CS 600.316/416
Database Systems

Lecture 11, March 10" 2014.

Advanced Query Optimization and
Physical Database Design (i)



Syllabus Checkpoint

e Storage layer
— File and page storage
— Indexing

 Query processing and optimization
— Join and sort algorithms
— Dynamic programming based query optimization
— Selectivity estimation

e Data analysis



Datacubes

e Think “combinatorics

”
over aggregates Materialize upper

* Seminal paper by Gray lattice nodes, compute
et. al [ICDE 96] lower ones on the fly
— Defines the semantics

of the operator
— Years of algorithms
and implementations . ? . .

followed

. .‘. . . .
“summary” tables or views, @ @ @

Processing decision: what

do we materialize?



MULTIQUERY OPTIMIZATION
(MQO)



Shared Query Processing

We’'ve looked at techniques to reuse work done in a
DBMS, primarily caching:

— Query results: reuses QP work

— Buffer pool: reuses disk work

— Plans: reuses parser, compiler, optimizer work

These are all reactive and opportunistic

— We can use heuristics to determine what to add to the
cache

Shared query processing focuses on reducing the work
done by a QP by design, rather than opportunistically

— By building shared query plans across multiple queries that
“factor” out common work



Shared Query Processing Example

* Consider the queries:
1. select * from R where R.b > 10
2. select * from Rwhere R.b>10and R.c<5

Query 1 Query 2
Plan 1 Plan 1 Plan 2

Op>10 Oc<5

‘ Oc<5 Op>10
| |

R R R
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Shared Query Processing Example

* Consider the queries:
1. select * from R where R.b > 10
2. select * from Rwhere R.b>10and R.c<5

Query 1 Query 2 General form of a
Plan 1 Plan 1 Plan 2 shared plan
Compensation or
remainder work
Ob>10 Oc¢<5 ar /\ a2
O-b> 10 0] [O- A Identical to Q/
‘ C|<5 b>|10 Query 1, Plan 1
R R\ R

Shared work



Shared Query Processing Example

* Consider the queries:
1. select * from R where R.b > 10
2. select * from Rwhere R.b>10and R.c<5

uery 1 Query 2
Query 4 Where does this happen in a DBMS?
Plan 1 Plan 1 Plan 2
Clients
O-b> 10 O-C< 5 Transaction scheduler
Ob>10
O-C<5 O-b> 10 Parser, planner Queries wait at
‘ | | these points

R R R Query engine



Common Subexpressions

e Sharing requirements relational operators

— Projections

{ma,(Q), 74, (Q)} = §

Assume identical for simplicity

({74,045 (Q), Ta1-42(Q), Tas—41(Q)}

when A1 N A2 # ()

\ {ma,(Q), Ta2(Q)} otherwise
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— Projections
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Common Subexpressions

e Sharing requirements relational operators
— Projections

({WAlmAQ(Q)a 7TA1—A2(Q)7 7TA2—A1(Q)}
{ma,(Q), T4, (@)} = < when A1 N A2 # ()

\ {m4,(Q), 742(Q)} otherwise

— Joins Shared Remainder 1 Remainder 2

({QC N Ql >p, Q27 00, (QC); 00, (QC)}

{Q1 >0, Q2,01 >, Q2} = 4 when shared(01,05)
\{Ql g, Q2,1 Xy, Q2} otherwise




Common Subexpressions

e Sharing requirements relational operators

— Join example ({Qc +— Q1 1, Q2,00,(Qc),00,(Qc)}

{Q1 >, Q2,Q1 >, Q2} = when shared(0:,05)
\{Q1 >y, Q2,1 D, QQ} otherwise

{Qc — Q1 ™>0Q1.4=02.B @2,
001.0<Q2.0(Qc),
001.c>02.8(Qc)}

{Q1™01.4=02.B A Q1.c<Q2.D Q2,
Q1 ™0Q1.4=02.8 A Q1.c>02.E @2}



Common Subexpressions

e Sharing requirements relational operators

— JOIn example ({QC — Ql P>y, Q270-91 (QC)70-92 (QC)}

{Q1 >, Q2,Q1 >, Q2} = when shared(6;,6s)
\{Q1 >y, Q2,1 D, QQ} otherwise

{Qc — Q1 >0Q1.4=02. B @2,
oQl1.c<Q2.D\C),
001.05>02.8(Qc)}

{1 >I01.4=Q2.B| A Q1.0<Q2.D Q2
Q1 >XhO1 A=02.8|A Q1.c>02.E Q2}




Common Subexpressions: Aggregation

* Aggregates, and group-bys
— Let’s recap some rewrite rules first!

D ma(@Q1) Uma(Q2) Uma(Q3)] =
212 ma(Q1) + 2 ma(Q2) + 3 ma(Qs)]

— |In SQL: select sum(a) from
(select a from Q1 union
select a from Q2 union
select a from Q3)

select sum(a) from

(select sum(a) as a from Q1 union
select sum(a) as a from Q2 union
select sum(a) as a from Q3)
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Common Subexpressions: Aggregation

* Aggregates, and group-bys
— This technique is called partial aggregation

D 1ma(Q1) Uma(Q2) Uma(Q3)] =
D12 ma(@Q1) + ) ma(Q2) + ) ma(Q3)]

— Applies to other distributive aggregates

min [74(Q1) UTa(Q2) Uma(Qs)] =
min (min WA(Q1), min WA(QZ); min WA(QS))
* See also algebraic and holistic aggregates offline

— How is this helpful for shared query processing?

» Exploit shared parts, and groups (for group-by-
aggregation)



Common Subexpressions: Aggregation

¢ Aggregates ( {QC’ N ZQshared_partsa
QC + Z Qremla

L QC + Z Qrem2a
{ZQLZQ27ZQ3} B QC"‘ZQremS }
when Qshared_parts 7é (Z)

L{D_Q1,>Q2,) Q3} otherwise

 Example

1. select sum(a) from R where R.b < 5 or R.c > 10
2. select sum(a) from R where R.b < 5 or R.d < 2
3. select sum(a) from R where R.e = 10 or R.b < 5



Common Subexpressions: Aggregation

¢ Aggregates ( {QC’ N ZQshared_partsa
QC + Z Qremla

L QC’ + Z Qrem2a
aend e yesp=e ol o
when Qsha,red_parts 7é (Z)

L{D_Q1,>Q2,) Q3} otherwise

 Example

5lor R.c > 10
5Jor R.d < 2
10 or |[R.b < 5

l. select(sum(a))from R where|R.b
2. select|sum(a)| from R where(R.Db
3. selecti{sum(a)) from R where R.e

I iIATA

C. Qc = select sum(a) from R where R.b < 5
l. select Qc + sum(a) from R where R.c > 10
2. select Qc + sum(a) from R where R.d < 2
3. select Qc + sum(a) from R where R.e = 10



Query Containment

So far, we have looked at equality predicates alone
Consider these queries:

l. select sum(a) from R where R.b < 10
2. select sum(a) from R where R.b < 15

=>
C, 1. select sum(a) from R where R.b < 10
2. select C + sum(a) from R where R.b between 10 and 15

We can say query 2 subsumes query 1 above

In general this is the query containment problem:
“how can we determine if, for all databases, all of
query A’s results will be contained in query B’s results”

Query equivalence is then mutual containment



Query and Predicate Indexing

e We can build indexes to
assist with shared query
processing

 Key idea: index the queries
rather than the data
— Lets us return the set of

gueries satisfied by a single
tuple

— Need a “comparison
function” over queries

— Useful for long-running
queries



MQO Algorithm Overview

Given a query workload, W ={Q,...Q,}
Find candidate CSEs, C, in W

Build a multiquery plan that exploits CSEs

— A single DAG that represents all of W, where the
DAG includes C

Optimize the multiquery plan, extending
standard dynamic programming techniques



MQO Algorithm Overview

Given a query workload, W = {Q,...Qy}
Find candidate CSEs, C, in W

— Potentially very expensive (e.g. do we want to
compute commonality of all subsets of the workload,
that is its powerset?)

Build a multiquery plan that exploits CSEs

— A single DAG that represents all of W, where the DAG

includes C
Optimize the multiquery plan, extending
standard dynamic programming techniques
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Build a multiquery plan that exploits CSEs

— A single DAG that represents all of W, where the DAG includes C
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programming techniques

Question: why do we use candidate CSEs and a multiquery
plan up front, rather than keeping track of commonality
during regular single query optimization?



MQO Algorithm Overview

Given a query workload, W ={Q,...Q}

Find candidate CSEs, C, in W

— Potentially very expensive (e.g. do we want to compute
commonality of all subsets of the workload, that is its
powerset?)

Build a multiquery plan that exploits CSEs

— A single DAG that represents all of W, where the DAG includes C

Optimize the multiquery plan, extending standard dynamic
programming techniques

Question: why do we use candidate CSEs and a multiquery
plan up front, rather than keeping track of commonality
during regular single query optimization?
— Highly localized pruning may eliminate CSEs during single
query optimization



Signature-Based Query Matching

* Query signatures provide a coarse-
grained matching heuristic to indicate if
two queries have any commonality

 We can use this in a simple candidate
generation algorithm:

1.
2.
3.

initialize empty candidate pool
fori=2ton

generate CSE candidates for query
subsets of size i by combining subsets
from previous round and verifying
commonality

prune subsets with no commonality

heuristically prune candidates to
add to the pool

Matching n-sets

{Q1)Q2;-";Qn}

Matching triples

{Q,,Q,,Q5} 1Q4,Q;0,Q;5}

Matching pairs

{Qll QZ} {er Q]_Q}

{Q,,Q,,Q;.-Q,}



Signature-Based Query Matching

 What is a suitable query signature?

Operator Table Signature
Table/View (t) = [F; t]
Select (o) So(e) = Se, if Ge =F
Project () (o) = Se, tf (}( = F
Join (I}) 5' Doy = F Te, UTe,|, tf Ge, = Ge, =F
Group-by (v) S-ey = [T; Te), z[ Ge =F

* Two queries may have a common
subexpression iff their signatures match and

they are join-compatible




Signature-Based Query Matching

What is a suitable query signature?

Operator Table Signature
Table/View (t) | St = [F:t]
Select (o) So(e) = Se, if Ge =F
Project () Svs‘( y = S..ifG. =F
Join (I4) S' 1“]‘ F Te, UTe,]|, tf Ge, = Ge, =F

Group-by

(v)

| l

IT; T%], z/ (Go = F

 Examples:

Sig(select * from R) =
Sig(select a,b,c from R,S where R.b =S.b) =

Sig(select a,sum(b) from R group by a) =

[F; R]
[F; R,S]
[T; R]




Signature-Based Query Matching

 Two queries are join-compatible iff the
equijoin graph constructed from their
equivalence classes is connected



Signature-Based Query Matching

 Two queries are join-compatible iff the
equijoin graph constructed from their
intersected equivalence classes is connected

 Example, with schemas R(a,b,c), S(d,e,f):
Ql: R™™¥R.q=S.dAR.b=S.c O

S

e
f

R a—y [ “

o

Join graph



Signature-Based Query Matching

 Two queries are join-compatible iff the
equijoin graph constructed from their
intersected equivalence classes is connected

* Example, with schemas R(a,b,c), S(d,e,f)

Ql R XMR.a=S.dAR.b=S.e S = {{R.CL, Sd}a {Rb7 Se}}
QZ - R ™XR.a=S.dAR.c=S.f S = {{R.CL, Sd}, {R.C, Sf}}

Equivalence classes



Signature-Based Query Matching

 Two queries are join-compatible iff the
equijoin graph constructed from their
intersected equivalence classes is connected

* Example, with schemas R(a,b,c), S(d,e,f)

Ql ' R >}XR a=S.dAR.b=S.e S = {{R.CL, Sd}, {Rb, Se}}

QQ R MXR.a=S.dAR.c=S.f S = {{R.CL, Sd}7 {R°Cv Sf}}

Intersecting equivalence classes:

{{R.a,S.d},{R.b,S.e}} R a g S
N{{R.a,S.d},{R.c,S.f}} < b e ¢
= {{R.a,S.d}}

Looking at the join graph: connected!



MQO Algorithm Overview

Given a query workload, W ={Q,...Q,}
Find candidate CSEs, C, in W

Build a multiquery plan that exploits CSEs

— A single DAG that represents all of W, where the
DAG includes C

Optimize the multiquery plan, extending
standard dynamic programming techniques



MQ, Plans: And-Or Graphs

o ”

* Boxes are “or” nodes
e Eachinput to an “or” node indicates an “equivalent” plan
* Existing operators (e.g. SPJAG) are “and” nodes

> [ RsT
/Dé N N/IXI/ N
\

R S / \T / \ S / "NR
Single plan example, D RS D RT D ST
initial plan / \ / \ / \

> > > > > >
/\N /\ /\ /\ /\ /\
And-Orgraph R S S R R T T R S T T S



MQ, Plans: And-Or Graphs

* Boxes are “or” nodes
e Eachinput to an “or” node indicates an “equivalent” plan
* Existing operators (e.g. SPJAG) are “and” nodes

Single plan example, D RS D RT D ST

initial plan / \

/\ /\ /N /N /\ /\
R T T TS

And-Orgraph R S
Highlighted branch indicates plan choice



MQ, Plans: And-Or Graphs

o ”

* Boxes are “or” nodes
 Each inputto an “or” node indicates an “equivalent” plan
* Existing operators (e.g. SPJAG) are “and” nodes

> [ RsT
/ N\

Fa — N/IXI/ \N
s SN N
Single plan example, D RS D RT D ST
initial plan / \

> X

Andmgraphé\ /@ é\ /@ NN

Notice duplicated leaves



MQ, Plans: And-Or Graphs

* Boxes are “or” nodes
e Eachinput to an “or” node indicates an “equivalent” plan
* Existing operators (e.g. SPJAG) are “and” nodes

/N _— D\

> T :> X X >

/ \ / / |

R S [ RS [ rT [ s
Single plan example, / \ / \ / \
initial plan > > > > > >

No more duplicate leaves. Notice lattice structure, just as with datacube lattice



MQ, Plans: And-Or Graphs

* Boxes are “or” nodes
e Eachinput to an “or” node indicates an “equivalent” plan
* Existing operators (e.g. SPJAG) are “and” nodes

/'><'\ [] PsT [] RsT
/[><]\ T M
R S X Oooooao
/ \ PS PT ST RS RT
> T
/ \
P S p R S T

Multiple plan example And-Or graph (only “or” nodes shown)



MQ, Plans: And-Or Graphs

* Boxes are “or” nodes
e Eachinput to an “or” node indicates an “equivalent” plan
* Existing operators (e.g. SPJAG) are “and” nodes

>
VN ey [ psT [] RST
/[><]\T M

R S > Oo0CO0

/ N\ PS PT ST RS RT

> T Common subexpression
/ \
P S P R S T

Multiple plan example And-Or graph (only “or” nodes shown)



MQO Algorithm

* Cost models for and-or graphs
 And-nodes

cost(o) = exec_cost(o) + Z cost(e;)

e;echildren(o)
e Or-nodes

cost(e) = min{cost(o;)|o; € children(e)}



MQO Algorithm Overview

Given a query workload, W ={Q,...Q,}
Find candidate CSEs, C, in W

Build a multiquery plan that exploits CSEs

— A single DAG that represents all of W, where the
DAG includes C

Optimize the multiquery plan, extending
standard dynamic programming techniques



MATERIALIZED VIEWS



Database Views

 Aview is a table derived as the result of a
guery, that may optionally be stored or
materialized to disk

* Aview is created by a defining query, and
available for use in queries just like any other
relation in the DBMS

create view Rmax as select sum(S.d)
select b, max(a) as ma from Rmax,S

from R where Rmax.b = S.b
group by R.Db and S.d < R.ma

View definition query Example query using the defined view



Why Are Views Useful?

* They are the main mechanism for abstraction
in a DBMS (both logical and physical)

— e.g. physical abstractions may implement the
same relation with different storage schemes

— e.g. logical abstractions may implement the same
relation with different normalization

* They allow derived relations to be named,
referenced, and shared



Using Views for MQO

e We can use views as candidate CSEs in addition
to those present in the workload

e We can decide to
materialize candidate [] Pt [ RsT

CSEs as views M

e Much of the

machinery for PDS E E RDS E
detecting sharing }STU N—
is useful for 5<1\ ST
views PSTU P R S T

And-Or graph (only “or” nodes shown)



View Materialization

 Materialization: storing the results of a view
computation to disk
— The view rjesults can be reused when we see the same
query again.
— How is this different to caching? Views are
maintained, caches are simply invalidated
* Partial materialization: we need not store the
entire view on disk, but only a subset of its rows
— How do we pick which rows to keep?

— There are many algorithms, that typically depend on
row “heat”, i.e. how useful a row is to a query
workload



View Matching

* Question: given a query, how can we determine if
we can use a view to answer it?

* We may be able to use a view

— if the view completely answers the query, i.e. the
query is contained in the view (i.e. the view subsumes

the query)
— if the view partially answers the query (i.e. if there is
some commonality between the query and the view)

 We can use similar techniques (i.e. signatures) as
with MQO



View Maintenance

The maintenance problem: if my base relations are

updated, how do | refresh my view so that query answering
remains up-to-date?

Two high-level approaches:

— Full refresh: recompute the query from scratch on every update
* A general-purpose technique that works for all kinds of queries

* But, it is inefficient since many rows in the view may be unaffected by
the update

* No need to do this on every update (i.e. eager), instead we can be

lazy and do this periodically (queries may have different freshness
requirements)

— Incremental refresh: recompute only those parts of the view
that are affected by the updates

* Relies on the concept of delta queries



Incremental View Maintenance Algorithms

* Delta queries are computed by a program
transformation, which symbolically replaces a relation
in the query with a single tuple

 Example:

select l.ordkey, o.sprior,
sum(l.extprice)
from values (@ok, @ep)
as l(ordkey,extprice),
Orders o
where 1l.ordkey = o.ordkey
group by l.ordkey, o.sprior

g= select l.ordkey, o.sprior, delta =>
sum(l.extprice)
from Lineitem 1, Orders o
where 1l.ordkey = o.ordkey
group by l.ordkey, o.sprior;



Incremental View Maintenance Algorithms

* Delta queries are computed by a program

transformation, which symbolically replaces a relation
in the query with a single tuple

 Example:

select l.ordkey, o.sprior,
sum(l.extprice)
from values (@ok, @ep)
as l(ordkey,extprice),
Orders o
where 1l.ordkey = o.ordkey
group by l.ordkey, o.sprior

select l.ordkey, o.sprior, delta =>
sum(l.extprice)

from Lineitem 1, Orders o

where 1l.ordkey = o.ordkey

group by l.ordkey, o.sprior;

simplify
=>> dq _
Incremental update: select (ol sprior, fepry
rom
qnew = qo|d union dq (select o.sprior, sum(l) as v

from Orders o
where (@ok = o.ordkey
group by o.sprior)



View Update

So far we have treated views as
read-only derived data

— This makes sense for many classes of

OLAP queries; statistics are “read- i
only”

* The view update problem: how do | View
support writeable views, so that

updates to my view are propagated i i
back to the base relation?

— This is generally difficult, it requires an

inverse or bidirectional query @
— e.g., how do you invert a join or

aggregate?

Updates

Base tables, inconsistent with the
view after updates to the view



Next Lecture: Physical DB Design

* How do we automatically pick good views to
maintain for a query workload W

* Also, how do we pick good indexes?

* How do these data structure selection
mechanisms interact with query optimization?



