
http://www.tuto rialspo int.co m/cplusplus/cpp_web_pro g ramming .htm Copyrig ht © tutorialspoint.com

C++ WEB PROGRAMMING

What is CGI?

The Common Gateway Interface, or CGI, is a set of standards that define how information is exchang ed
between the web server and a custom script.

The CGI specs are currently maintained by the NCSA and NCSA defines CGI is as follows:

The Common Gateway Interface, or CGI, is a standard for external g ateway prog rams to interface with
information servers such as HTTP servers.

The current version is CGI/1.1 and CGI/1.2 is under prog ress.

Web Browsing

To understand the concept of CGI, let's see what happens when we click a hyperlink to browse a particular web
pag e or URL.

Your browser contacts the HTTP web server and demand for the URL ie. filename.

Web Server will parse the URL and will look for the filename. If it finds requested file then web server
sends that file back to the browser otherwise sends an error messag e indicating that you have requested
a wrong file.

Web browser takes response from web server and displays either the received file or error messag e
based on the received response.

However, it is possible to set up the HTTP server in such a way that whenever a file in a certain directory is
requested, that file is not sent back; instead it is executed as a prog ram, and produced output from the prog ram
is sent back to your browser to display.

The Common Gateway Interface (CGI) is a standard protocol for enabling applications (called CGI prog rams or
CGI scripts) to interact with Web servers and with clients. These CGI prog rams can be a written in Python,
PERL, Shell, C or C++ etc.

CGI Architecture Diag ram

The following simple prog ram shows a simple architecture of CGI:

Web Server Config uration

Before you proceed with CGI Prog ramming , make sure that your Web Server supports CGI and it is config ured
to handle CGI Prog rams. All the CGI Prog rams to be executed by the HTTP server are kept in a pre-config ured
directory. This directory is called CGI directory and by convention it is named as /var/www/cg i-bin. By
convention CGI files will have extension as .cg i, thoug h they are C++ executable.

http://www.tutorialspoint.com/cplusplus/cpp_web_programming.htm

By default, Apache Web Server is config ured to run CGI prog rams in /var/www/cg i-bin. If you want to specify
any other directory to run your CGI scripts, you can modify the following section in the httpd.conf file:

<Directory "/var/www/cgi-bin">
 AllowOverride None
 Options ExecCGI
 Order allow,deny
 Allow from all
</Directory>

<Directory "/var/www/cgi-bin">
Options All
</Directory>

Here, I assumed that you have Web Server up and running successfully and you are able to run any other CGI
prog ram like Perl or Shell etc.

First CGI Prog ram

Consider the following C++ Prog ram content:

#include <iostream>
using namespace std;

int main ()
{

 cout << "Content-type:text/html\r\n\r\n";
 cout << "<html>\n";
 cout << "<head>\n";
 cout << "<title>Hello World - First CGI Program</title>\n";
 cout << "</head>\n";
 cout << "<body>\n";
 cout << "<h2>Hello World! This is my first CGI program</h2>\n";
 cout << "</body>\n";
 cout << "</html>\n";

 return 0;
}

Compile above code and name the executable as cplusplus.cg i. This file is being kept in /var/www/cg i-bin
directory and it has following content. Before running your CGI prog ram make sure you have chang e mode of file
using chmod 755 cplusplus.cg i UNIX command to make file executable. Now if you click cplusplus.cg i then
this produces the following output:

Hello World! This is my first CGI prog ram

Above C++ prog ram is a simple prog ram which is writing its output on STDOUT file ie. screen. There is one
important and extra feature available which is first line to be printed Content-type:text/html\r\n\r\n. This
line is sent back to the browser and specify the content type to be displayed on the browser screen. Now you
must have understood basic concept of CGI and you can write many complicated CGI prog rams using Python. A
C++ CGI prog ram can interact with any other exernal system, such as RDBMS, to exchang e information.

HTTP Header

The line Content-type:text/html\r\n\r\n is part of HTTP header, which is sent to the browser to
understand the content. All the HTTP header will be in the following form

HTTP Field Name: Field Content

For Example
Content-type: text/html\r\n\r\n

There are few other important HTTP headers, which you will use frequently in your CGI Prog ramming .

/cgi-bin/cplusplus.cgi

Header Description

Content-type: A MIME string defining the format of the file being returned. Example is
Content-type:text/html

Expires: Date The date the information becomes invalid. This should be used by the
browser to decide when a pag e needs to be refreshed. A valid date string
should be in the format 01 Jan 1998 12:00:00 GMT.

Location: URL The URL that should be returned instead of the URL requested. You can
use this filed to redirect a request to any file.

Last-modified: Date The date of last modification of the resource.

Content-leng th: N The leng th, in bytes, of the data being returned. The browser uses this
value to report the estimated download time for a file.

Set-Cookie: String Set the cookie passed throug h the string

CGI Environment Variables

All the CGI prog ram will have access to the following environment variables. These variables play an important
role while writing any CGI prog ram.

Variable Name Description

CONTENT_TYPE The data type of the content. Used when the client is sending attached
content to the server. For example file upload etc.

CONTENT_LENGTH The leng th of the query information. It's available only for POST requests

HTTP_COOKIE Return the set cookies in the form of key & value pair.

HTTP_USER_AGENT The User-Ag ent request-header field contains information about the user
ag ent orig inating the request. Its name of the web browser.

PATH_INFO The path for the CGI script.

QUERY_STRING The URL-encoded information that is sent with GET method request.

REMOTE_ADDR The IP address of the remote host making the request. This can be useful
for log g ing or for authentication purpose.

REMOTE_HOST The fully qualified name of the host making the request. If this information is
not available then REMOTE_ADDR can be used to g et IR address.

REQUEST_METHOD The method used to make the request. The most common methods are
GET and POST.

SCRIPT_FILENAME The full path to the CGI script.

SCRIPT_NAME The name of the CGI script.

SERVER_NAME The server's hostname or IP Address

SERVER_SOFTWARE The name and version of the software the server is running .

Here is small CGI prog ram to list out all the CGI variables. Click this link to see the result Get Environment

http://www.tutorialspoint.com/cgi-bin/cpp_env.cgi

#include <iostream>
#include <stdlib.h>
using namespace std;

const string ENV[24] = {
 "COMSPEC", "DOCUMENT_ROOT", "GATEWAY_INTERFACE",
 "HTTP_ACCEPT", "HTTP_ACCEPT_ENCODING",
 "HTTP_ACCEPT_LANGUAGE", "HTTP_CONNECTION",
 "HTTP_HOST", "HTTP_USER_AGENT", "PATH",
 "QUERY_STRING", "REMOTE_ADDR", "REMOTE_PORT",
 "REQUEST_METHOD", "REQUEST_URI", "SCRIPT_FILENAME",
 "SCRIPT_NAME", "SERVER_ADDR", "SERVER_ADMIN",
 "SERVER_NAME","SERVER_PORT","SERVER_PROTOCOL",
 "SERVER_SIGNATURE","SERVER_SOFTWARE" };

int main ()
{

 cout << "Content-type:text/html\r\n\r\n";
 cout << "<html>\n";
 cout << "<head>\n";
 cout << "<title>CGI Envrionment Variables</title>\n";
 cout << "</head>\n";
 cout << "<body>\n";
 cout << "<table border = \"0\" cellspacing = \"2\">";

 for (int i = 0; i < 24; i++)
 {
 cout << "<tr><td>" << ENV[i] << "</td><td>";
 // attempt to retrieve value of environment variable
 char *value = getenv(ENV[i].c_str());
 if (value != 0){
 cout << value;
 }else{
 cout << "Environment variable does not exist.";
 }
 cout << "</td></tr>\n";
 }
 cout << "</table><\n";
 cout << "</body>\n";
 cout << "</html>\n";

 return 0;
}

C++ CGI Library

For real examples, you would need to do many operations by your CGI prog ram. There is a CGI library written
for C++ prog ram which you can download from ftp://ftp.g nu.org /g nu/cg icc/ and following the following steps
to install the library:

$tar xzf cgicc-X.X.X.tar.gz
$cd cgicc-X.X.X/
$./configure --prefix=/usr
$make
$make install

You can check related documentation available at C++ CGI Lib Documentation.

GET and POST Methods

You must have come across many situations when you need to pass some information from your browser to web
server and ultimately to your CGI Prog ram. Most frequently browser uses two methods two pass this
information to web server. These methods are GET Method and POST Method.

Passing Information using GET method:

The GET method sends the encoded user information appended to the pag e request. The pag e and the
encoded information are separated by the ? character as follows:

ftp://ftp.gnu.org/gnu/cgicc/
http://www.gnu.org/software/cgicc/doc/index.html

http://www.test.com/cgi-bin/cpp.cgi?key1=value1&key2=value2

The GET method is the default method to pass information from browser to web server and it produces a long
string that appears in your browser's Location:box. Never use the GET method if you have password or other
sensitive information to pass to the server. The GET method has size limitation and you can pass upto 1024
characters in a request string .

When using GET method, information is passed using QUERY_STRING http header and will be accessible in
your CGI Prog ram throug h QUERY_STRING environment variable

You can pass information by simply concatenating key and value pairs along with any URL or you can use HTML
<FORM> tag s to pass information using GET method.

Simple URL Example : Get Method

Here is a simple URL which will pass two values to hello_g et.py prog ram using GET method.

/cg i-bin/cpp_g et.cg i?first_name=ZARA&last_name=ALI

Below is prog ram to g enerate cpp_g et.cg i CGI prog ram to handle input g iven by web browser. We are
g oing to use C++ CGI library which makes it very easy to access passed information:

#include <iostream>
#include <vector>
#include <string>
#include <stdio.h>
#include <stdlib.h>

#include <cgicc/CgiDefs.h>
#include <cgicc/Cgicc.h>
#include <cgicc/HTTPHTMLHeader.h>
#include <cgicc/HTMLClasses.h>

using namespace std;
using namespace cgicc;

int main ()
{
 Cgicc formData;

 cout << "Content-type:text/html\r\n\r\n";
 cout << "<html>\n";
 cout << "<head>\n";
 cout << "<title>Using GET and POST Methods</title>\n";
 cout << "</head>\n";
 cout << "<body>\n";

 form_iterator fi = formData.getElement("first_name");
 if(!fi->isEmpty() && fi != (*formData).end()) {
 cout << "First name: " << **fi << endl;
 }else{
 cout << "No text entered for first name" << endl;
 }
 cout << "
\n";
 fi = formData.getElement("last_name");
 if(!fi->isEmpty() &&fi != (*formData).end()) {
 cout << "Last name: " << **fi << endl;
 }else{
 cout << "No text entered for last name" << endl;
 }
 cout << "
\n";

 cout << "</body>\n";
 cout << "</html>\n";

 return 0;
}

/cgi-bin/cpp_get.cgi?first_name=ZARA&last_name=ALI

Now, compile the above prog ram as follows:

$g++ -o cpp_get.cgi cpp_get.cpp -lcgicc

Generate cpp_g et.cg i and put it in your CGI directory and try to access using following link:

/cg i-bin/cpp_g et.cg i?first_name=ZARA&last_name=ALI

This would g enerate following result:

First name: ZARA
Last name: ALI

Simple FORM Example: GET Method

Here is a simple example which passes two values using HTML FORM and submit button. We are g oing to use
same CGI script cpp_g et.cg i to handle this input.

<form action="/cgi-bin/cpp_get.cgi" method="get">
First Name: <input type="text" name="first_name">

Last Name: <input type="text" name="last_name" />
<input type="submit" value="Submit" />
</form>

Here is the actual output of the above form, You enter First and Last Name and then click submit button to see the
result.

First Name:

Last Name:

Passing Information using POST method:

A g enerally more reliable method of passing information to a CGI prog ram is the POST method. This packag es
the information in exactly the same way as GET methods, but instead of sending it as a text string after a ? in the
URL it sends it as a separate messag e. This messag e comes into the CGI script in the form of the standard input.

The same cpp_g et.cg i prog ram will handle POST method as well. Let us take same example as above, which
passes two values using HTML FORM and submit button but this time with POST method as follows:

<form action="/cgi-bin/cpp_get.cgi" method="post">
First Name: <input type="text" name="first_name">

Last Name: <input type="text" name="last_name" />

<input type="submit" value="Submit" />
</form>

Here is the actual output of the above form, You enter First and Last Name and then click submit button to see the
result.

First Name:

Last Name:

Passing Checkbox Data to CGI Prog ram

Checkboxes are used when more than one option is required to be selected.

Here is example HTML code for a form with two checkboxes

/cgi-bin/cpp_get.cgi?first_name=ZARA&last_name=ALI

<form action="/cgi-bin/cpp_checkbox.cgi"
 method="POST"
 target="_blank">
<input type="checkbox" name="maths" value="on" /> Maths
<input type="checkbox" name="physics" value="on" /> Physics
<input type="submit" value="Select Subject" />
</form>

The result of this code is the following form

 Maths Physics

Below is C++ prog ram, which will g enerate cpp_checkbox.cg i script to handle input g iven by web browser
throug h checkbox button.

#include <iostream>
#include <vector>
#include <string>
#include <stdio.h>
#include <stdlib.h>

#include <cgicc/CgiDefs.h>
#include <cgicc/Cgicc.h>
#include <cgicc/HTTPHTMLHeader.h>
#include <cgicc/HTMLClasses.h>

using namespace std;
using namespace cgicc;

int main ()
{
 Cgicc formData;
 bool maths_flag, physics_flag;

 cout << "Content-type:text/html\r\n\r\n";
 cout << "<html>\n";
 cout << "<head>\n";
 cout << "<title>Checkbox Data to CGI</title>\n";
 cout << "</head>\n";
 cout << "<body>\n";

 maths_flag = formData.queryCheckbox("maths");
 if(maths_flag) {
 cout << "Maths Flag: ON " << endl;
 }else{
 cout << "Maths Flag: OFF " << endl;
 }
 cout << "
\n";

 physics_flag = formData.queryCheckbox("physics");
 if(physics_flag) {
 cout << "Physics Flag: ON " << endl;
 }else{
 cout << "Physics Flag: OFF " << endl;
 }
 cout << "
\n";
 cout << "</body>\n";
 cout << "</html>\n";

 return 0;
}

Passing Radio Button Data to CGI Prog ram

Radio Buttons are used when only one option is required to be selected.

Here is example HTML code for a form with two radio button:

<form action="/cgi-bin/cpp_radiobutton.cgi"

 method="post"
 target="_blank">
<input type="radio" name="subject" value="maths"
 checked="checked"/> Maths
<input type="radio" name="subject" value="physics" /> Physics
<input type="submit" value="Select Subject" />
</form>

The result of this code is the following form

 Maths Physics

Below is C++ prog ram, which will g enerate cpp_radiobutton.cg i script to handle input g iven by web browser
throug h radio buttons.

#include <iostream>
#include <vector>
#include <string>
#include <stdio.h>
#include <stdlib.h>

#include <cgicc/CgiDefs.h>
#include <cgicc/Cgicc.h>
#include <cgicc/HTTPHTMLHeader.h>
#include <cgicc/HTMLClasses.h>

using namespace std;
using namespace cgicc;

int main ()
{
 Cgicc formData;

 cout << "Content-type:text/html\r\n\r\n";
 cout << "<html>\n";
 cout << "<head>\n";
 cout << "<title>Radio Button Data to CGI</title>\n";
 cout << "</head>\n";
 cout << "<body>\n";

 form_iterator fi = formData.getElement("subject");
 if(!fi->isEmpty() && fi != (*formData).end()) {
 cout << "Radio box selected: " << **fi << endl;
 }

 cout << "
\n";
 cout << "</body>\n";
 cout << "</html>\n";

 return 0;
}

Passing Text Area Data to CGI Prog ram

TEXTAREA element is used when multiline text has to be passed to the CGI Prog ram.

Here is example HTML code for a form with a TEXTAREA box:

<form action="/cgi-bin/cpp_textarea.cgi"
 method="post"
 target="_blank">
<textarea name="textcontent" cols="40" rows="4">
Type your text here...
</textarea>
<input type="submit" value="Submit" />
</form>

The result of this code is the following form

Type your text here...

Below is C++ prog ram, which will g enerate cpp_textarea.cg i script to handle input g iven by web browser
throug h text area.

#include <iostream>
#include <vector>
#include <string>
#include <stdio.h>
#include <stdlib.h>

#include <cgicc/CgiDefs.h>
#include <cgicc/Cgicc.h>
#include <cgicc/HTTPHTMLHeader.h>
#include <cgicc/HTMLClasses.h>

using namespace std;
using namespace cgicc;

int main ()
{
 Cgicc formData;

 cout << "Content-type:text/html\r\n\r\n";
 cout << "<html>\n";
 cout << "<head>\n";
 cout << "<title>Text Area Data to CGI</title>\n";
 cout << "</head>\n";
 cout << "<body>\n";

 form_iterator fi = formData.getElement("textcontent");
 if(!fi->isEmpty() && fi != (*formData).end()) {
 cout << "Text Content: " << **fi << endl;
 }else{
 cout << "No text entered" << endl;
 }

 cout << "
\n";
 cout << "</body>\n";
 cout << "</html>\n";

 return 0;
}

Passing Drop Down Box Data to CGI Prog ram

Drop Down Box is used when we have many options available but only one or two will be selected.

Here is example HTML code for a form with one drop down box

<form action="/cgi-bin/cpp_dropdown.cgi"
 method="post" target="_blank">
<select name="dropdown">
<option value="Maths" selected>Maths</option>
<option value="Physics">Physics</option>
</select>
<input type="submit" value="Submit"/>
</form>

The result of this code is the following form

Maths

Below is C++ prog ram, which will g enerate cpp_dropdown.cg i script to handle input g iven by web browser
throug h drop down box.

#include <iostream>
#include <vector>
#include <string>
#include <stdio.h>
#include <stdlib.h>

#include <cgicc/CgiDefs.h>
#include <cgicc/Cgicc.h>
#include <cgicc/HTTPHTMLHeader.h>
#include <cgicc/HTMLClasses.h>

using namespace std;
using namespace cgicc;

int main ()
{
 Cgicc formData;

 cout << "Content-type:text/html\r\n\r\n";
 cout << "<html>\n";
 cout << "<head>\n";
 cout << "<title>Drop Down Box Data to CGI</title>\n";
 cout << "</head>\n";
 cout << "<body>\n";

 form_iterator fi = formData.getElement("dropdown");
 if(!fi->isEmpty() && fi != (*formData).end()) {
 cout << "Value Selected: " << **fi << endl;
 }

 cout << "
\n";
 cout << "</body>\n";
 cout << "</html>\n";

 return 0;
}

Using Cookies in CGI

HTTP protocol is a stateless protocol. But for a commercial website it is required to maintain session information
among different pag es. For example one user reg istration ends after completing many pag es. But how to
maintain user's session information across all the web pag es.

In many situations, using cookies is the most efficient method of remembering and tracking preferences,
purchases, commissions, and other information required for better visitor experience or site statistics.

How It Works

Your server sends some data to the visitor's browser in the form of a cookie. The browser may accept the
cookie. If it does, it is stored as a plain text record on the visitor's hard drive. Now, when the visitor arrives at
another pag e on your site, the cookie is available for retrieval. Once retrieved, your server knows/remembers
what was stored.

Cookies are a plain text data record of 5 variable-leng th fields:

Expires : The date the cookie will expire. If this is blank, the cookie will expire when the visitor quits the
browser.

Domain : The domain name of your site.

Path : The path to the directory or web pag e that set the cookie. This may be blank if you want to retrieve
the cookie from any directory or pag e.

Secure : If this field contains the word "secure" then the cookie may only be retrieved with a secure
server. If this field is blank, no such restriction exists.

Name=Value : Cookies are set and retrieved in the form of key and value pairs.

Setting up Cookies

This is very easy to send cookies to browser. These cookies will be sent along with HTTP Header before to
Content-type filed. Assuming you want to set UserID and Password as cookies. So cookies setting will be done
as follows

#include <iostream>
using namespace std;

int main ()
{

 cout << "Set-Cookie:UserID=XYZ;\r\n";
 cout << "Set-Cookie:Password=XYZ123;\r\n";
 cout << "Set-Cookie:Domain=www.tutorialspoint.com;\r\n";
 cout << "Set-Cookie:Path=/perl;\n";
 cout << "Content-type:text/html\r\n\r\n";

 cout << "<html>\n";
 cout << "<head>\n";
 cout << "<title>Cookies in CGI</title>\n";
 cout << "</head>\n";
 cout << "<body>\n";

 cout << "Setting cookies" << endl;

 cout << "
\n";
 cout << "</body>\n";
 cout << "</html>\n";

 return 0;
}

From this example, you must have understood how to set cookies. We use Set-Cookie HTTP header to set
cookies.

Here, it is optional to set cookies attributes like Expires, Domain, and Path. It is notable that cookies are set
before sending mag ic line "Content-type:text/html\r\n\r\n.

Compile above prog ram to produce setcookies.cg i, and try to set cookies using following link. It will set four
cookies at your computer:

/cg i-bin/setcookies.cg i

Retrieving Cookies

This is very easy to retrieve all the set cookies. Cookies are stored in CGI environment variable
HTTP_COOKIE and they will have following form.

key1=value1;key2=value2;key3=value3....

Here is an example of how to retrieving cookies.

#include <iostream>
#include <vector>
#include <string>
#include <stdio.h>
#include <stdlib.h>

#include <cgicc/CgiDefs.h>
#include <cgicc/Cgicc.h>
#include <cgicc/HTTPHTMLHeader.h>
#include <cgicc/HTMLClasses.h>

using namespace std;
using namespace cgicc;

/cgi-bin/setcookies.cgi

int main ()
{
 Cgicc cgi;
 const_cookie_iterator cci;

 cout << "Content-type:text/html\r\n\r\n";
 cout << "<html>\n";
 cout << "<head>\n";
 cout << "<title>Cookies in CGI</title>\n";
 cout << "</head>\n";
 cout << "<body>\n";
 cout << "<table border = \"0\" cellspacing = \"2\">";

 // get environment variables
 const CgiEnvironment& env = cgi.getEnvironment();

 for(cci = env.getCookieList().begin();
 cci != env.getCookieList().end();
 ++cci)
 {
 cout << "<tr><td>" << cci->getName() << "</td><td>";
 cout << cci->getValue();
 cout << "</td></tr>\n";
 }
 cout << "</table><\n";

 cout << "
\n";
 cout << "</body>\n";
 cout << "</html>\n";

 return 0;
}

Now, compile above prog ram to produce g etcookies.cg i, and try to g et a list of all the cookies available at your
computer:

/cg i-bin/g etcookies.cg i

This will produce a list of all the four cookies set in previous section and all other cookies set at your computer:

UserID XYZ
Password XYZ123
Domain www.tutorialspoint.com
Path /perl

File Upload Example:

To upload a file the HTML form must have the enctype attribute set to multipart/form-data. The input tag
with the file type will create a "Browse" button.

<html>
<body>
 <form enctype="multipart/form-data"
 action="/cgi-bin/cpp_uploadfile.cgi"
 method="post">
 <p>File: <input type="file" name="userfile" /></p>
 <p><input type="submit" value="Upload" /></p>
 </form>
</body>
</html>

The result of this code is the following form:

File:

/cgi-bin/getcookies.cgi

Note: Above example has been disabled intentionally to save people uploading files on our server. But you can
try above code with your server.

Here is the script cpp_uploadfile.cpp to handle file upload:

#include <iostream>
#include <vector>
#include <string>
#include <stdio.h>
#include <stdlib.h>

#include <cgicc/CgiDefs.h>
#include <cgicc/Cgicc.h>
#include <cgicc/HTTPHTMLHeader.h>
#include <cgicc/HTMLClasses.h>

using namespace std;
using namespace cgicc;

int main ()
{
 Cgicc cgi;

 cout << "Content-type:text/html\r\n\r\n";
 cout << "<html>\n";
 cout << "<head>\n";
 cout << "<title>File Upload in CGI</title>\n";
 cout << "</head>\n";
 cout << "<body>\n";

 // get list of files to be uploaded
 const_file_iterator file = cgi.getFile("userfile");
 if(file != cgi.getFiles().end()) {
 // send data type at cout.
 cout << HTTPContentHeader(file->getDataType());
 // write content at cout.
 file->writeToStream(cout);
 }
 cout << "<File uploaded successfully>\n";
 cout << "</body>\n";
 cout << "</html>\n";

 return 0;
}

The above example is writing content at cout stream but you can open your file stream and save the content of
uploaded file in a file at desired location.

Hope you enjoyed this tutorial. If yes, please send me your feedback at: Contact Us

/about/contact_us.htm

	C++ WEB PROGRAMMING
	What is CGI?
	Web Browsing
	CGI Architecture Diagram
	Web Server Configuration
	First CGI Program
	Hello World! This is my first CGI program
	HTTP Header
	CGI Environment Variables
	C++ CGI Library
	GET and POST Methods
	Passing Information using GET method:
	Simple URL Example : Get Method
	Simple FORM Example: GET Method
	Passing Information using POST method:
	Passing Checkbox Data to CGI Program
	Passing Radio Button Data to CGI Program
	Passing Text Area Data to CGI Program
	Passing Drop Down Box Data to CGI Program
	Using Cookies in CGI
	How It Works
	Setting up Cookies
	Retrieving Cookies
	File Upload Example:

