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Richardson Extrapolation

For trapezoidal rule

– kth level of extrapolation
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Romberg Integration
Accelerated Trapezoid Rule
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Romberg Integration
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Accelerated Trapezoid Rule

Gaussian Quadratures
• Newton-Cotes Formulae

– use evenly-spaced functional values

– Did not use the flexibility we have to select the quadrature points

• In fact a quadrature point has several degrees of freedom.
Q(f)=i=1

m ci f(xi)
A formula with m function evaluations requires specification of 

2m numbers ci and xi

• Gaussian Quadratures
– select both these weights and locations so that a higher order 

polynomial can be integrated (alternatively the error is proportional 
to a higher derivatives)

• Price: functional values must now be evaluated at non-
uniformly distributed points to achieve higher accuracy

• Weights are no longer simple numbers

• Usually derived for an interval such as  [-1,1] 

• Other intervals [a,b] determined by mapping to [-1,1]
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Gaussian Quadrature on [-1, 1]

• Two function evaluations:

– Choose (c1, c2, x1, x2) such that the method yields “exact 

integral” for f(x) = x0, x1, x2, x3
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Finding quadrature nodes and weights

• One way is through the theory of orthogonal 

polynomials.

• Here we will do it via brute force

• Set up equations by requiring that the 2m points 

guarantee that a polynomial of  degree 2m-1 is integrated 

exactly.

• In general process is non-linear 

– (involves a polynomial function involving the unknown point 

and its product with unknown weight)

– Can be solved by using a multidimensional nonlinear solver

– Alternatively can sometimes be done step by step
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Gaussian Quadrature on [-1, 1]

Exact integral for f = x0, x1, x2, x3

– Four equations for four unknowns
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Error

• If we approximate a function with a Gaussian quadrature 

formula we cause an error proportional to 2n th 

derivative
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Gaussian Quadrature on [-1, 1]

• Choose (c1, c2, c3, x1, x2, x3) such that the method 
yields “exact integral” for f(x) = x0, x1, x2, x3,x4, x5
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Gaussian Quadrature on [-1, 1]
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Gaussian Quadrature on [-1, 1]

Exact integral for f = x0, x1, x2, x3, x4, x5
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Gaussian Quadrature on [a, b]

Coordinate transformation from [a,b] to [-1,1]
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Example: Gaussian Quadrature

Evaluate

Coordinate transformation

Two-point formula
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Example: Gaussian Quadrature
Three-point formula

Four-point formula
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Other rules

• Gauss-Lobatto:

– requiring end points be included in the formula

• Gauss-Radau

– Require one end point be in the formula

Higher dimensions

• Can take similar approach (fit polynomials and evaluate)

• However, as dimensionality increases number of points 

needed increases exponentially in dimension

• Very high dimensions: only practical way is “Monte-

Carlo” integration

• Evaluates integrals probabilistically

• In this case expected value is the computed integral

• Error is the variance of the estimate.


