the 
multiplication table of the quaternion units, which follows at once from eqn (5) and it 
is given in Table 2. Consider now a second quaternion iB, write both A and !B as in 
eqn (6) and, on using the table, their product follows at once in the same manner as 
that in (3): 

A\B=IJab-A.B,aB+bA+AXB]J. (8) 

Although Hamilton did not give names or symbols for these operations, it is here that 
the scalar and vector products of two vectors appear for the first time in history. We 
can now go back to TABLE 2 and reflect a little about why Hamilton made the product 
ij noncommutative. Not only was this the first time that a noncommutative product 
appeared in mathematics, but this was a true stroke of genius. Remember that 
Hamilton wanted to divide vectors: he never really achieved this (neither was it worth 
trying) but the point is that, because of this, he was after a division algebra, i.e., one 
in which the quotient of an element of the algebra by any other nonnull element 
always exists. Now, a necessary condition for a division algebra is this: the product of 
two elements of the algebra must vanish if and only if one of the factors is the null 
element. TABLE 2 is designed so that this happens, as can easily be verified from the 
resulting multiplication rule, given by (8). A counterexample will be instructive. 
Suppose we take ij and ji as equal in TABLE 2, and, similarly, for the other products. 
Then, under the new multiplication rules, it is very easy to verify that the product of 
the two nonnull elements 
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=ij, B-ij, (9) 

vanishes. 

TABLE 2. Multiplication table of the quaternion units. 

1 i j k 

1 1 i j k 
1 k -j 

j j -k -1i 
k k j -i -1 

Hamilton's everlasting monument (see [30]) is his constiuction of objects which, 
except for commutativity, obey the same algebra as that of the real and complex 
numbers and which therefore, like them, form a division algebra: and Hamilton was 
aware of this-although he could not foresee that his brain-child was going to receive 
at the hands of Frobenius in 1878 the supreme accolade of being proved to be the 
only possible algebra, in addition to the real and complex numbers, with this property. 

The Trouble Starts 

Now back to 16 October 1843. That same evening Hamilton wrote a long and detailed 
draft of a letter to his friend John Graves, first published by A. J. McConnell [29] and 
included in Hamilton [22, vol. III]. Next day a final letter was written and sent, later 
published in the Philosophical Magazine [17]. The November report to the Irish 
Academy was published almost at the same time [18]. We can thus follow almost hour 
by hour Hamilton's first thoughts on quaternions. Although in the morning of the 
glorious day he had been led to the discovery through the algebra of the quaternions, 
by the evening (and in this he acknowledges the influence of Warren [39]), he had 
been able to recognize a relation between quaternions and what we now call rotations. 
And in this, sadly, we cannot but see the germ of the canker that eventually consurmed 
the quaternion body. Three separate themes, ever present in Hamilton's mind, 
contributed to this infirnity. 

As regards the first theme: as in (4), Hamilton identified a real number with a real 
quaternion: 

a = la, 0]. (10) 

Nothing wrong here, but it invited Hamilton to go on and identify a pure quaternion 
(a quaternion with a null scalar part) with a vector, a word which he invented for this 
purpose in 1846 [19, p. 54]: 

A = EO, Al. (11) 

As the inventor of the vector he was entitled to call this object anything he wanted 
but the problem is that by this time people were already thinking about forces and 
such like objects very much as we think of vectors today and that the identification of 
Hamilton's 'vectors' with what they had in mind created a great deal of confusion. 
The apparently innocent convention (11) entails in fact two serious problems. That 
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something here was a serious worry must have been evident for decades, as Klein 
[25, p. 186], one of the leading nineteenth-century geometers, implied himself. Yet, 
the first explicit statement to the effect that something is wrong here which I have 
been able to find is as recent as 1958 by Marcel Riesz [34, p. 21]: 'Hamilton and his 
school professed that the quaternions make the study of vectors in three-space 
unnecessary since every vector can be considered as the vectorial part ... of a 
quatemion... this interpretation is grossly incorrect since the vectorial part of a 
quaternion behaves with respect to coordinate transformations like a bivector or 
"axial" vector and not like an ordinary or "polar" vector.' However damning this 
statement is, it is only half the story, since the pure quaternion (11) is not anything 
like a vector at all: we shall see that it is a binary rotation, that is a rotation by 7T. The 
left-hand side of (11) should be written as A and carefully distinguished from the 
vector A. The fact that neither Hamilton, nor his successors to the present day, 
introduced any notational distinction between these two objects is the source of 
extraordinary confusion, as we shall soon witness ourselves. 

Hamilton's second theme was closely connected to his first and has already been 
mentioned: he wanted to find a definition of the quotient of two vectors and however 
grateful we must be for this obsession, which has given us the last possible division 
algebra, we shall soon see that it led Hamilton to an interpretation of quaternions and 
of their operations which is not right. 

Hamilton's capacious mind could not be at rest until he understood not just the 
formalities of his work but also what went on behind the scenes, and he had to 
understand the physical or geometrical meaning of equating the square of the 
imaginary or quaternion unit, i2, with - 1. This was his third everlasting theme, for 
which he took a cue from Argand, who had observed in 1806 that the imaginary unit i 
rotates what we would now call a vector in the Argand plane by 7T/2, which made it 
possible to visualize the relation in question. From that point of view, in fact, i2 
should be a rotation by 7T which, duly enough, multiplies each vector of the plane by 
the factor - 1. For this reason, Hamilton always identified the quaternion units with 
quadrantal rotations, as he called the rotations by 7T/2 (see [20, p. 64, art. 71]). 
Clifford [10, p. 351] associates himself with this interpretation which he presents with 
beautiful clarity. The sad truth is that, however appealing this argument is, to identify 
the quaternion units with rotations by 7T/2 is not only not right, but it is entirely 
unacceptable in the study of the rotation group: we shall see, in fact, that they are 
nothing else except binary rotations. 

Quaternions and Rotations: the First Steps 

Already during the first day of his creation Hamilton knew what he had to do in order 
to define rotations. Since rotations must leave the lengths of vectors invariant, and 
since for Hamilton a vector was a particular case of a quaternion, the first thing we 
had to do is to define the norm or length 1A I of a quaternion. He defined for this 
purpose the conjugate quatemion 

[a,AD*-=[a, - A. (12) 

The norm is now defined as follows: 

AA*-=a,AJJa,-Al = [a2 + A2,01 = a2 + A2 = A 12. (13) 

A quaternion of unit norm is called a normalized quatemion and, although Hamilton 
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also considered more general quaternions, these will be the only quaternions which we 
shall need for the purposes of this article. It was easy for Hamilton to prove that the 
product of two normalized quatemnions is a nornalized quaternion. (See, e.g. [1, p. 
208].) We are now ready to accompany Hamilton in performing an extraordinary 
piece of legerdemain. 

An Optical Illusion: the Rectangular Rotation 

A rotation is an operation which transforms a unit, that is normalized, position vector 
(a vector with its tail at the origin), r, into another unit position vector r'. If we go 
along with Hamilton and identify the vector r with the pure quaternion R equal to 
110, r], the latter is clearly normalized. In order to achieve a rotation and keep the 
normalization requirement of R, all that we need is to act on [0, r] with a normalized 
quatemion. (See the italicized statement in the previous paragraph.) Let us, therefore, 
choose for this purpose the quaternion 

A = [cos a, sin an], Int = 1, (14) 

which is clearly normalized. (Here n is a unit position vector.) This is not the end of 
the story, however, because we must require that the product AR be not only 
normalized, but also a pure quaternion R' of the form [0, r'] which Hamilton would 
identify with the rotated position vector r'. This is what Hamilton envisioned on the 
same evening of Creation Day, and he also realized that for this idea to work it was 
necessary that the vector n, which he called the axis of the quatemion, be normal to 
the vector r. (This is why this is called the rectangular transformation.) To verify that 
this works is child's play on using the quatemion multiplication rule (8). Given that 
r, n = 0, then 

AR = [cos a, sin an]J[0, r] 
= [0, cos ar + sin a(n x r)J = [0, r'D = '. (15) 

If we briefly avert our gaze while Hamilton rewrites this equation as 

Ar = r', (16) 

then the job is done, that is, the quaternion A transforms the unit position vector r 
into another unit position vector r' and, therefore, has rotated r into r'. What is more: 
it is clear from FIGURE 1 that the angle of rotation is a. Thus Hamilton identified the 

nt 

FIGURE 1 
The rectangular transformation. The vector r' is defined in eqn (15). 
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quaternion (14) with a rotation around the axis n of the quaternion by the angle a of 
rotation of the quaternion. 

All this is so wonderfully convincing that it is difficult to believe that there is 
anything wrong here. Moreover, Hamilton immediately obtained confirmation that 
one of his themes was coming out al ripght, for it was clear to him that the quaternion 
units in this picture are quadrantal rotations, as it is immediate from (14): on 
comparing this equation with, say, the quatemion unit k, given by [0, k], one can see 
at once that the rotation angle to be associated with k must be v/2. His other theme 
was also coming out well here, since from (16) the quaternion A can be considered as 
the quotient of the vector r' by the vector r. This picture of quaternions was thus so 
near Hamilton's heart that in his Lectures on Quatemions [20, p. 122], and ever after, 
the primary definition of a quaternion which he used was 'The quotient of two 
vectors, or the operator which changes one vector into another,' as later adopted by 
the Oxford English Dictionary, and this definition became the core of the quaternion 
dogma, thus causing endless damage. We shall see, in fact, that a quatermion can 
never operate on a vector, as (16) implies, and that this equation must always be 
understood as the quaternion product in (15). 

The Comical Transformation (this heading contains a misprint) 

The conical transformation was the means by which nature began to make its protest 
against Hamilton. Even accepting that a pure quaternion is a vector, we must ensure, 
in order to have a rotation, that the transform of a normalized pure quaternion is 
another normalized pure quaternion. Thus, a general rotation cannot be written as 
AR because this product is not a pure quatemion unless, as we have seen, the axis of 
A is normal to r. Hamilton and his colleagues, therefore, searched for a quaternion 
transformation of a pure quaternion RF under a normalized quaternion A which would 
always produce a normalized pure quaternion lR'. The result of this search was the 
following transformation: 

ARtA* = 1R'. (17) 

It is, in fact, quite easy by means of (8) to verify that the left-hand side of this 
equation is normalized and pure. With a little bit of geometry (see [1, p. 214]), and 
assuming that A is given by (14), it can be proved that r, n, and r' are related as 
shown in FIGURE 2, i.e., that the vector r is rotated around n by the angle 2a. 

, 
. i 7 f i 

:~~~~~~~~~~~~~~~~. i. E--i...... ............... i. 
_ . ~ ~ ~ ~ ~~~....... . ... . 

FIGURE 2 
The conical transformation. 
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There are two problems here: first, the form of (17) has nothing at all to do with 
that of (15), so that it is no longer possible to say that the quaternion operates on a 
vector transforming it into another vector; even less that it is the quotient of two 
vectors. The second problem is this: which is the angle of rotation to be associated 
with a quaternion (14), a, as in the rectangular transformation, or 2a, as it turns out 
in the case of a general rotation? It is, perhaps, significant that Hamilton obtained (17) 
(writing the conjugate quaternion as the reciprocal, as it is valid for a normalized 
quaternion) but did not publish it for some time. Cayley [7] was the first to go into 
print, although in his collected papers [8, vol. I, p. 586, note 20] he concedes priority 
to Hamilton. Cayley notices that the components of r' are 'precisely those given for 
such transformations by M. Olinde Rodrigues.... It would be an interesting question 
to account, a priori for the appearance of these coefficients here'. Let us see what 
Hamilton has to say about this: 'The SYMBOL OF OPERATION q( )q-' where q 
may be called (as before) the operator quaternion, while the symbol (suppose r) of the 
operand quaternion is conceived to occupy the place marked by the parentheses... 'can 
be regarded as' a conical transformation of the operand round the axis of the operator, 
through double the angle thereof.' [20, p. 271, my italics]. It is clear that Hamilton, 
rather than accepting the result of the more general transfornation (17) to recognize 
that the angle of rotation of the quaternion (14) is 2a, gives greater weight to the 
transformation (16) and keeps talking of the angle a in (14) as the angle of rotation. 
Naturally, whereas (16) had the shape that he expected, the form of (17), as Cayley 
stated, could not be explained. It is, perhaps, because of this that, although FIGURE 2 
is nothing else than the most general rotation of a vector, Hamilton refers to it with 
the ad hoc name of conical rotation, as if it were a particular case of the transforma- 
tion of a vector. It had, instead, been Rodrigues who had recognized, three years 
before Hamilton's invention of quaternions, that the angle a in (14) is not the rotation 
angle but only half of it. But his paper, which had puzzled Cayley, was almost 
certainly never read by Hamilton and it was never again quoted by any of the major 
quaternionists. As for Cayley's question, it was probably never answered until 1986. 
(See [1, p. 214].) 

The Rodrigues Programme 

Hamilton constructed quaternions as an algebra, whence the elements of the algebra 
were given a dual role as operators (rotations) and operands (vectors). This was very 
lucidly explained by Clifford [10], but it must be clearly appreciated that, as we have 
already asserted, the status of vectors in this scheme is highly dubious, of which more 
later. Be that as it may, in Hamilton's approach rotations become subservient to the 
algebra, which opens the door to a variety of misinterpretations. 

Historically, however, a treatment of rotations and quaternions had been going on 
for some years before 1843, quite independently of Hamilton and taking a diametri- 
cally opposed view to his. This treatment was entirely geometrical, and because it 
tried to do a simple job in a simple way it was clear and precise and it was entirely 
successful; but it was largely ignored by everyone. 

Let us consider rotations of a unit sphere with fixed centre about various axes. The 
first problem which arises is whether, if we apply one rotation after another, the net 
result is a rotation of the sphere around some unique axis by some unique angle. Euler 
[12] proved algebraically that this is so, but he did not provide either a geometric or a 
constructive solution (i.e., a solution in which the axis and angle of the resultant 
rotation are determined geometrically or algebraically). It was the paper by Rodrigues 
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in 1840 [35] which solved all these aspects of the problem. In its ? 8 he describes most 
clearly, without a figure, a geometrical construction which, given the angles and axes 
of two successive rotations, determines the orientation of the resultant axis of rotation 
and the geometrical value of the angle of rotation. This construction is usually called 
in the literature the Euler construction, although Euler had nothing to do with it. Not 
only was this construction ignored by the quaternionists but it is not even mentioned 
in modern books on the rotation group. Although Hamilton himself rediscovered, 
geometrically [20, p. 328], the results of the Rodrigues construction, this is not a 
theorem to which either he or his commentators paid much attention (see [1, pp. 
19-20]). 

Let us represent a rotation around the axis p by the angle 4 with the symbol 
R(op). Then, if we use the Rodrigues construction for the following product of 
rotations, 

R(al)R(/3m) = R(yn), (18) 

it turns out that the axes 1, m, and n form a spherical triangle with the angles shown in 
FIGURE 3. (Remember that in the left-hand side of (18) the rotation around m is 
applied first and it is followed by that around 1: this is the usual convention for 
reading operators.) 

1 ' \~~~~~~~~~~~~~~~' 
IT- 2 

n 

FIGURE 3 
The product of the rotations R(al) and R(f,m) is the rotation R(yn). 

What is very remarkable about this very simple triangle is that the angles of the 
rotations appear in it as half-angles, and this is the first time that half-angles occur in 
the study of rotations. Their importance is absolutely crucial, as we shall see, and yet 
they were ignored by Euler and were never considered by Hamilton or his followers: 
it took more than forty years before their significance was appreciated. One would 
shirk nowadays at the solution of the spherical triangle in FIGURE 3 (see [1, p. 157]) 
but mathematical training in France on surveying and such was very good and 
Rodrigues was able to obtain quite easily expressions for the angle and axis of the 
resultant rotation, that is, the one on the right-hand side of (18), in terms of those of 
the factors which appear on its left. The following are Rodrigues's formulae exactly as 
he gave them, except that I have introduced vector notation, which was nonexistent in 
his time: 

'y a / a./ 
cos = cos - cos -sin - sin 1.m (19) 

2- + cos a 2 m si, (1) sin 2n =sin -fCos -lcossin 2~ n sin -lIx M. (20) 
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These formulae immediately suggest that a rotation R(al) can be represented by a 
couple of a scalar and a vector (although this notation was not used by Rodrigues) 

R(al) = [cos f ,sin -1DII, (21) 

so that the product (18) is written as follows 

1cos a2 a2 -Os A sin 2 ml = [cos Y2 , sin 2 n], (22) 

with the parameters on the right-hand side of this equation being given by (19) and 
(20). It can immediately be seen that the multiplication rule for the couples so defined 
is identical with the multiplication rule (8) of Hamilton's quaternions! Rodrigues's 
couples are, therefore, quaternions, but the difference in parametrization between (21) 
and (14) is profound. We see at once that the conical transformation, which gives the 
angle of rotation as twice the angle which appears in the quaternion was right, and 
that Hamilton committed a serious error of judgement in basing his parametrization 
on the special case of the rectangular transformation. 

Simple as the distinction is, the consequences are dramatic, and never more so than 
when we consider pure quaternions. From (21), it is clear that for a quaternion to be 
pure the angle of rotation must be 7, that is, a pure quaternion is nothing other than a 
binary rotation: 

[0,rl=R(7r). (23) 

Thus, it is entirely wrong ever to identify a pure quaternion with a vector, as 
Hamilton had done in (11). This simple fact will exorcise all the demons so far lurking 
into our story. Before we do this, we must mention that the (four) rotation parameters 
in (21) are called the Euler-Rodrigues parameters in the literature. The reasons for this 
are entirely disreputable (see [1, p. 20]), since Euler never came near them: in 
particular, he never used half-angles which, as demonstrated by Rodrigues, are an 
essential feature of the parametrization of rotations. 

The Resolution of the Paradoxes 

Although quaternions are always rotations and never vectors, they allow us to mark 
points in space very much as a position vector does. Consider the unit sphere centered 
and fixed at the origin. A rotation of it determines a single point of the sphere which is 
called the pole of the rotation. This is the point of the sphere which is left invariant 
by the rotation and such that from outside it the rotation is seen as positive 
(counterclockwise). If we want to mark a point in space by means of rotation poles, it 
is sensible to use always binary rotations for this purpose, since, as it follows from (23) 
these are the nearest things to vectors that we can get within the quaternion algebra. 
(It should be stressed that this is purely a matter of convenience: the pole of any 
arbitrary rotation is just as good to denote a point of the unit sphere and thus to 
masquerade as a vector.) Let us now look again at (15) with the quaternion A in it 
given by 

AIR=R', A = Icos a, sin anl. (24) 

If we compare the left-hand side of this line with (18) and (21) it says this: the 
product of a rotation by 2a around the axis n, times a binary rotation around the axis 
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r, is a binary rotation around the axis r': 

R(2an)R(7rr) = R(7rr'). (25) 

The angle of rotation, which we already know, and the orientation of the axis r' can, 
of course, be obtained from the quaternion multiplication rules, as given, e.g., in (19) 
and (20), but it will be instructive to obtain an independent geometrical verification, 
since this will show up the paradox involved in Hamilton's interpretation of the 
rectangular transformation. We do this in FIGURE 4. In order to multiply rotations we 
transform the unit sphere, whose intersection with the plane of the drawing is shown 
in FIGURE 4. The rotation axis n is perpendicular to and above the plane of the 
drawing. The rotation axis r is in the plane of the drawing and thus, as it must be in 
the rectangular transformation, is normal to n. A point above the plane of the drawing 
is represented with a cross and those below with a circle. In order to multiply the two 
rotations on the left of (25) we start with point 1 above the plane of the drawing. The 
first rotation to act on it (remember to read the left-hand side of (25) from right to 
left) is a rotation by S around r which takes it into the point 2 below the plane of the 
drawing. The rotation around n by 2a takes 2 to 3. Thus, the two combined 
operations take the point 1 above the drawing to the point 3 below the drawing, 
which is the effect of a binary rotation around the axis r'. Notice that the angle 
between the axes r and r' is a and that this angle is not the angle of rotation. We can 
now see how Hamilton's optical illusion was performed. If in (24) we identify the 
quaternions R and R' with their corresponding vectors r and r', FIGURE 4 now reads 
as the rotation of r into r' by a. Incidentally, the correct reading of FIGURE 4 as stating 
that a rotation axis by 2a and a perpendicular binary axis determine another 
perpendicular binary axis at an angle a to the first one is so fundamental in 
crystallography that the whole of this science would collapse like a pack of cards if it 
were not true. 

What about the conical transformation? I cannot go into all the details of the theory 
but a sketch will suffice. We must accept the following result (see [1, p. 215]). If we 
take a pole of a binary rotation r and we rotate this pole about an axis n by an angle 
a, the new pole thus obtained, r', is the pole of another binary rotation given in the 
following form: 

r' \2a 

~~~ ( ~~~r 

2 

FIGURE 4 
Product of a rotation by 2a around the axis n normal to the plane of the drawing, with a binary 
rotation around the axis r. 
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R(an)R(7r)R(- an) = R(7r'). (26) 

Because the corresponding quaternions must multiply in the same manner, we get 
immediately (17), since the inverse and conjugate quaternions are identical in our 
case. We must remember, though, to use the Rodrigues parametrization of the 
quaternion, as in (21), and not Hamilton's (14): 

A0RA* = R A = [cos 
a 

, sina n (27) 

In this case it is heuristically possible to substitute r and r' for the quaternions lR and 
DR', with the poles of the binary rotations masquerading successfully as position 
vectors. This substitution, however, must never be done anywhere else. In particular, 
one must never attempt to operate with a quaternion on a vector, as is shown by the 
disastrous results of the crude interpretation of the rectangular transformation. 

We must now discuss again the significance of the quaternion units. Because they 
are pure quaternions they must now be identified with binary rotations (rotations by 
T). This, for Hamilton, must have been absurd: the relation i2 equal to - 1 must still 
be satisfied. But the product of two rotations by v7 about the same axis is a rotation by 
27T. This is clearly the identity operation, i.e., one which does not change any vector, 
whereas we are now saying that it is equal to - 1, i.e., that it changes the sign of all 
vectors in space. I believe that this is the reason Hamilton was forced to accept his 
parametrization, since this agreed with his picture of quaternion units as quadrantal 
rotations. Rodrigues, practical man as bankers must be, knew better than to worry 
about this strange result of his geometry-he did not carry, like Hamilton, all the 
world's problems on his shoulders. Nature and history, alas, were playing games with 
Hamilton. How was he to know that Cartan was going to discover in 1913 [5] objects 
(spinors) which are indeed multiplied by - 1 under a rotation by 27, exactly as 
Rodrigues's parametrization requires? Moreover, when the topology of the rotation 
group became understood in the 1920s through the work of Hermann Weyl, it 
became natural to accept that the square of a binary rotation multiplies the identity 
by - 1 and thus behaves like the quaternion units. Though this should have shown 
the enormous importance of quaternions in the rotation group, they were by that time 
somewhat discredited, so that other much less effective parametrizations of the 
rotation group were in universal use. 

It must be stressed that the Rodrigues approach to rotations, by emphasizing their 
multiplication rules and by regarding them entirely as operators, fully reveals the 
group properties of the set of all orthogonal rotations, the full orthogonal group SO(3), 
as it is now called. The set of all normalized quaternions (in the Rodrigues 
parametrization) is a group homomorphic to SO(3) and it is its covering group. 
Although I cannot go into the mathematical significance of this statement, its practical 
importance in quantum mechanics, e.g., can be easily understood: it permits the study 
of the transformation properties of the wave functions of the electron spin. It is for 
this purpose that quaternions are superb, because their use in dealing with rotations 
makes the work not only simpler but also more precise than with any other method. 

The Decline 

Hamilton was still under forty when he discovered quaternions, but he had more than 
twenty years of very productive research past him and was already showing the signs 
of having passed his prime. Financial and even sentimental worries are often men- 
tioned, as well as overwork and an increasing consumption of alcohol [33]. I am 
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inclined to believe that a major factor was that Hamilton himself was in some way 
aware of the internal contradictions of his doctrine and that he could not rest until he 
could peel off all layers of reality one by one to reach to the core. This was always 
beyond his power, since he was not prepared to renounce the, for him, essential 
picture of the quaternion units as quadrantal rotations. Be it as it may, his writing 
became more and more obscure: even his supporters found his books unreadable. And 
he himself became more isolated and eccentric. 

E. T. Bell 13, Ch. 191 labelled the last twenty years of Hamilton 'The Irish Tragedy. 
Lanczos [26] compares them with Einstein's fruitless search for a unified field theory 
in his own last two decades. The truth is probably somewhere between these two 
views. For Hamilton suffered the weight of his own greatness: it was not enough for 
him to have an algebra, it was not enough to have a geometry, he had to 'interpret the 
oracles of the Universe' and the oracles trailed in front of him false clues that no one 
was to unravel for another three-score years after his death. If only he had known 
about spinors! The result, however, was that Hamilton, and to a much greater degree 
his followers, became dogmatic and intolerant (see [25, p. 182]) and that a great deal 
of sterile discussion ensued. 

The last years of Hamilton, despite his immense fame, were not without worries: 
Continentals were spreading rumours that the great Gauss had actually discovered 
quaternions but had never bothered to publish. (They were right, as shown by Gauss's 
notes from 1819, published in 1900; see [13, vol. VIII, pp. 357-362].) In letters to 
De Morgan of January 1852 [15, vol. II, p. 490, vol. III, p. 330), Hamilton attacks 
these allegations. Curiously enough, of Rodrigues, who in 1840 not only had invented 
quaternions bar their name, but also published his formulae, there was never a word. 
Who would pay attention to a Socialist banker in matters mathematical? 

After Hamilton's death his work began to give fruits but not in the direction which 
he had expected. His ideas of vectors and of their scalar and vector products were 
much too important so that people began to try and graft a new skin onto them in 
order to make these concepts usable. Grassmann in Germany and Heaviside in Britain 
moved some way in this direction, but one must admit that they were not much more 
transparent than Hamilton himself. It was left to Willard Gibbs of Yale to produce not 
only the first coherent picture of vectors and of their operations but also a good and 
successful working notation. This hardened the response of Hamilton's followers, who 
adopted a truly Byzantine posture, intent on stopping the flood of rebellion from 
across the Atlantic. Thus P. G. Tait [36, p. vi]: 

Even Prof. Willard Gibbs must be ranked as one of the retarders of quaternion 
progress, in virtue of his pamphlet on Vector Analysis, a sort of hermaphrodite 
monster, compounded of the notations of Hamilton and of Grassmann. 

The kiss of life for quaternions, alas, much too late, came with the foundation in 
1895 of an International Association for Promoting the Study of Quaternions and 
Allied Systems of Mathematics: an acknowledgement that quaternions were a corpse 
in need of resuscitation. Alexander Macfarlane, who taught at Texas, became the 
leading force of the Association, which actually published a Bulletin from 1900 to 
1923. The influence of this group extended as far as Japan, where Kimura in 1907 
became one of the major influences of the Association. Nothing that they did, 
however, succeeded in preventing the rise of vectors and the consequent decline of 
quaternions. 

A number of applications of quaternions went on appearing from time to time (see 
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[1, p. 18].) Ironically, however, by the time in the late twenties when quantum 
mechanics made the study of the rotation group crucial, thus giving the quaternions 
their real raison d'etre, they had been submerged for much too long in the murky 
waters of their battle against vectors to be able to come to the surface again. They are 
much too useful in this context, though, for their time not to return. 

There is a moral to this story: Rodrigues's applied mathematics yields a more 
accurate picture of the quaternions than that afforded by the pure mathematics of 
their inventor: it is probably a myth that pure mathematics is either bom or can stand 
entirely on its own, although the aesthetic appeal of pure mathematics makes us often 
think otherwise. 

Epilogue 

After this article was communicated, a book was announced which contains new 
information about Rodrigues. This is the Dictionnaire du Judaismne Bordelais aux 
XVIIie et XIXe Siecles, by Jean Cavignac (Archives Departementales de La Gironde, 
Bordeaux, 1987). This book contains a family tree of Rodrigues, which shows that his 
great-grandfather, Isaac Rodrigues-Henriques, was born in Spain, around 1689-91 and 
died in Bordeaux in 1767. He was indeed a banker but, contrary to previous belief, 
Olinde's father was an accountant. Surprisingly, the so-far universally accepted date of 
birth of Rodrigues is not right (so that the extraordinary coincidence with the day of 
the discovery of quaternions becomes a second-order effect). The correct date is 6 
October 1795, and this is now unimpeachable, since his birth certificate is fully 
transcribed in a paper on Rodrigues by Paul Courteault (Un Bordelais Saint-Simonien) 
which I, like most people so far, had missed, since it was published in an obscure 
journal (Revue Philomatique de Bordeaux, Octobre-Decembre 1925, pp. 151-166). 
In accordance to this certificate, the date of birth was 14 vendemiare in the year IV of 
the Republic, at 1 p.m. Courteault (and Cavignac), instead, both agree with Michaud's 
date of death, 26.12.1850. Courteault also gives evidence that, although Olinde tried 
to enter the Ecole Normale, he did not succeed in so doing, being prevented by his 
religion, so that how he learnt his advanced mathematics remains an unsolved 
mystery. Even worse, it appears that Rodrigues did not even attend the local 
secondary school (Lycee) at Bordeaux, so that we do not yet know anything at all 
about his formative years. It is of some value, however, that some of the traditional 
wisdom about this period, as repeated, I am afraid, in my paper, is now known to be 
worthless. 
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