
CS188 Spring 2014 Section 0: Search

1 Search algorithms in action

CS188: Artificial Intelligence, Fall 2008

Written Assignment 1
Due: September 11th at the beginning of lecture

1 Graph Search Strategies

A

h=2

C

h=2

Goal

D

h=1

Start

B

h=5

2

4

2

5

4

5

3 1

Our intrepid hero, Search Agent, is late for her artificial intelligence class and needs to get there fast! The
graph above represents how long it takes Search Agent to walk between different parts of campus. For each
of the following graph search strategies, work out the order in which states are expanded, as well as the path
returned by graph search. In all cases, assume ties resolve in such a way that states with earlier alphabetical
order are expanded first. The start and goal state are S and G, respectively. Remember that in graph search,
a state is expanded only once.

a) Depth-First Search

b) Breadth First Search

c) Uniform-Cost Search

d) Greedy search with the heuristic values listed at each state.

e) A∗ search with the heuristic values listed at each state.

For each of the following graph search strategies, work out the order in which states are expanded, as well
as the path returned by graph search. In all cases, assume ties resolve in such a way that states with earlier
alphabetical order are expanded first. The start and goal state are S and G, respectively. Remember that in
graph search, a state is expanded only once.

a) Depth-first search.

b) Breadth-first search.

c) Uniform cost search.

d) Greedy search with the heuristic h shown on the graph.

e) A? search with the same heuristic.

1

CS188 Spring 2014 Section 1: Search

1 Search and Heuristics
Imagine a car-like agent wishes to exit a maze like the one shown below:

The agent is directional and at all times faces some direction d ∈ (N,S,E,W). With a single action, the agent
can either move forward at an adjustable velocity v or turn. The turning actions are left and right, which change
the agent’s direction by 90 degrees. Turning is only permitted when the velocity is zero (and leaves it at zero).
The moving actions are fast and slow. Fast increments the velocity by 1 and slow decrements the velocity by 1;
in both cases the agent then moves a number of squares equal to its NEW adjusted velocity. Any action that
would result in a collision with a wall crashes the agent and is illegal. Any action that would reduce v below 0
or above a maximum speed Vmax is also illegal. The agent’s goal is to find a plan which parks it (stationary)
on the exit square using as few actions (time steps) as possible.

As an example: if the agent shown were initially stationary, it might first turn to the east using (right), then
move one square east using fast, then two more squares east using fast again. The agent will of course have to
slow to turn.

1. If the grid is M by N , what is the size of the state space? Justify your answer. You should assume that
all configurations are reachable from the start state.

2. What is the maximum branching factor of this problem? You may assume that illegal actions are simply
not returned by the successor function. Briefly justify your answer.

1

3. Is the Manhattan distance from the agent’s location to the exit’s location admissible? Why or why not?

4. State and justify a non-trivial admissible heuristic for this problem which is not the Manhattan distance
to the exit.

5. If we used an inadmissible heuristic in A* tree search, could it change the completeness of the search?

6. If we used an inadmissible heuristic in A* tree search, could it change the optimality of the search?

7. Give a general advantage that an inadmissible heuristic might have over an admissible one.

2

2 Expanded Nodes
Consider tree search (i.e. no closed set) on an arbitrary search problem with max branching factor b. Each
search node n has a backward (cumulative) cost of g(n), an admissible heuristic of h(n), and a depth of d(n).
Let c be a minimum-cost goal node, and let s be a shallowest goal node.

For each of the following, you will give an expression that characterizes the set of nodes that are expanded
before the search terminates. For instance, if we asked for the set of nodes with positive heuristic value, you
could say h(n) ≥ 0. Don’t worry about ties (so you won’t need to worry about > versus ≥). If there are no
nodes for which the expression is true, you must write “none.”

1. Give an expression (i.e. an inequality in terms of the above quantities) for which nodes n will be expanded
in a breadth-first tree search.

2. Give an expression for which nodes n will be expanded in a uniform cost search.

3. Give an expression for which nodes n will be expanded in an A∗ tree search with heuristic h(n).

4. Let h1 and h2 be two admissible heuristics such that ∀n, h1(n) ≥ h2(n). Give an expression for the nodes
which will be expanded in an A∗ tree search using h1 but not when using h2.

5. Give an expression for the nodes which will be expanded in an A∗ tree search using h2 but not when using
h1.

3

CS188 Spring 2014 Section 2: CSPs

1 Course Scheduling
You are in charge of scheduling for computer science classes that meet Mondays, Wednesdays and Fridays. There
are 5 classes that meet on these days and 3 professors who will be teaching these classes. You are constrained
by the fact that each professor can only teach one class at a time.

The classes are:

1. Class 1 - Intro to Programming: meets from 8:00-9:00am

2. Class 2 - Intro to Artificial Intelligence: meets from 8:30-9:30am

3. Class 3 - Natural Language Processing: meets from 9:00-10:00am

4. Class 4 - Computer Vision: meets from 9:00-10:00am

5. Class 5 - Machine Learning: meets from 10:30-11:30am

The professors are:

1. Professor A, who is qualified to teach Classes 1, 2, and 5.

2. Professor B, who is qualified to teach Classes 3, 4, and 5.

3. Professor C, who is qualified to teach Classes 1, 3, and 4.

1. Formulate this problem as a CSP problem in which there is one variable per class, stating the domains,
and constraints. Constraints should be specified formally and precisely, but may be implicit rather than
explicit.

2. Draw the constraint graph associated with your CSP.

3. Your CSP should look nearly tree-structured. Briefly explain (one sentence or less) why we might prefer
to solve tree-structured CSPs.

1

2 CSPs: Trapped Pacman
Pacman is trapped! He is surrounded by mysterious corridors, each of which leads to either a pit (P), a ghost
(G), or an exit (E). In order to escape, he needs to figure out which corridors, if any, lead to an exit and freedom,
rather than the certain doom of a pit or a ghost.

The one sign of what lies behind the corridors is the wind: a pit produces a strong breeze (S) and an exit
produces a weak breeze (W), while a ghost doesn’t produce any breeze at all. Unfortunately, Pacman cannot
measure the strength of the breeze at a specific corridor. Instead, he can stand between two adjacent corridors
and feel the max of the two breezes. For example, if he stands between a pit and an exit he will sense a strong
(S) breeze, while if he stands between an exit and a ghost, he will sense a weak (W) breeze. The measurements
for all intersections are shown in the figure below.

Also, while the total number of exits might be zero, one, or more, Pacman knows that two neighboring squares
will not both be exits.

1

2

3

4

5

s

W

wS

6

S

s

Pacman models this problem using variables Xi for each corridor i and domains P, G, and E.

1. State the binary and/or unary constraints for this CSP (either implicitly or explicitly).

2. Cross out the values from the domains of the variables that will be deleted in enforcing arc consistency.

X1 P G E

X2 P G E

X3 P G E

X4 P G E

X5 P G E

X6 P G E

2

3. According to MRV, which variable or variables could the solver assign first?

4. Assume that Pacman knows that X6 = G. List all the solutions of this CSP or write none if no solutions
exist.

1

2

3

n

5. The CSP described above has a circular structure with 6 variables. Now consider a CSP forming a circular
structure that has n variables (n > 2), as shown below. Also assume that the domain of each variable has
cardinality d. Explain precisely how to solve this general class of circle-structured CSPs efficiently (i.e. in
time linear in the number of variables), using methods covered in class. Your answer should be at most
two sentences.

6. If standard backtracking search were run on a circle-structured graph, enforcing arc consistency at every
step, what, if anything, can be said about the worst-case backtracking behavior (e.g. number of times the
search could backtrack)?

3

CS188 Spring 2014 Section 3: Games

1 Nearly Zero Sum Games
The standard Minimax algorithm calculates worst-case values in a zero-sum two player game, i.e. a game in
which for all terminal states s, the utilities for players A (MAX) and B (MIN) obey UA(s) +UB(s) = 0. In the
zero sum case, we know that UA(s) = −UB(s) and so we can think of player B as simply minimizing UA(s).

In this problem, you will consider the non zero-sum generalization in which the sum of the two players’ utilities
are not necessarily zero. Because player A’s utility no longer determines player B’s utility exactly, the leaf
utilities are written as pairs (UA;UB), with the first and second component indicating the utility of that leaf to
A and B respectively. In this generalized setting, A seeks to maximize UA, the first component, while B seeks
to maximize UB , the second component.

(0,-2)(-1,2)(1,1) (-2,0) (0,1) (-1,3)

1. Propagate the terminal utility pairs up the tree using the appropriate generalization of the minimax al-
gorithm on this game tree. Fill in the values (as pairs) at each of the internal node. Assume that each
player maximizes their own utility.

2. Briefly explain why no alpha-beta style pruning is possible in the general non-zero sum case.
Hint : think first about the case where UA(s) = UB(s) for all nodes.

1

3. For minimax, we know that the value v computed at the root (say for player A = MAX) is a worst-case
value. This means that if the opponent MIN doesn’t act optimally, the actual outcome v′ for MAX can
only be better, never worse than v.

In the general non-zero sum setup, can we say that the value UA computed at the root for player A
is also a worst-case value in this sense, or can A’s outcome be worse than the computed UA if B plays
sub-optimally? Briefly justify.

4. Now consider the nearly zero sum case, in which |UA(s) + UB(s)| ≤ ε at all terminal nodes s for some ε
which is known in advance. For example, the previous game tree is nearly zero sum for ε = 2.

In the nearly zero sum case, pruning is possible. Draw an X in each node in this game tree which could be
pruned with the appropriate generalization of alpha-beta pruning. Assume that the exploration is being
done in the standard left to right depth-first order and the value of ε is known to be 2. Make sure you
make use of ε in your reasoning.

5. Give a general condition under which a child n of a B node (MIN node) b can be pruned. Your condition
should generalize α-pruning and should be stated in terms of quantities such as the utilities UA(s) and/or
UB(s) of relevant nodes s in the game tree, the bound ε, and so on. Do not worry about ties.

6. In the nearly zero sum case with bound ε, what guarantee, if any, can we make for the actual outcome u′

for player A (in terms of the value UA of the root) in the case where player B acts sub-optimally?

2

2 Minimax and Expectimax
In this problem, you will investigate the relationship between expectimax trees and minimax trees for zero-sum
two player games. Imagine you have a game which alternates between player 1 (max) and player 2. The game
begins in state s0, with player 1 to move. Player 1 can either choose a move using minimax search, or expectimax
search, where player 2’s nodes are chance rather than min nodes.

1. Draw a (small) game tree in which the root node has a larger value if expectimax search is used than if
minimax is used, or argue why it is not possible.

2. Draw a (small) game tree in which the root node has a larger value if minimax search is used than if
expectimax is used, or argue why it is not possible.

3

3. Under what assumptions about player 2 should player 1 use minimax search rather than expectimax search
to select a move?

4. Under what assumptions about player 2 should player 1 use expectimax search rather than minimax
search?

5. Imagine that player 1 wishes to act optimally (rationally), and player 1 knows that player 2 also intends
to act optimally. However, player 1 also knows that player 2 (mistakenly) believes that player 1 is moving
uniformly at random rather than optimally. Explain how player 1 should use this knowledge to select
a move. Your answer should be a precise algorithm involving a game tree search, and should include a
sketch of an appropriate game tree with player 1’s move at the root. Be clear what type of nodes are at
each ply and whose turn each ply represents.

4

CS188 Spring 2014 Section 4: MDPs

1 MDPs: Micro-Blackjack
In micro-blackjack, you repeatedly draw a card (with replacement) that is equally likely to be a 2, 3, or 4. You
can either Draw or Stop if the total score of the cards you have drawn is less than 6. Otherwise, you must Stop.
When you Stop, your utility is equal to your total score (up to 5), or zero if you get a total of 6 or higher. When
you Draw, you receive no utility. There is no discount (γ = 1).

1. What are the states and the actions for this MDP?

2. What is the transition function and the reward function for this MDP?

3. Give the optimal policy for this MDP.

4. What is the smallest number of rounds (k) of value iteration for which this MDP will have its exact values
(if value iteration will never converge exactly, state so).

1

2 Pursuit Evasion
Pacman is trapped in the following 2 by 2 maze with a hungry ghost (the horror)!
When it is his turn to move, Pacman must move one step horizontally or vertically to a
neighboring square. When it is the ghost’s turn, he must also move one step horizontally
or vertically. The ghost and Pacman alternate moves. After every move (by either the
ghost or Pacman) if Pacman and the ghost occupy the same square, Pacman is eaten
and receives utility -100. Otherwise, he receives a utility of 1. The ghost attempts
to minimize the utility that Pacman receives. Assume the ghost makes the first
move.

For example, with a discount factor of γ = 1.0, if the ghost moves down, then Pacman moves left, Pacman earns
a reward of 1 after the ghost’s move and -100 after his move for a total utility of -99.

Note that this game is not guaranteed to terminate.

1. Assume a discount factor γ = 0.5, where the discount factor is applied once every time either Pacman or
the ghost moves. What is the minimax value of the truncated game after 2 ghost moves and 2 Pacman
moves? (Hint: you should not need to build the minimax tree)

2. Assume a discount factor γ = 0.5. What is the minimax value of the complete (infinite) game? (Hint:
you should not need to build the minimax tree)

3. Why is value iteration superior to minimax for solving this game?

4. This game is similar to an MDP because rewards are earned at every timestep. However, it is also an
adversarial game involving decisions by two agents.

Let s be the state (e.g. the position of Pacman and the ghost), and let AP (s) be the space of actions
available to Pacman in state s (and similarly let AG(s) be the space of actions available to the ghost).
Let N(s, a) = s′ denote the successor function (given a starting state s, this function returns the state s′

which results after taking action a). Finally, let R(s) denote the utility received after moving to state s.

Write down an expression for P ∗(s), the value of the game to Pacman as a function of the current
state s (analogous to the Bellman equations). Use a discount factor of γ = 1.0. Hint: your answer should
include P ∗(s) on the right hand side.

P ∗(s) =

2

CS188 Spring 2014 Section 5: Reinforcement Learning

1 Learning with Feature-based Representations
We would like to use a Q-learning agent for Pacman, but the state size for a large grid is too massive to hold
in memory (just like at the end of Project 3). To solve this, we will switch to feature-based representation of
Pacman’s state. Here’s a Pacman board to refresh your memory:

1. What features would you extract from a Pacman board to judge the expected outcome of the game?

2. Say our two minimal features are the number of ghosts within 1 step of Pacman (Fg) and the number of
food pellets within 1 step of Pacman (Fp). For this pacman board:

Extract the two features (calculate their values).

3. With Q Learning, we train off of a few episodes, so our weights begin to take on values. Right now
wg = 100 and wp = −10. Calculate the Q value for the state above.

1

4. We receive an episode, so now we need to update our values. An episode consists of a start state s, an
action a, an end state s′, and a reward R(s, a, s′). The start state of the episode is the state above (where
you already calculated the feature values and the expected Q value). The next state has feature values
Fg = 0 and Fp = 2 and the reward is 50. Assuming a discount of 0.5, calculate the new estimate of the Q
value for s based on this episode.

5. With this new estimate and a learning rate (α) of 0.5, update the weights for each feature.

6. Good job on updating the weights. Now let’s think about this entire process one step back. What values
do we learn in this process (assuming features are defined)? When we have completed learning, how do
we tell if Pacman does a good job?

7. In some sense, we can think about this entire process, on a meta level, as an input we control that produces
an output that we would like to maximize. If you have a magical function (F (input)) that maps an input
to an output you would like to maximize, what techniques (from math, CS, etc) can we use to search for
the best inputs? Keep in mind that the magical function is a black box.

8. Now say we can calculate the derivative of the magical function, F ′(input), giving us a gradient or slope.
What techniques can we use now?

2

2 Odds and Ends
1. When using features to represent the Q-function is it guaranteed that the feature-based Q-learning finds

the same optimal Q∗ as would be found when using a tabular representation for the Q-function?

2. Why is temporal difference (TD) learning of Q-values (Q-learning) superior to TD learning of values?

3. Can all MDPs be solved using expectimax search? Justify your answer.

4. When learning with ε-greedy action selection, is it a good idea to decrease ε to 0 with time? Why or why
not?

3

	section_0_v55LOfoUUwiW1k6Nchnk3Dw6WQuTW8
	section_1_0hzy6TFupb1Z3bckfRXdC5KYpsdZOE
	section_2_mA5IBOWiF6cw3yoIh65hXTiBY6mPiD
	section_3_cNsigDlFSSZgxKANwOsb0axJggk4Uf
	section_4_9vzQ4e7e6xqagFuQDinu0lmeSEI29Z
	section_5_Z4EbG4SSFwsVQHZSQfzzLLGCZqxqH2

