
CS188 Spring 2014 Section 0: Search

1 Search algorithms in action

CS188: Artificial Intelligence, Fall 2008

Written Assignment 1
Due: September 11th at the beginning of lecture

1 Graph Search Strategies

A

h=2

C

h=2

Goal

D

h=1

Start

B

h=5

2

4

2

5

4

5

3 1

Our intrepid hero, Search Agent, is late for her artificial intelligence class and needs to get there fast! The
graph above represents how long it takes Search Agent to walk between different parts of campus. For each
of the following graph search strategies, work out the order in which states are expanded, as well as the path
returned by graph search. In all cases, assume ties resolve in such a way that states with earlier alphabetical
order are expanded first. The start and goal state are S and G, respectively. Remember that in graph search,
a state is expanded only once.

a) Depth-First Search

b) Breadth First Search

c) Uniform-Cost Search

d) Greedy search with the heuristic values listed at each state.

e) A∗ search with the heuristic values listed at each state.

For each of the following graph search strategies, work out the order in which states are expanded, as well
as the path returned by graph search. In all cases, assume ties resolve in such a way that states with earlier
alphabetical order are expanded first. The start and goal state are S and G, respectively. Remember that in
graph search, a state is expanded only once.

a) Depth-first search.
States Expanded: Start, A, C, D, B, Goal
Path Returned: Start-A-C-D-Goal

b) Breadth-first search.
States Expanded: Start, A, B, D, C, Goal
Path Returned: Start-D-Goal

c) Uniform cost search.
States Expanded: Start, A, B, D, C, Goal
Path Returned: Start-A-C-Goal

d) Greedy search with the heuristic h shown on the graph.
States Expanded: Start, D, Goal
Path Returned: Start-D-Goal

e) A? search with the same heuristic.
States Expanded: Start, A, D,B, C, Goal
Path Returned: Start-A-C-Goal

1

CS188 Spring 2014 Section 1: Search

1 Search and Heuristics
Imagine a car-like agent wishes to exit a maze like the one shown below:

The agent is directional and at all times faces some direction d ∈ (N,S,E,W). With a single action, the agent
can either move forward at an adjustable velocity v or turn. The turning actions are left and right, which change
the agent’s direction by 90 degrees. Turning is only permitted when the velocity is zero (and leaves it at zero).
The moving actions are fast and slow. Fast increments the velocity by 1 and slow decrements the velocity by 1;
in both cases the agent then moves a number of squares equal to its NEW adjusted velocity. Any action that
would result in a collision with a wall crashes the agent and is illegal. Any action that would reduce v below 0
or above a maximum speed Vmax is also illegal. The agent’s goal is to find a plan which parks it (stationary)
on the exit square using as few actions (time steps) as possible.

As an example: if the agent shown were initially stationary, it might first turn to the east using (right), then
move one square east using fast, then two more squares east using fast again. The agent will of course have to
slow to turn.

1. If the grid is M by N , what is the size of the state space? Justify your answer. You should assume that
all configurations are reachable from the start state.

The size of the state space is 4MN(Vmax + 1). The state representation is (direction facing, x, y, speed).
Note that the speed can take any value in {0, ..., Vmax}.

2. What is the maximum branching factor of this problem? You may assume that illegal actions are simply
not returned by the successor function. Briefly justify your answer.

The maximum branching factor is 3, and this happens when the agent is stationary. While stationary it
can take the following 3 actions - fast, left, right.

1

3. Is the Manhattan distance from the agent’s location to the exit’s location admissible? Why or why not?

No, Manhattan distance is not an admissible heuristic. The agent can move at an average speed of greater
than 1 (by first speeding up to Vmax and then slowing down to 0 as it reaches the goal), and so can reach
the goal in less time steps than there are squares between it and the goal. A specific example: the target
is 6 squares away, and the agent’s velocity is already 4. By taking only 4 slow actions, it reaches the goal
with a velocity of 0.

4. State and justify a non-trivial admissible heuristic for this problem which is not the Manhattan distance
to the exit.

There are many answers to this question. Here are a few, in order of weakest to strongest:

(a) The number of turns required for the agent to face the goal.

(b) Consider a relaxation of the problem where there are no walls, the agent can turn and change speed
arbitrarily. In this relaxed problem, the agent would move with Vmax, and then suddenly stop at the
goal, thus taking dmanhattan/Vmax time.

(c) We can improve the above relaxation by accounting for the deceleration dynamics. In this case the
agent will have to slow down to 0 when it is about to reach the goal. Note that this heuristic will
always return a greater value than the previous one, but is still not an overestimate of the true cost
to reach the goal. We can say that this heuristic dominates the previous one.

5. If we used an inadmissible heuristic in A* tree search, could it change the completeness of the search?

No! If the heuristic function is bounded, then A* tree search would visit all the nodes eventually, and
would find a path to the goal state if there exists one.

6. If we used an inadmissible heuristic in A* tree search, could it change the optimality of the search?

Yes! It can make the good optimal goal look as though it is very far off, and take you to a suboptimal
goal.

7. Give a general advantage that an inadmissible heuristic might have over an admissible one.

The time to solve an A* tree search problem is a function of two factors: the number of nodes expanded,
and the time spent per node.

An inadmissible heuristic may be faster to compute, leading to a solution that is obtained faster due to
less time spent per node. It can also be a closer estimate to the actual cost function (even though at times
it will overestimate!), thus expanding less nodes.

We lose the guarantee of optimality by using an inadmissible heuristic. But sometimes we may be okay
with finding a suboptimal solution to a search problem.

2

2 Expanded Nodes
Consider tree search (i.e. no closed set) on an arbitrary search problem with max branching factor b. Each
search node n has a backward (cumulative) cost of g(n), an admissible heuristic of h(n), and a depth of d(n).
Let c be a minimum-cost goal node, and let s be a shallowest goal node.

For each of the following, you will give an expression that characterizes the set of nodes that are expanded
before the search terminates. For instance, if we asked for the set of nodes with positive heuristic value, you
could say h(n) ≥ 0. Don’t worry about ties (so you won’t need to worry about > versus ≥). If there are no
nodes for which the expression is true, you must write “none.”

1. Give an expression (i.e. an inequality in terms of the above quantities) for which nodes n will be expanded
in a breadth-first tree search.

d(n) ≤ d(s): BFS expands all nodes which are shallower than the shallowest goal. Recall that our search
performs the goal− test after popping nodes from the fringe, so we typically expand some nodes at depth
s, before we expand the optimal goal node.

2. Give an expression for which nodes n will be expanded in a uniform cost search.

g(n) ≤ g(c): Uniform cost search expands all nodes that are closer than the closest goal node. Recall that
our search performs the goal − test after popping nodes from the fringe (this ensures optimality!), so we
might expand some nodes of cost g(c), before we expand the optimal goal node.

3. Give an expression for which nodes n will be expanded in an A∗ tree search with heuristic h(n).

g(n) + h(n) ≤ g(c): All nodes with a total cost of less than g(c), get expanded before the goal node is
expanded. This can be proved by induction on the cost g(n) + h(n). Consider a node n1 which satisfies
this property. Note that its parent n0, will also satisfy this inequality, and by the induction hypothesis,
n0 will be expanded before the goal is expanded, which means that it will put n1 on the fringe, which will
get expanded before the goal node is expanded.

4. Let h1 and h2 be two admissible heuristics such that ∀n, h1(n) ≥ h2(n). Give an expression for the nodes
which will be expanded in an A∗ tree search using h1 but not when using h2.

Let S, be the set of all the nodes. Using the above part, set of nodes expanded by h1 is N1 = {n :
g(n) + h1(n) ≤ g(c)}, and, set of nodes expanded by h2 is N2 = {n : g(n) + h2(n) ≤ g(c)}. The
set of nodes expanded using h1 but not using h2, is N1 ∩ (S −N2). Since, h1 ≥ h2, N1 ⊆ N2, hence
N1 ∩ (S −N2) = φ.

5. Give an expression for the nodes which will be expanded in an A∗ tree search using h2 but not when using
h1.

As above, set of nodes expanded using h2 but not using h1, is N2 ∩ (S −N1) = {n : g(n) + h2(n) ≤
g(c) and g(c) ≤ g(n) + h1(n)}.

3

CS188 Spring 2014 Section 2: CSPs

1 Course Scheduling
You are in charge of scheduling for computer science classes that meet Mondays, Wednesdays and Fridays. There
are 5 classes that meet on these days and 3 professors who will be teaching these classes. You are constrained
by the fact that each professor can only teach one class at a time.

The classes are:

1. Class 1 - Intro to Programming: meets from 8:00-9:00am

2. Class 2 - Intro to Artificial Intelligence: meets from 8:30-9:30am

3. Class 3 - Natural Language Processing: meets from 9:00-10:00am

4. Class 4 - Computer Vision: meets from 9:00-10:00am

5. Class 5 - Machine Learning: meets from 10:30-11:30am

The professors are:

1. Professor A, who is qualified to teach Classes 1, 2, and 5.

2. Professor B, who is qualified to teach Classes 3, 4, and 5.

3. Professor C, who is qualified to teach Classes 1, 3, and 4.

1. Formulate this problem as a CSP problem in which there is one variable per class, stating the domains,
and constraints. Constraints should be specified formally and precisely, but may be implicit rather than
explicit.

Variables Domains (or unary constraints)
C1 {A, C}
C2 {A}
C3 {B, C}
C4 {B, C}
C5 {A, B}

Binary Constraints
C1 6= C2

C2 6= C3

C2 6= C4

C3 6= C4

2. Draw the constraint graph associated with your CSP.

C2

C1 C3

C4

C5

1

3. Your CSP should look nearly tree-structured. Briefly explain (one sentence or less) why we might prefer
to solve tree-structured CSPs.

Minimal answer: we can solve them in polynomial time. If a graph is tree structured (i.e. has no loops),
then the CSP can be solved in O(nd2) time as compared to general CSPs, where worst-case time is O(dn).
For tree-structured CSPs you can choose an ordering such that every node’s parent precedes it in the
ordering. Then after enforcing arc consistency you can greedily assign the nodes in order, starting from
the root, and will find a consistent assignment without backtracking.

2

2 CSPs: Trapped Pacman
Pacman is trapped! He is surrounded by mysterious corridors, each of which leads to either a pit (P), a ghost
(G), or an exit (E). In order to escape, he needs to figure out which corridors, if any, lead to an exit and freedom,
rather than the certain doom of a pit or a ghost.

The one sign of what lies behind the corridors is the wind: a pit produces a strong breeze (S) and an exit
produces a weak breeze (W), while a ghost doesn’t produce any breeze at all. Unfortunately, Pacman cannot
measure the strength of the breeze at a specific corridor. Instead, he can stand between two adjacent corridors
and feel the max of the two breezes. For example, if he stands between a pit and an exit he will sense a strong
(S) breeze, while if he stands between an exit and a ghost, he will sense a weak (W) breeze. The measurements
for all intersections are shown in the figure below.

Also, while the total number of exits might be zero, one, or more, Pacman knows that two neighboring squares
will not both be exits.

1

2

3

4

5

s

W

wS

6

S

s

Pacman models this problem using variables Xi for each corridor i and domains P, G, and E.

1. State the binary and/or unary constraints for this CSP (either implicitly or explicitly).
Binary:
X1 = P or X2 = P , X2 = E or X3 = E,
X3 = E or X4 = E, X4 = P or X5 = P ,
X5 = P or X6 = P , X1 = P or X6 = P ,
∀i, j s.t. Adj(i, j) ¬(Xi = E and Xj = E)

Unary:
X2 6= P ,
X3 6= P ,
X4 6= P

2. Cross out the values from the domains of the variables that will be deleted in enforcing arc consistency.

X1 P

X2 G E

X3 G E

X4 G E

X5 P

X6 P G E

3

3. According to MRV, which variable or variables could the solver assign first?

X1 or X5 (tie breaking)

4. Assume that Pacman knows that X6 = G. List all the solutions of this CSP or write none if no solutions
exist.

(P,E,G,E,P,G)
(P,G,E,G,P,G)

1

2

3

n

5. The CSP described above has a circular structure with 6 variables. Now consider a CSP forming a circular
structure that has n variables (n > 2), as shown below. Also assume that the domain of each variable has
cardinality d. Explain precisely how to solve this general class of circle-structured CSPs efficiently (i.e. in
time linear in the number of variables), using methods covered in class. Your answer should be at most
two sentences.

We fix Xj for some j and assign it a value from its domain (i.e. use cutset conditioning on one variable).
The rest of the CSP now forms a tree structure, which can be efficiently solved without backtracking by
enforcing arc consistency. We try all possible values for our selected variable Xj until we find a solution.

6. If standard backtracking search were run on a circle-structured graph, enforcing arc consistency at every
step, what, if anything, can be said about the worst-case backtracking behavior (e.g. number of times the
search could backtrack)?

A tree structured CSP can be solved without any backtracking. Thus, the above circle-structured CSP
can be solved after backtracking at most d times, since we might have to try up to d values for Xj before
finding a solution.

4

CS188 Spring 2014 Section 3: Games

1 Nearly Zero Sum Games
The standard Minimax algorithm calculates worst-case values in a zero-sum two player game, i.e. a game in
which for all terminal states s, the utilities for players A (MAX) and B (MIN) obey UA(s) +UB(s) = 0. In the
zero sum case, we know that UA(s) = −UB(s) and so we can think of player B as simply minimizing UA(s).

In this problem, you will consider the non zero-sum generalization in which the sum of the two players’ utilities
are not necessarily zero. Because player A’s utility no longer determines player B’s utility exactly, the leaf
utilities are written as pairs (UA;UB), with the first and second component indicating the utility of that leaf to
A and B respectively. In this generalized setting, A seeks to maximize UA, the first component, while B seeks
to maximize UB , the second component.

(0,-2)(-1,2)(1,1) (-2,0) (0,1) (-1,3)

1. Propagate the terminal utility pairs up the tree using the appropriate generalization of the minimax al-
gorithm on this game tree. Fill in the values (as pairs) at each of the internal node. Assume that each
player maximizes their own utility.

(1,1) (-1,2) (-1,3)

(1,1)

(0,-2)(-1,2)(1,1) (-2,0) (0,1) (-1,3)

2. Briefly explain why no alpha-beta style pruning is possible in the general non-zero sum case.
Hint : think first about the case where UA(s) = UB(s) for all nodes.

The values that the first and second player are trying to maximize are independent, so we no longer have
situations where we know that one player will never let the other player down a particular branch of the
game tree.

For instance, in the case where UA = UB , the problem reduces to searching for the max-valued leaf, which
could appear anywhere in the tree.

1

3. For minimax, we know that the value v computed at the root (say for player A = MAX) is a worst-case
value. This means that if the opponent MIN doesn’t act optimally, the actual outcome v′ for MAX can
only be better, never worse than v.

In the general non-zero sum setup, can we say that the value UA computed at the root for player A
is also a worst-case value in this sense, or can A’s outcome be worse than the computed UA if B plays
sub-optimally? Briefly justify.

A’s outcome can be worse than the computed vA. For instance, in the example game, if B chooses (−2, 0)
over (1, 1), then A’s outcome will decrease from 1 to 0.

4. Now consider the nearly zero sum case, in which |UA(s) + UB(s)| ≤ ε at all terminal nodes s for some ε
which is known in advance. For example, the previous game tree is nearly zero sum for ε = 2.

In the nearly zero sum case, pruning is possible. Draw an X in each node in this game tree which could be
pruned with the appropriate generalization of alpha-beta pruning. Assume that the exploration is being
done in the standard left to right depth-first order and the value of ε is known to be 2. Make sure you
make use of ε in your reasoning.

We can prune the node (0,−2) and if we allow pruning on equality then we can also prune (−1, 3). See
answers to the next two problems for the reasoning.

5. Give a general condition under which a child n of a B node (MIN node) b can be pruned. Your condition
should generalize α-pruning and should be stated in terms of quantities such as the utilities UA(s) and/or
UB(s) of relevant nodes s in the game tree, the bound ε, and so on. Do not worry about ties.

The pruning condition is UB > ε− α .

Consider the standard minimax algorithm (zero-sum game) written in this more general 2 agent framework.
The maximizer agent tries to maximize its utility, UA, while the second agent (B) tries to minimize player
A’s value. This is equivalent to saying that player B wants to maximize −UA. Therefore we say that the
utility of player B is UB = −UA in the standard minimax situation.

Recall from lecture that in standard α− β pruning we allow a pruning action to occur under a minimizer
(player B) node if v < α. Under our more general 2 agent framework this condition is equivalent to saying
you can prune under player B if UA = −UB < α⇒ UB > −α.

For this question we have an ε-sum game so we need to add an additional requirement of ε on UB before
pruning can occur. In particular, we know that |UA + UB | ≤ ε⇒ UA ≤ ε− UB . We want to prune if this
upper bound is less than α because then we guarantee that max has an better alternative elsewhere in
the tree. Therefore, in order to prune we must satisfy ε− UB < α⇒ UB > ε− α.

2

6. In the nearly zero sum case with bound ε, what guarantee, if any, can we make for the actual outcome u′

for player A (in terms of the value UA of the root) in the case where player B acts sub-optimally?

u′ ≥ UA − 2ε

To get intuition about this problem we will first think about the worst case scenario that can occur for
player A. Consider the small game tree below for δ > 0:

The optimal action for player B to take would be (ε− δ, δ). If player B acts optimally then player A will
end up with a value of UA = ε − δ. Now, consider what would happen if player B acted suboptimally,
namely if player B chose (−ε, 0). Then player A would receive an actual outcome of u′ = −ε. So, we see
that u′ ≥ UA − 2ε+ δ. Now let δ be arbitrarily small and you converge to the bound boxed above.

Thus far we have just shown (by example) that we cannot hope for a better guarantee than u′ ≥ UA − 2ε
(if someone claimed a better guarantee, the above would be a counter-example to that (faulty) claim). We
are left with showing that this bound actually holds true. To do so, consider what happens when Player
B plays suboptimally. By definition of suboptimality, that means the outcome of the game for player B is
not the optimal UB but some lower value U ′

B = UBx with x > 0. This will have the maximum effect on
player A’s pay-off when for the optimal outcome we had UA +UB = ε, but for the suboptimal outcome we
have U ′

A + U ′
B = U ′

A + UBx = ε. From the first equation we have UB = εUA, substituting into the second
equation gives us: U ′

A = εε+ UA = UA2ε as the worst-case outcome for player A.

3

2 Minimax and Expectimax
In this problem, you will investigate the relationship between expectimax trees and minimax trees for zero-sum
two player games. Imagine you have a game which alternates between player 1 (max) and player 2. The game
begins in state s0, with player 1 to move. Player 1 can either choose a move using minimax search, or expectimax
search, where player 2’s nodes are chance rather than min nodes.

1. Draw a (small) game tree in which the root node has a larger value if expectimax search is used than if
minimax is used, or argue why it is not possible.

We can see here that the above game tree has a root value of 1 for the minimax strategy. If we instead
switch to expectimax and replace the min nodes with chance nodes, the root of the tree takes on a value
of 50 and the optimal action changes for MAX.

2. Draw a (small) game tree in which the root node has a larger value if minimax search is used than if
expectimax is used, or argue why it is not possible.

Optimal play for MIN, by definition, means the best moves for MIN to obtain the lowest value possible.
Random play includes moves that are not optimal. Assuming there are no ties (no two leaves have the
same value), expectimax will always average in suboptimal moves. Averaging a suboptimal move (for
MIN) against an optimal move (for MIN) will always increase the expected outcome.

With this in mind, we can see how there is no game tree where the value of the root for expectimax is
lower than the value of the root for minimax. One is optimal play – the other is suboptimal play averaged
with optimal play, which by definiton leads to a higher value for MIN.

4

3. Under what assumptions about player 2 should player 1 use minimax search rather than expectimax search
to select a move?

Player 1 should use minimax search if he/she expects player 2 to move optimally.

4. Under what assumptions about player 2 should player 1 use expectimax search rather than minimax
search?

If player 1 expects player 2 to move randomly, he/she should use expectimax search. This will optimize
for the maximum expected value.

5. Imagine that player 1 wishes to act optimally (rationally), and player 1 knows that player 2 also intends
to act optimally. However, player 1 also knows that player 2 (mistakenly) believes that player 1 is moving
uniformly at random rather than optimally. Explain how player 1 should use this knowledge to select
a move. Your answer should be a precise algorithm involving a game tree search, and should include a
sketch of an appropriate game tree with player 1’s move at the root. Be clear what type of nodes are at
each ply and whose turn each ply represents.

Use two games trees:

Game tree 1: max is replaced by a chance node. Solve this tree to find the policy of MIN.

Game tree 2: the original tree, but MIN doesn’t have any choices now, instead is constrained to follow
the policy found from Game Tree 1.

5

CS188 Spring 2014 Section 4: MDPs

1 MDPs: Micro-Blackjack
In micro-blackjack, you repeatedly draw a card (with replacement) that is equally likely to be a 2, 3, or 4. You
can either Draw or Stop if the total score of the cards you have drawn is less than 6. Otherwise, you must Stop.
When you Stop, your utility is equal to your total score (up to 5), or zero if you get a total of 6 or higher. When
you Draw, you receive no utility. There is no discount (γ = 1).

1. What are the states and the actions for this MDP?

The state is the current sum of your cards, plus a terminal state:

0, 2, 3, 4, 5, Done

(answers which include 1,6,7,8,9, a Bust state, or just “the current sum of your cards plus a terminal
state” are acceptable.)

The actions are {Draw, Stop}.

2. What is the transition function and the reward function for this MDP?

The transition function is

T (s, Stop,Done) = 1

T (s,Draw, s′) =


1/3 if s′ − s ∈ {2, 3, 4}
1/3 if s = 2 and s′ = Done
2/3 if s = 3 and s′ = Done
1 if s ∈ {4, 5} and s′ = Done
0 otherwise

The reward function is

R(s, Stop, s′) = s, s ≤ 5

R(s, a, s′) = 0 otherwise

3. Give the optimal policy for this MDP.

In general, for finding the optimal policy for an MDP, we would use some method like value iteration
followed by policy extraction. However, in this particular case, it is simple to work out that the opimal
policy would be Draw if s ≤ 2, Stop otherwise.

For completeness, we give below the value iteration steps based on the states and transition functions
described above. The optimal policy is given by taking the argmax instead of max, in the final iteration
of value iteration.

V 0 2 3 4 5 Done
V0 0 0 0 0 0 0
V1 0 2 3 4 5 0
V2 3 3 3 4 5 0
V3 10/3 3 3 4 5 0

Policy Extraction 10/3Draw 3Draw 3Stop 4Stop 5Stop 0Stop

4. What is the smallest number of rounds (k) of value iteration for which this MDP will have its exact values
(if value iteration will never converge exactly, state so).

3

1

2 Pursuit Evasion
Pacman is trapped in the following 2 by 2 maze with a hungry ghost (the horror)!
When it is his turn to move, Pacman must move one step horizontally or vertically to a
neighboring square. When it is the ghost’s turn, he must also move one step horizontally
or vertically. The ghost and Pacman alternate moves. After every move (by either the
ghost or Pacman) if Pacman and the ghost occupy the same square, Pacman is eaten
and receives utility -100. Otherwise, he receives a utility of 1. The ghost attempts
to minimize the utility that Pacman receives. Assume the ghost makes the first
move.

For example, with a discount factor of γ = 1.0, if the ghost moves down, then Pacman moves left, Pacman earns
a reward of 1 after the ghost’s move and -100 after his move for a total utility of -99.

Note that this game is not guaranteed to terminate.

1. Assume a discount factor γ = 0.5, where the discount factor is applied once every time either Pacman or
the ghost moves. What is the minimax value of the truncated game after 2 ghost moves and 2 Pacman
moves? (Hint: you should not need to build the minimax tree)

1 + 0.5 + 0.25 + 0.125 = 1.875

2. Assume a discount factor γ = 0.5. What is the minimax value of the complete (infinite) game? (Hint:
you should not need to build the minimax tree)

2

3. Why is value iteration superior to minimax for solving this game? Value iteration takes advantage of
repeated states to efficiently solve for the optimal policy. Even a truncated minimax tree increases in size
exponentially as you increase the search depth.

4. This game is similar to an MDP because rewards are earned at every timestep. However, it is also an
adversarial game involving decisions by two agents.

Let s be the state (e.g. the position of Pacman and the ghost), and let AP (s) be the space of actions
available to Pacman in state s (and similarly let AG(s) be the space of actions available to the ghost).
Let N(s, a) = s′ denote the successor function (given a starting state s, this function returns the state s′

which results after taking action a). Finally, let R(s) denote the utility received after moving to state s.

Write down an expression for P ∗(s), the value of the game to Pacman as a function of the current
state s (analogous to the Bellman equations). Use a discount factor of γ = 1.0. Hint: your answer should
include P ∗(s) on the right hand side.

P ∗(s) =

P ∗(s) = max
a∈AP (s)

R(N(s, a)) + min
a′∈AG(N(s,a))

R(N(N(s, a), a′)) + P ∗(N(N(s, a), a′))

2

CS188 Spring 2014 Section 5: Reinforcement Learning

1 Learning with Feature-based Representations
We would like to use a Q-learning agent for Pacman, but the state size for a large grid is too massive to hold
in memory (just like at the end of Project 3). To solve this, we will switch to feature-based representation of
Pacman’s state. Here’s a Pacman board to refresh your memory:

1. What features would you extract from a Pacman board to judge the expected outcome of the game?
The usual ones, for example as in Project 2.

2. Say our two minimal features are the number of ghosts within 1 step of Pacman (Fg) and the number of
food pellets within 1 step of Pacman (Fp). For this pacman board:

Extract the two features (calculate their values).
fg = 2, fp = 1

3. With Q Learning, we train off of a few episodes, so our weights begin to take on values. Right now
wg = 100 and wp = −10. Calculate the Q value for the state above.
First of all, the Q value will not depend on what action is taken, because the features we extract do not

depend on the action, only the state.

Q(s, a) = wg ∗ fg + wp ∗ fp = 100 ∗ 2 + −10 ∗ 1 = 190

1

4. We receive an episode, so now we need to update our values. An episode consists of a start state s, an
action a, an end state s′, and a reward R(s, a, s′). The start state of the episode is the state above (where
you already calculated the feature values and the expected Q value). The next state has feature values
Fg = 0 and Fp = 2 and the reward is 50. Assuming a discount of 0.5, calculate the new estimate of the Q
value for s based on this episode.

Qnew(s, a) = R(s, a, s′) + γ ∗ max
a′

Q(s′, a′)

= 50 + 0.5 ∗ (100 ∗ 0 + −10 ∗ 2)

= 40

5. With this new estimate and a learning rate (α) of 0.5, update the weights for each feature.

wg = wg + α ∗ (Qnew(s, a) −Q(s, a)) ∗ fg(s, a) = 100 + 0.5 ∗ (40 − 190) ∗ 2 = −50

wp = wp + α ∗ (Qnew(s, a) −Q(s, a)) ∗ fp(s, a) = −10 + 0.5 ∗ (40 − 190) ∗ 1 = −85

Note that now the weight on ghosts is negative, which makes sense (ghosts should indeed be avoided).
Although the weight on food pellets is now also negative, the difference between the two weights is now
much lower.

6. Good job on updating the weights. Now let’s think about this entire process one step back. What values
do we learn in this process (assuming features are defined)? When we have completed learning, how do
we tell if Pacman does a good job?
The values we learn are the feature weights. Once Pacman completes its learning, we will evaluate its
performance by running the game and looking at the win/lose outcomes and the reward accrued from the
start state.

7. In some sense, we can think about this entire process, on a meta level, as an input we control that produces
an output that we would like to maximize. If you have a magical function (F (input)) that maps an input
to an output you would like to maximize, what techniques (from math, CS, etc) can we use to search for
the best inputs? Keep in mind that the magical function is a black box.
Of course, you can use random search (changing values indiscriminately), or try some evenly distributed

values in the possible range (which is sometimes called beam search).

Also, remember that earlier in the course we talked about local search, which includes techniques such as
hill climbing (going in the direction of maximum positive change), simulated annealing (where the rate of
random exploration is lowered as time goes on), and genetic algorithms. These are all possible solutions.

8. Now say we can calculate the derivative of the magical function, F ′(input), giving us a gradient or slope.
What techniques can we use now?

Gradient descent, or many techniques from calculus and optimization developed for such problems.
Although these techniques will be very useful to you as an artificial intelligence researcher, don’t worry:
we will not expect you to know how to use any of them on the exams!

2

2 Odds and Ends
1. When using features to represent the Q-function is it guaranteed that the feature-based Q-learning finds

the same optimal Q∗ as would be found when using a tabular representation for the Q-function?
No, if the optimal Q-function Q∗ cannot be represented as a weighted combination of features, then the

feature-based representation would not have the expressive power to find it.

2. Why is temporal difference (TD) learning of Q-values (Q-learning) superior to TD learning of values?
Because if you use temporal difference learning on the values, it is hard to extract a policy from the

learned values. Specifically, you would need to know the transition model T . For TD learning of Q-values,
the policy can be extracted directly by taking π(s) = arg maxaQ(s, a).

3. Can all MDPs be solved using expectimax search? Justify your answer.
No, MDPs with self loops lead to infinite expectimax trees. Unlike search problems, this issue cannot be

addressed with a graph-search variant.

4. When learning with ε-greedy action selection, is it a good idea to decrease ε to 0 with time? Why or why
not?

Yes, especially when using on-policy learning methods. The reason is that as the agent learns the
actual optimal policy for the world, it should switch from a mix of exploration and exploitation to mostly
exploitation (unless the world is changing, in which case it should always keep exploring).

3

	section_0_solutions_zZK11IZii6bYA6R91kdIlfKrJ3OnU1
	section_1_solutions_dX78KScp5TDsI4SWCPIZKlERZxJDL9
	section_2_solutions_yM8wn7rwe5z5EMRwoRTQdfa7duA9EP
	section_3_solutions_5KOR5cTuul4doE93XOx9EtkXtaiF0i
	section_4_solutions_0NjcuBw70JNNGPhHucEmanLMQ1LLd4
	section_5_solutions_vVBDODDiXcVEWausVbSZ7eZgSpAUXL

