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Abstract

These are notes for the first half of the upper division course ’Abstract Algebra’ (Math 113)
taught at the University of California, Berkeley, during the summer session 2014. Students are
assumed to have attended a first course in linear algebra (equivalent to UCB Math 54). The aim
of these notes is to provide an introduction to group theory with a particular emphasis on finite
groups: topics to be covered include basic definitions and concepts, Lagrange’s Theorem, Sylow’s
Theorems and the structure theorem of finitely generated abelian goups, and there will be a strong
focus on group actions and realising groups through symmetry.
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2 Lecture 2 - Basic arithmetic properties of Z. Equivalence re-
lations.

Previous lecture - Next lecture

Keywords: Fundamental Theorem of Arithmetic, division algorithm, gcd, Euclid algorithm.
Equivalence relation, equivalence class, class representative, natural mapping.

In this lecture we will collect some basic arithmetic properties of the integers that will be used repeatedly
throughout the course - they will appear frequently in both Group Theory and Ring Theory - and
introduce the notion of an equivalence relation on a set.

2.1 Arithmetic properties of Z
The set of integers

Z = {0,±1,±2,±3,±4, ....},

is a fundamental object in both group theory and ring theory. Many of its abstract algebraic properties
were explained to us as children. Here we record some of the basic (algebraic) facts about this set:

Theorem 2.1.1 (Fundamental Theorem of Arithmetic). Let n ∈ Z>0. Then, there exist primes p1, ... , pr

and integers n1, ... , nr ≥ 1 such that n = pn1
1 pn2

2 · · · pnr
r . Moreover, if we order p1 < p2 < ... < pr , then

the above product is unique.1

Theorem 2.1.2 (Division algorithm in Z). Let x , a ∈ Z, a 6= 0. Then, there exists b, r ∈ Z, with
0 ≤ r < a, such that x = ba + r .

Definition 2.1.3. Let a, b ∈ Z. Then, the greatest common divisor of a, b, denoted gcd(a, b), is the
largest (positive) integer c such that c divides a and c divides b. If gcd(a, b) = 1 then we say that a, b
are coprime.

Theorem 2.1.4 (Euclid’s algorithm). Let a, b ∈ Z. Then, there exist u, v ∈ Z such that

gcd(a, b) = ua + bv .

2.2 Equivalence relations

Let A be an arbitrary nonempty set. There are many ways that we can partition a set into collections of
similar objects - in this context, the term ‘partition’ means that A is ‘broken up’ into disjoint nonempty
subsets.

For example,

- if A is the set of people in this classroom then we could partition A by hair colour or height or
country of birth.

- if A = Z then we can partition A into three subsets A0, A1, A2, where Ai consists of all those
integers that have remainder i when divided by 3.

In mathematics we embody this process - of breaking up a set into disjoint nonempty subsets - using
equivalence relations.

Definition 2.2.1 (Equivalence Relation). Let A be a (nonempty) set. We say that R ⊂ A × A =
{(a, b) | a, b ∈ A} is an equivalence relation on A if the following properties hold:

(ER1) R contains the diagonal subset ∆A = {(a, a) | a ∈ A}; (reflexive)

(ER2) if (a, b) ∈ R then (b, a) ∈ R; (symmetric)

(ER3) if (a, b) ∈ R and (b, c) ∈ R, then (a, c) ∈ R. (transitive)

1Recall that a prime number is an integer p, p > 1, such that the only divisors of p are 1 and p.
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This definition seems to be quite different from our notions of similarity that we introduced above. For
example, why should we care about a subset of the product A× A? Let’s see how the definition of an
equivalence relation just given does actually embody ‘similarity’: first, let us write

a ∼R b ⇔ (a, b) ∈ R,

and say
a ∼R b ⇔ a is equivalent to b.

Note that the order in which we write a ∼R b (and say ‘a is equivalent to b’) must respect the order of
the ordered pair (a, b).

Thus, we can reformulate ER1, ER2, ER3 in the following way:

(ER1)’ if a ∈ A then a ∼R a - ‘every a ∈ A is equivalent to itself’;

(ER2)’ if a ∼ b then b ∼R a - ‘if a is equivalent to b then b is equivalent to a’;

(ER3)’ if a ∼R b and b ∼R c then a ∼R c - ‘if a is equivalent to b and b is equivalent to c then a is
equivalent to c ’.

It should now feel more plausible that an equivalence relation is capturing the notion of similarity of
objects. For example, check (by saying aloud) that if we let A be the set of people in this classroom and

R = {(a, b) ∈ A× A | a and b have the same hair colour} ⊂ A× A,

then R satisfies ER1, ER2, ER3 and so defines an equivalence relation on A.

How does this all relate to partitioning a set A into disjoint nonempty subsets?

Definition 2.2.2 (Equivalence Class). Let A be a (nonempty) set, R ⊂ A× A an equivalence relation
on A. For a ∈ A we define the equivalence class of a (with respect to R) to be the subset of A

[a]
def
= {b ∈ A | a ∼R b} ⊂ A.

So, the equivalence class of a (with respect to R) is the set of all elements in A that are equivalent to a.

We will also refer to [a] as an equivalence class (of R) (without reference to a) when the context is
clear.

If b ∈ [a] then we say that b is a (class) representative of [a]. We denote the set of all equivalence
classes of R by A/R or A/ ∼R , or even A/ ∼ when the equivalence relation R is understood. We will
often write the set of all equivalence classes making use of some (nice) choice of class representatives
(see Example 2.2.6).

We define the natural mapping associated to R (or ∼R , or ∼) to be

π : A→ A/ ∼ ; a 7→ [a],

the function that sends an element of A to its equivalence class.

The main reason we are interested in equivalence classes is that they are precisely the subsets that
describe a partition of a set. This will be made precise and proved in the following results.

First, consider the example discussed above: A is the set of people in this classroom and

R = {(a, b) | a and b have the same hair colour}.

Then, we can consider an equivalence class for this equivalence relation as the set of all people in this
classroom with the same hair colour. In particular, we can label equivalence classes by a single person
in an equivalence class or by the hair colour of that student - thus, we have

A/R ←→ {brown, black,...}
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Lemma 2.2.3. Let A be a nonempty set, R ⊂ A×A an equivalence relation on A. Let a, b ∈ A be such
that b ∈ [a] (so that b is a representative of [a]). Then, [a] = [b].

Proof: Homework/worksheet problem.

Lemma 2.2.3 states that

if a ∼ b then the equivalence class of a is equal to the equivalence class of b.

Theorem 2.2.4. Let A be a (nonempty) set, R ⊂ A × A an equivalence relation on A. Then, A is a
disjoint union of the equivalence classes of R

A =
⊔

X∈A/R

X .

Remark 2.2.5. To say that A is a disjoint union of equivalence classes of R means the following: A is
a union of equivalence classes and, if X , X ′ ∈ A/R are distinct equivalence classes then X ∩ X ′ = ∅.

Proof: We must prove two statements:

- A is a union of equivalence classes: recall that an equivalence class X ∈ A/R is of the form
X = [a], for some a ∈ A. Let a ∈ A. Then, a ∈ [a], by ER1, so that an arbitrary a ∈ A is a
member of some equivalence class. Hence,

A =
⋃
a∈A

[a].

- if X , X ′ ∈ A/R are distinct equivalence classes then X ∩ X ′ = ∅: let X = [a], X ′ = [b], for
some a, b ∈ A. Since X 6= X ′ then a is not equivalent to b by Lemma 2.2.3. Suppose, for a
contradiction, that X ∩ X ′ 6= ∅. Thus, there is some c ∈ X ∩ X ′ so that c ∈ [a] and c ∈ [b].
Hence, a ∼R c and b ∼R c . By ER2 we know that c ∼R b which implies, by ER3, that a ∼R b.
Hence, by Lemma 2.2.3, X = [a] = [b] = X ′, which is absurd. Thus, the assumption that
X ∩ X ′ 6= ∅ must be false so that X ∩ X ′ = ∅.

Example 2.2.6. 1. Let A = Z and fix n ∈ Z, n 6= 0. Consider the following equivalence relation

R = {(a, b) ∈ Z× Z | n divides (a− b)}.

That is,
a ∼ b ⇔ n divides (a− b).

Then, the following are examples of equivalence classes

[0] = {... ,−2n,−n, 0, n, 2n, 3n, ...}

[1] = {... ,−2n + 1,−n + 1, 1, n + 1, 2n + 1, 3n + 1, ... , }

If n 6= 1 then [0] 6= [1].2 The set of equivalence classes correspond to the possible remainders
when dividing by n:

A/R ←→ {0, 1, ... , n − 1}.

How do we know that this gives all of the equivalence classes? Suppose that X ∈ A/R is an
equivalence class. Thus, there is some x ∈ Z such that [x ] = X . By Lemma 2.2.3 we have
(check!)

... = [x − 2n] = [x − n] = [x ] = [x + n] = ...

2What if n = 1?
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Now, using the division algorithm for Z (Theorem 2.1.2) we know that there exists q, r ∈ Z with
0 ≤ r < n such that x = nq + r . Hence, we have [x ] = [r ].

This example will appear again and again throughout this course so that we will write

Z/nZ def
= A/R = {0, 1, ... , n − 1},

for this particular equivalence relation on Z, where i denotes the equivalence class of i . We say
‘zee mod n zee’.

2. Let A = Q and consider the equivalence relation

R = {(a, b) ∈ Q×Q | a− b ∈ Z}.

Then, some equivalence classes of this equivalence relation on Q are

[0] = Z,

[
1

2

]
=

{
... ,−3

2
,−1

2
,

1

2
,

3

2
,

5

2
, ...

}
.

We have that
A/R ←→ {p ∈ Q | 0 ≤ p < 1}.

3. We can extend the above example to define an equivalence relation on A = R,

R = {(a, b) ∈ R× R | a− b ∈ Z}.

The set of equivalence classes corresponds the half-open interval [0, 1)

A/R ←→ {x ∈ R | 0 ≤ x < 1}.

The set of equivalence classes for this particular equivalence relation on R is usually denoted

R/Z def
= A/R.

4. Let A = Cn, the complex vector space. Define an equivalence relation on A by declaring

u ∼ v ⇔ there exists invertible n × n matrix P with entries in C such that Pu = v .

There are exactly two equivalence classes:

[0] = {0}, X = {v ∈ Cn | v 6= 0}.

Indeed, if v 6= 0 then we can extend v to a basis (v , v2, ... , vn) of Cn. The matrix Q = [v v2 · · · vn]
is invertible (as the columns are linearly independent) and Qe1 = v , where e1 is the first standard
basis vector. Let P = Q−1. Then, we have Pv = PQe1 = e1, so that v ∼ e1. Since v is arbitrary
we have just shown that v ∼ e1, for any v ∈ Cn, v 6= 0.

5. Fix n ∈ Z>0. Let Mn(C) be the set of n×n matrices with complex entries. Consider the following
equivalence relation

R = {(A, B) ∈ Mn(C)×Mn(C) | A = P−1BP for some invertible P ∈ Mn(C)}.

For n = 2, we have the following examples of some equivalence classes

[0] = {0}, [In] = {In},[[
0 1
0 0

]]
= {A ∈ M2(C) | A2 = 0, A 6= 0}.

The description of the equivalence class of

[
0 1
0 0

]
is a consequence of finding the Jordan form of

a linear map.3 In fact, determining the Jordan form of a matrix is precisely the same problem as
determining the equivalence classes of the above equivalence relation on Mn(C).

3This is usually covered in Math 110, the upper division course in linear algebra at Berkeley.
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3 Lecture 3 - Definitions: group, subgroups, order.

Previous lecture - Next lecture

Keywords: Group, subgroup, order of group, order of element.

In today’s lecture we will introduce the basic algebraic objects that we are going to be investigating for
the next few weeks - groups and their subgroups.

3.1 Groups - basic definitions

‘Group theory is the study of symmetries.’[1]

A group is an example of a set with structure - we will see more examples of objects of this type when
study rings. You have already seen an example of a ‘set with structure’ when you studied vector spaces
in Math 54. A group is simultaneously mathematically simpler and (much!) harder to understand than
a vector space. A group encapsulates algebraically the notion of a symmetry of an object, where we
consider a symmetry of the object to be an operation that leaves the object (essentially) ‘unchanged’.

Definition 3.1.1 (Definition of a group). Let G be a set. We say that G is a group with law of
composition ∗ if the following axioms hold:

(G1) the assignment
(g , h) 7→ g ∗ h ∈ G , (closure of ∗)

defines a function G × G → G . We call g ∗ h the product of g and h;

(G2) there exists eG ∈ G such that for every g ∈ G we have

g ∗ eG = g = eG ∗ g . (existence of identity)

We call eG an identity of G .

(G3) for every g ∈ G there exists some h ∈ G such that

h ∗ g = eG = g ∗ h. (existence of inverse)

We call such an h an inverse of g .

(G4) for any g , h, k ∈ G we have

(g ∗ h) ∗ k = g ∗ (h ∗ k). (associativity)

We will often denote a group (G , ∗) to emphasise the law of composition ∗, or simply G when ∗ is
understood.

A group is called

- commutative or abelian if for every g , h ∈ G we have g ∗ h = h ∗ g ;

- finite if G is a finite set. We will also say that G has finite order, or, if |G | = n, that G has
order n;

- infinite if G is an infinite set. We will also say that G has infinite order.

The axioms G1-4 have some immediate consequences:

Lemma 3.1.2. Let (G , ∗) be a group.
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a) Suppose that eG and fG satisfy G2 in Definition 3.1.1. Then, eG = fG , so that the identity
element of G is unique.

b) Let g ∈ G and suppose that h, h′ ∈ G both satisfy G3 in Definition 3.1.1. Then, h = h′, so that
an inverse of g is unique.

Proof:

a) Suppose that eG and fG both satisfy G2. Then, we have

eG
G2
= eG ∗ fG

G2
= fG ,

where the first equality comes from G2 applied to fG , and the second equality comes from G2
applied to eG .

b) let g ∈ G and suppose that h, h′ both satisfy G3. Then,

h
G2
= eG ∗ h

G3
= (h′ ∗ g) ∗ h

G4
= h′ ∗ (g ∗ h)

G3
= h′ ∗ eG

G2
= h′.

Remark 3.1.3. 1. Axiom G2 in Definition 3.1.1 ensures that the set G appearing in a group (G , ∗)
must be nonempty.

2. As a consequence of Lemma 3.1.2 we are allowed to say the identity element of G - which we
will denote eG , or simply e if the group G is understood - and, for any g ∈ G , the inverse of g -
which we will denote g−1. An element g ∈ G with g 6= eG will be called nontrivial, and we will
sometimes refer to eG as the trivial element (of G ).

3. Axiom G1 is simply stating that to any pair of elements g , h ∈ G there is a unique element
g ∗ h ∈ G . Note that it is not a consequence of the Axioms of a group that g ∗ h must necessarily
equal h ∗ g .

4. Since writing the ‘∗’ can become quite cumbersome we will often write simply gh to denote g ∗ h.

5. As a consequence of G4 we can write an iterated product

g1 ∗ (g2 ∗ (· · · ∗ (gk−1 ∗ gk ) · · · ) ∈ G

as an expression
g1 ∗ · · · ∗ gk ∈ G , or g1 · · · gk ∈ G .

G4 is essentially stating that it does not matter in which order we evaluate products in an iterated
product.

6. For any g ∈ G , we will write g i for the i-fold iterated product

g i def
= g ∗ · · · ∗ g ∈ G (i times)

We will define g 0 def
= eG , for any g ∈ G , and denote g−i def

= (g i )−1.

Definition 3.1.4 (Subgroup). Let (G , ∗) be a group. A subset H ⊂ G is called a subgroup of G if the
following axioms are satisfied:

(SG1) eG ∈ H;

(SG2) for any h, h′ ∈ H we have h ∗ h′ ∈ H;

(SG3) if h ∈ H then h−1 ∈ H.

In fact, we can collect SG1-SG3 into the single axiom
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(SG) for every h, k ∈ H, h ∗ k−1 ∈ H.

If H ⊂ G is a subgroup such that H 6= G then we will say that H is a proper subgroup. The subgroup
{eG} ⊂ G is called the trivial subgroup.

It is not too difficult to find examples of subgroups:

Definition 3.1.5. Let (G , ∗) be a group , g ∈ G . We define the subgroup generated by g to be

〈g〉 def
= {... , g−2, g−1, eG , g , g 2, g 3, ...}.

As the name suggests, 〈g〉 is a (in fact, abelian) subgroup of G .

Lemma 3.1.6. Let (G , ∗) be a group, g ∈ G nontrivial (ie, g 6= eG ). Then, exactly one of the following
must hold:

a) g i 6= g j for any i 6= j and 〈g〉 has infinite order;

b) there exists some k > 1 such that |〈g〉| = k and

〈g〉 = {eG , g , ... , g k−1},

In particular, g−i = g k−i , for any 0 < i < k.

Proof:

a) The condition is simply stating that all elements appearing in the definition of 〈g〉 are distinct.
As there are infinitely many of them then the result follows.

b) Suppose that there exists two elements g i and g j such that i < j and g i = g j . Hence,

eG = g−i ∗ g i = g−i ∗ g j = g j−i ,

and j − i > 0. Let k > 1 be the smallest integer such that g k = eG .1

Let m ∈ Z. Then, we can find q, r ∈ Z with 0 ≤ r < k and such that m = qk + r (Theorem
2.1.2). Thus,

g m = g kq+r = g kq ∗ g r = (g k )q ∗ g r = (eG )q ∗ g r = g r .

By the minimality of k we must have that g r 6= eG , for each 0 < r < k. Thus, have shown that

〈g〉 = {eG , g , ... , g k−1},

and each of the group elements appearing are distinct, so that |〈g〉| = k.

Now, observe that g i ∗ g k−i = eG = g k−i ∗ g i so that g k−i = g−i , by Lemma 3.1.2.

Corollary 3.1.7. Let (G , ∗) be a finite group, g ∈ G a nontrivial element. Then, there is some 1 < k ≤
|G | such that g k = eG .

Proof: If there does not exist such k > 1 then 〈g〉 ⊂ G is infinite implying that G is infinite, which
is absurd.

Definition 3.1.8 (Order of an element). Let (G , ∗) be a group, g ∈ G a nontrivial element.

- g is said to have infinite order if 〈g〉 ⊂ G is a subgroup of infinite order. In particular, we have
g i 6= g j for any i 6= j , by Lemma 3.1.6.

1Why does such an integer exist? It must be larger than 1 since g is nontrivial.
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- g is said to have order k if |〈g〉| = k. In particular, g k = eG and k is the smallest positive integer
for which this holds. We define eG to have order 1.

We write o(g) = k (resp. o(g) =∞) if g has order k (resp. infinite order).

Example 3.1.9. 1. All of the examples introduced in Lecture 1, with their associated laws of com-
position, are examples of groups.

2. Let n > 1 be an integer. Then, (Z/nZ, ∗), where

i ∗ j = i + j ,

defines a group with identity eG
def
= 0. If i ∈ G then its inverse is −i . We will always write the

law of composition for this group additively: i + j
def
= i + j . In particular, we write −i

def
= −i .

We should check that the law of composition given is well-defined: this means that if i = x and
j = y , then we must ensure that i + j = x + y . Otherwise, the assignment that we have given
for + does not define a function so that (Z/nZ, +) does not satisfy G1. Now, if i = x then
i − x ∈ nZ = {nr | r ∈ Z}, so there is some r ∈ Z such that i = x + nr . Similarly, there is some
s ∈ Z such that j = y + ns. Then,

i + j = x + nr + y + ns = x + y + n(r + s) = x + y ,

and the definition given is well-defined.

If k is a divisor of n then H = {ak | a ∈ Z} is a subgroup: if ak, bk ∈ H then

ak +
(
−bk

)
= ak +−bk = ak − bk = (a− b)k ∈ H.

The element 1 ∈ Z/nZ has order n.

3. Define the symmetric group on n letters Sn to be

Sn
def
= Perm({1, ... , n}) = {f : {1, ... , n} → {1, ... , n} | f is a bijective function},

with law of compositiong given by ‘composition of functions’. The identity element is eSn = idn,
where idn(x) = x , for every x . For any f ∈ Sn, the inverse f −1 is the inverse function. In general,
for any set S we define

Perm(S) = {f : S → S | f is a bijective function};

it is a group with law of composition given by composition of functions.

The subset
H = {f ∈ Sn | f (n) = n}

is a subgroup. Indeed, if f , g ∈ H then (f ◦ g−1)(1) = f (g−1(1)) = f (1) = 1, so that fg−1 ∈ H.

If n = 5 the element f ∈ S5 such that f (1) = 1, f (2) = 3, f (3) = 4, f (4) = 2, f (5) = 5 has order
3: indeed, that f 3(1) = 1, f 3(5) = 5, is straightforward and, for example,

f 3(2) = f (f (f (2))) = f (f (3)) = f (4) = 2,

and similarly it can be shown that f 3(3) = 3, f 3(4) = 4.
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4. Let n > 2 be an integer. Then, the dihedral group of order 2n, denoted D2n, is the group of
symmetries of the regular n-gon. We can write the elements of this group as

D2n = {e, r , ... , r n−1, s, sr , ... , sr n−1},

where r is the ‘rotate by 2π/n counterclockwise’ transformation of the plane, and s is a reflection
of the plane preserving the n-gon. We have

r i ∗ r j = r i+j , sr = r−1s, r n = e, s2 = e.

We say that r , s ∈ D2n are generators of D2n subject to the above relations.

5. In general, we might present a group G via a generators and relations presentation as follows:

G = 〈x1, ... , xn | R〉,

where x1, ... , xn are generators of G subject to the relations R. This means that each element
g ∈ G may be written as

g = x±i1 · · · x
±
ip

, i1, ... , ip ∈ {1, ... , n},

and such that we can use the relations R to transform one expression for g into another. An
expression xi1 · · · xip as above is called a word.

For example, we have

D2n = 〈r , s | s2 = e, r n = e, s ∗ r = r−1 ∗ s〉 :

the word
r ∗ r ∗ r ∗ s ∗ s ∗ s ∗ r−1 ∗ s ∗ r ,

can be reduced to r 5 using the given relations, since s ∗ s = e and s ∗ r−1 ∗ s = r .

6. Let GLn(R) be the set of invertible n × n matrices with entries in R, referred to as the n × n
general linear group. This is a group with law of composition being matrix multiplication; the iden-
tity is the n×n identity matrix In. Similarly, we obtain groups GLn(C), GLn(Z), GLn(Q), GLn(Z/pZ)
etc. The element

g =

[
0 −1
1 0

]
∈ GLn(R),

has order 4.

Let Bn(R) = {B = [bij ] ∈ GLn(R) | bij = 0 when i > j}, the set of all upper-triangular invertible
matrices. This is a subgroup of GLn(R). Similarly, we define

Dn(R)
def
= {invertible diagonal matrices} ⊂ GLn(R),

Un(R)
def
= {A = [aij ] ∈ Bn(R) | aii = 1, ∀i} ⊂ Bn(R);

they are all subgroups of GLn(R).

7. The quaternions (Q8, ∗), where

Q8
def
= {±1,±i .± j ,±k},

and
i ∗ j = k , j ∗ k = i , k ∗ i = j , j ∗ i = −k, k ∗ j = −i , i ∗ k = −j ,

i2 = j2 = k2 = −1,

with ±1 scaling in the obvious way, defines a (nonabelian) group of order 8. The subset H =
{±1,±j} is a subgroup.

12



8. (Z, +), (Q, +), (R, +), (C, +) are all (abelian) groups of infinite order. No element in any of these
groups has finite order.

9. The set of nonzero complex numbers with law of composition coming from multiplication of
numbers, (C×, ·), is an abelian group. The set µn = {z ∈ C | zn = 1} of n’th roots of unity is a
(finite) subgroup.

13



4 Lecture 4 - Homomorphisms, isomorphisms. Cosets.

Previous lecture - Next lecture

Keywords: group homomorphism, kernel, image. Isomorphism, automorphism. Cosets.

In the previous lecture we introduced the main objects of study in group theory. In this lecture we will
introduce the notion of a group homomorphism, which will allow us to observe how different groups can
interact with each other. Moreover, we will introduce the fundamental notion of two groups G and H
being isomorphic - this means that G and H ‘are the same group but wearing different clothes’. Finally,
we will see that any subgroup H ⊂ G allows us to define an equivalence relation on G - the equivalence
classes are the (left/right) cosets of H in G . The existence of this equivalence relation will have some
powerful consequences (to be investigated in the next lecture).

4.1 Group homomorphisms, isomorphisms

Definition 4.1.1 (Group homomorphism). Let (G , ∗) and (H, •) be groups, f : G → H a function. We
say that f is a group homomorphism if

(HOM) for any g , h ∈ G , we have f (g ∗ h) = f (g) • f (h).

Give a group homomorphism f : G → H we define

- the kernel of f to be
ker f = {g ∈ G | f (g) = eH ∈ H} ⊂ G ;

- the image of f to be

im f = {h ∈ H | h = f (g) for some h ∈ H} ⊂ H.

Lemma 4.1.2. Let (G , ∗), (H, •) be two groups, f : G → H a group homomorphism.

a) f (eG ) = eH ∈ H;

b) for every g ∈ G , f (g−1) = f (g)−1 ∈ H;

c) ker f ⊂ G is a subgroup;

d) im f ⊂ H is a subgroup;

e) f is injective if and only if ker f = {eG}.

Proof:

a) We have
f (eG ) = f (eG ∗ eG ) = f (eG ) • f (eG )

=⇒ eH = f (eG )−1 • f (eG ) = f (eG )−1 • (f (eG ) • f (eG )) =
(
f (eG )−1 • f (eG )

)
• f (eG )

=⇒ eH = f (eG ).

b), c), d) Homework/worksheet problems.

Example 4.1.3. 1. Let G = Z/4Z and H = D8 = {eH , r , r 2, r 3, s, sr , sr 2, sr 3}. Define

f : G → H ; i 7→ r i .

Then, f is well-defined: if i = j then the definition does not depend on the choice of representative.
Indeed, in this case we have i = j + 4k, for some k ∈ Z, so that

f (i) = r i = r j+4k = r j r 4k = r j (r 4)k = r j = f (j),

14



since r 4 = eH . Moreover,

f (i + j) = f (i + j) = r i+j = r i r j = f (i)f (j).

Also, ker f = {eG} so that f is injective: if i ∈ ker f , with i ∈ {0, 1, 2, 3}, then

r i = f (i) = eH =⇒ i = 0.

Hence, i = 0 and ker f = {0}. f can’t be surjective as |D8| = 8 > 4 = |Z/4Z|.

2. Let G = Z/8Z, H = Z/2Z. Define

f : G → H ; i 7→ i ,

where the input is considered as a residue class modulo 8, and the output is a residue class modulo
2. This is well-defined and a homomorphism: if i , j ∈ Z/8Z then

f (i + j) = f (i + j) = i + j = i + j = f (i) + f (j).

If i ∈ ker f then we have f (i) = 0, so that i ∈ 0 ∈ Z/2Z. Hence, i = 2k , for some k. Therefore,

ker f = {0, 2, 4, 6}.

f is surjective since f (0) = 0 and f (3) = 1 (also f (1) = f (5) = f (7) = 1).

3. The assignment
f : Z/2Z→ Z/4Z ; i 7→ i ,

is not well-defined!: note that 1 = 3 but

f (1) = 1 ∈ Z/4Z, f (3) = 3 ∈ Z/4Z,

and 1 6= 3 in Z/4Z. Hence, the given assignment defining f is not a function! However, the
assignment

g : Z/2Z→ Z/4Z ; i 7→ 2i ,

is well-defined, and an injective homomorphism of groups.

Definition 4.1.4. Let f : G → H be a group homomorphism of the groups (G∗), (H, •). We say that
f is an isomorphism if f is a bijective function.1 If (H, •) = (G , ∗) then we call an isomorphism an
automorphism of G .

If there exists an isomorphism f : (G , ∗)→ (H, •) then we say that G and H are isomorphic as groups,
or simply isomorphic. We will write G ∼= H, whenever G is isomorphic to H.

Example 4.1.5. 1. Let

G = D6 = {symmetries of the triangle with vertices (1, 0), (−
√

3/2, 1/2), (−
√

3/2,−1/2)}
= {eG , r , r 2, s, sr , sr 2},

where r is ‘rotate by 2π/3 counter-clockwise’, s is ‘reflect in x-axis’, and define

H = {A = [aij ] ∈ Mat3(Z) | aij ∈ {0, 1} and there is exactly one 1 in each row and each column}

=


1

1
1

 ,

 1
1

1

 ,

1
1

1

 ,

 1
1

1

 ,

 1
1

1

 ,

 1
1

1


= {eH , x1, x2, x3, x4, x5} (xi corresponding to the (i + 1)’th matrix above)

1According to Wikipedia, isomorphism comes from the Greek words isos, meaning ‘equal’, and morphe, meaning ‘shape’.
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Define
f : G → H ;

eG 7→ eH

s 7→ x1

sr 7→ x2

r 7→ x5

r 2 7→ x3

sr 2 7→ x4

Then, f is a bijection - it is injective and |G | = |H| - and it is a homomorphism, as can be checked
directly (although somewhat tedious). Hence, G is isomorphic to H.

2. Consider the function

f : (Z, +)→ U2(Z) =

{[
1 x
0 1

]
| x ∈ Z

}
⊂ GL2(Z) ; x 7→

[
1 x
0 1

]
,

where U2(Z) is a subgroup of GL2(Z). This is an isomorphism of groups: indeed, if x , y ∈ Z then

f (x + y) =

[
1 x + y
0 1

]
=

[
1 x
0 1

] [
1 y
0 1

]
= f (x)f (y),

so that f is a group homomorphism. Moreover, let x ∈ ker f . Then,[
1 0
0 1

]
= f (x) =

[
1 x
0 1

]
=⇒ x = 0,

so that ker f = {0}, and f is injective (Lemma 4.1.2). Showing that f is surjective is straightfor-
ward.

3. If |G | 6= |H| then G and H are not isomorphic.

4. Let G = Z/4Z and H =

{
A =

[
a 0
0 b

]
∈ Mat2(Z) | a, b ∈ {1,−1}

}
⊂ GL2(Z). Then, G is

not isomorphic to H: if G ∼= H then there would exist an isomorphism of groups f : G → H.
Moreover, A = f (1) ∈ H would satisfy A2 = I2 = eH , by definition of H (every element B ∈ H
satisfies B2 = eH ). Thus,

f (2) = f (1 + 1) = f (1)f (1) = A2 = I2 = eH ,

so that 2 ∈ ker f . Therefore, it is not possible for f to be injective, which contradicts that f is an
isomorphism.

This example highlights the following fundamental fact

there exist groups having the same order that are not isomorphic

5. The symmetric group Sn is isomorphic to the group Wn of wiring diagrams on n vertices.

Remark 4.1.6. If G and H are isomorphic then they are, essentially, the same group. As we have
assumed f to be a group homomorphism then it preserves the law of composition in both G and H (this
is what HOM ensures).

It is a fundamental problem in group theory, if not the fundamental problem, to determine (essentially)
all possible finite groups. This means that we would like to give a list of all possible isomorphism classes
of groups: if G is any finite group, then there should be exactly one group K in our list such that G is
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isomorphic to K . The analagous problem in (finite dimensional) theory of vector spaces is pretty easy -
you determine the answer in Math 54: if V is a vector space such that dim V = n then V ∼= F n, where
F is the scalar field. Thus, every finite dimensional vector space (over F ) is isomorphic to one of the
following

{0}, F , F 2, F 3, ... , F n, ... (cf. Example 4 above)

In group theory the problem is significantly harder - a list of the ‘building blocks’ of all finite groups
(the so-called simple groups) was given in the 70-80s. The proof that this list is correct spans some
15000 pages spread over approxiamtely 500 journal articles and the most important information has
been recorded in a book, referred to as ‘The Atlas’.

Later in this course we shall see how we can (in theory and in practice) determine a list of the isomorphism
classes of all finite abelian groups. However, discussing the non-abelian case in this course is far beyond
the author’s capabilities.

4.2 Cosets

Let G be a group and H ⊂ G be a subgroup. To this data we can define an equivalence relation ∼H , or
simply ∼, on G , and hence a partition of G corresponding to ∼H which we will call the left H-partition,
as follows:

g ∼H g ′ ⇔ g−1g ′ ∈ H.

Let’s check ER2 and ER3:

(ER2): suppose that g ∼H g ′ and g−1g ′ = h ∈ H. Then, (g ′)−1g = h−1 ∈ H, since H is a subgroup,
so that g ′ ∼H g .
(ER3): suppose that g ∼H g ′ and g ′ ∼H g ′′. Thus, we have g−1g ′ ∈ H and (g ′)−1g ′′ ∈ H. Then,
g−1g ′′ =

(
g−1g ′(g ′)−1g ′′

)
=
(
g−1g ′

) (
(g ′)−1g ′′

)
∈ H, since H is a subgroup. Hence, g ∼H g ′′.

Definition 4.2.1. The equivalence classes of the equivalence relation corresponding to the left H-
partition are called left cosets of H (in G). We denote the set of equivalence classes G/H and call
it the set of left cosets of H in G . The number of left cosets of H in G is the index of H in G ,
denoteed [G : H], it may be infinite.

Lemma 4.2.2. Let [g ] ∈ G/H. Then,

[g ] = {gh | h ∈ H} def
= gH.

Proof: Let h ∈ H. Then, since g−1(gh) = h ∈ H we have that g ∼H gh so that gh ∈ [g ].
Conversely, suppose that k ∈ [g ]. Then, there is h ∈ H such that g−1k = h, so that k = gh ∈ gH.

Corollary 4.2.3. Let [g ] ∈ G/H be a left coset of H in G . Then, there is a bijection

[g ]
1:1←→ H.

In particular, if H is finite then all left cosets of H in G have the same (finite) size, equal to |H|.
Proof: By Lemma 4.2.2 we have that [g ] = gH. Consider the function

F : H → gH ; h 7→ gh.

Then, F is injective - if F (h) = F (h′) then gh = gh′ so that h = h′; and surjective - if gh ∈ gH then
F (h) = gh. Hence, F is a bijection.

Example 4.2.4. Let H = {±1,±i} ⊂ Q, the group of quaternions. Then, there are exactly two left
cosets of H in G

eH = {±1,±i}, jH = {±j ,±k}.
We always have H is a coset (it is the equivalence class of any h ∈ H), and for g /∈ H, say g = j , you
can check that

jH = {jh | h ∈ H} = {±j ,±ji} = {±j ,±k}.
Note that jH is not a subgroup of G !
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In general

gH is a subgroup if and only if gH = eH
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5 Lecture 5 - Lagrange’s Theorem and applications. Cyclic groups.

Previous lecture - Next lecture

Keywords: Lagrange’s Theorem. Groups of prime power are cyclic. Cyclic group, group
generator.

In today’s lecture we will prove one of the most fundamental results in group theory - Lagrange’s
Theorem. This result states that there are strong conditions on the existence of subgroups of a finite
group. Moreover, we will classify all groups G such that |G | = p is prime. We will also introduce a class
of groups - the cyclic groups - and completely describe their structure; not bad for a day’s work!

Remark. For the remainder of the course we will suppress the ‘∗’ when considering the law of composition
in a group. As such, we will simply say ‘Let G be a group’, where the law of composition is implicitly
understood to have been defined as part of the definition of G .1

5.1 Lagrange’s Theorem

Theorem 5.1.1 (Lagrange’s Theorem). Let G be a finite group, H ⊂ G a subgroup. Then, the number
of left cosets of H in G is |G |/|H|. That is,

|G/H| = |G |/|H|.

Hence,

the order of H divides the order of G .

Proof: Since G is finite then H ⊂ G is finite and, by Corollary 4.2.3, every left coset of H in
G has the same size, equal to k = |H|. Since a left coset of H in G is an equivalence class of the
equivalence relation ∼H we know that there is a partition of G into equivalence classes. If there are r
such equivalence classes (ie r left cosets of H), each of which has the same size k , then

|G | =
r times

k + · · ·+ k= rk =⇒ |G/H| = r = |G |/|H|.

Corollary 5.1.2. Let G be a finite group, g ∈ G . Then, o(g) divides |G |.
Proof: Recall that o(g) = |〈g〉|, and 〈g〉 ⊂ G is a subgroup of G . The result follows from Lagrange’s

Theorem.

Hence,

the order of an element g , o(g), divides the order of G .

Example 5.1.3. 1. Suppose that H ⊂ D8 is a subgroup. Then, |H|must be even. Indeed, Lagrange’s
Theorem implies that |H| divides |D8| = 8, we must have |H| = 1, 2, 4, 8. Note that Lagrange’s
Theorem does not imply that there must exist a subgroup of each of these orders. We will come
back to this problem when we discuss Sylow’s Theorems.

2. Let f : Z/5Z → S4 be a group homomorphism. Then, f must be the trivial homomorphism.
Indeed, since ker f ⊂ Z/5Z is a subgroup then | ker f | = 1, 5; if | ker f | = 1 then f is injective.
Hence, there must exist an element of S5 of order 5, but 5 does not divide |S4| = 24.

1Why do we make an issue of this? It could be possible to define two different laws of composition on a set G so that
we obtain two different groups (G , ∗) and (G , •) with the same underlying set.
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Remark 5.1.4. Why have we repeatedly used the adjective ‘left’? There is an analagous notion of a
right coset of H in G : define an equivalence relation on G by

g ∼H g ′ ⇔ g ′g−1 ∈ H.

It can be shown that this defines an equivalence relation on G and the equivalence classes are of the
form

[g ] = {hg | h ∈ H} def
= Hg .

The resulting partition of G is called the right H-partition of G , and we denote the set of equivalence
classes H \ G . There are analagous results to those obtained above for right cosets of H in G - in
particular, there is an analogue of Lagrange’s Theorem - the number of right cosets of H in G
equals |G |/|H| - so that, for a finite group G and a subgroup H ⊂ G

the number of right cosets equals the number of left cosets.

5.2 Groups of prime order

Let G be a group of prime order, so that |G | = p is a prime. Let g ∈ G be nontrivial. Thus, the
subgroup H = 〈g〉 is a nontrivial subgroup of order o(g) so that H = G , by Corollary 5.1.2. Hence, we
have

G = {eG , g , g 2, ... , g p−1}.

Moreover, g p = eG , for any nontrivial g ∈ G .

If G ′ is another group of order p then, for any nontrivial h ∈ G ′, we find that

G ′ = {eG ′ , h, h2, ... , hp−1}.

It can then be shown that G and G ′ are isomorphic as groups.2 In particular, any group G of prime
order p is isomorphic to Z/pZ. Hence, any group of prime order p is a cyclic group (to be defined in
the next section) - a group generated by a single element.

5.3 Cyclic groups

Lagrange’s Theorem is a simple consequence of the existence of a particular equivalence relation that
can be defined on any finite group G , given a subgroup H, and has allowed us to classify3 all finite
groups of prime order. Combining Lagrange’s Theorem with the basic arithmetic properties of Z from
Lecture 2 allows us to to understand the structure of a larger class of groups - the cyclic groups.

Definition 5.3.1 (Cyclic group). A group G is cyclic if there exists x ∈ G such that

G = 〈x〉 = {... , x−1, eG , x , x2, ...}.

We call such an x a generator of G , and say that G is generated by x .

Remark 5.3.2. Let G be a cyclic group with generator x ∈ G . Then, x−1 is also a generator of G . In
general, there are many generators of a cyclic group.

Example 5.3.3. a) eG is a generator of a cyclic group G if and only if G is the trivial group.

b) Let G = Z. Then, G is cyclic and generated by 1. The set of all generators of G is {±1}.
2What is the isomorphism between G and G ′?
3This means that we have understood essentially all finite groups of prime order - they are isomorphic to Z/pZ, so that

they they have the same structure as Z/pZ.
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c) Let n ∈ Z>1 and G = Z/nZ. Then, G is cyclic and generated by 1. The set of generators of G is

{x ∈ Z/nZ | x ∈ {1, ... , n − 1}, gcd(x , n) = 1}.

d) Let G = µ6 = {z ∈ C | z6 = 1}, considered as a subgroup of (C×, ·), the law of composition
being multiplication of complex numbers - µ6 is the group of sixth roots of unity. Then, µ6 is
cyclic with generator w = 1

2 (1 +
√
−3).4

e) The dihedral group D8 is not a cyclic group as there does not exit any element of order 8. In
general, D2n is not cyclic.

f) Sn is cyclic if and only if n = 2.

g) (Q, +) is not cyclic.

In fact, the examples above describe all possible cyclic groups:

Theorem 5.3.4 (Structure Theorem of cyclic groups). Let G be a cyclic group generated by x ∈ G .
Then,

a) if G is infinite then G is isomorphic to Z;

b) if G has order n then G is isomorphic to Z/nZ.

Let H ⊂ G be a nontrivial subgroup. Then,

a) (G infinite) H is isomorphic to Z and generated by x i , where i = min{r ∈ Z>0 | x r ∈ H}.

b) (G of finite order n) Suppose |H| = k so that n = km, by Lagrange’s Theorem. Then, H is cyclic
and generated by xm. Hence, H is isomorphic to Z/kZ.

Proof:

a) Suppose that G is infinite and G = 〈x〉. Then, by the definition of a cyclic group we have

G = {... , x−1, eG , x , x2, ... , }.

Define
f : Z→ ; r 7→ x r .

Then, f is a group homomorphism. Moreover, f is injective - if f (r) = eG then x r = eG = x0

so that r = 0, by Lemma 3.1.6 - and f is surjective, as x is a generator of G . Hence, f is an
isomorphism and G is isomorphic to Z.

If H ⊂ G is a nontrivial subgroup and i = min{r ∈ Z>0 | x r ∈ H} then we claim that x i generates
H: we need only show that any nontrivial h ∈ H is of the form h = x ia, for some a ∈ Z . So, let
h ∈ H be nontrivial. Then, we must have h = x r , for some r ∈ Z. By the division algorithm we
can find q, b ∈ Z with 0 ≤ b < i such that r = qi + b. Hence, we see that

xb = x r−qi = x r (x i )−q ∈ H.

Since 0 ≤ b < i and i is the minimal positive integer such that x i ∈ H, we must have that b = 0
so that r = qi . Hence, h = (x i )q and

H = 〈x i 〉 = {... , x−i , eG , x i , x2i , ... , }.
4This is a particular example of a more general result: any finite subgroup of (C×, ·) is cyclic.
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b) If G is finite of order n and cyclic, then

G = 〈x〉 = {eG , x , ... , xn−1},

and xn = eG by Lemma 3.1.6. Define

f : Z/nZ→ G ; r 7→ x r .

This function is well-defined: if r = s, so that r − s ∈ nZ, then

f (r) = x r = x s+nk = x s(xn)k = x s(eG )k = x s = f (s).

Moreover, f is an isomorphism of groups. In a similar way as proved in a), it can be shown that
any nontrivial subgroup H is of the stated form.

Example 5.3.5. Let n = 10 = 2.5. Then, the subgroups of Z/10Z are

{0}, {0, 5} ∼= Z/2Z, {0, 2, 4, 6, 8} ∼= Z/5Z, Z/10Z.
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6 Lecture 6 - Group actions. Orbits, stabilisers. Orbit partition.
Normalisers, centralisers.

Previous lecture - Next lecture

Keywords: Group action. Permutation action, conjugation action. Orbit, stabiliser. Orbit
decomposition. Centraliser, normaliser, normal subgroup.

We now come to the most important concept in group theory, that of a group action. It is through group
actions that we can realise a group as a mathematical object that captures the notion of symmetry - if
a group G acts on a set S then the (abstract) group G captures some of the symmetry of S . Moreover,
every important topic that we will discuss in this course can be reformulated in the language of group
actions.

6.1 Group actions

Definition 6.1.1 ((Left) Group action). Let G be a group, S an arbitrary (nonempty) set. A (left)
group action of G on S is a function

a : G × S → S ; (g , x) 7→ a(g , x)
def
= g · x ,

satisfying the following properties

(ACT1) e · x = x , for every x ∈ S ;

(ACT2) g · (h · x) = (gh) · x , for every g , h ∈ G , x ∈ X .

When there exists a (left) group action of G on S (via the function a), we will say that G acts on S
(via a).

The relationship between group actions and ‘symmetry’ are a consequence of the following result1:

Lemma 6.1.2. Let a : G × S → S be a group action of G on S. Then, we can define a group
homomorphism

ã : G → Perm(S) ; g 7→ ã(g)
def
=

[
ag : S → S
x 7→ g · x

]
.

where Perm(S) is the group of bijections on S. Conversely, given a group homomorphism G → Perm(S)
we can define a group action of G on S. Thus,

a group action of G on S is the same as a group homomorphism ã : G → Perm(S)

Proof: Suppose that a defines a group action of G on S . Define the function

ã : G → Perm(S) ; g 7→ ã(g)
def
=

[
ag : S → S
x 7→ g · x

]
as above. This definition says that to g ∈ G we are associating the bijection (of S) ag ∈ Perm(S),
where ag (x) = g · x . This function is well-defined: namely, ag is a bijective function on S . Indeed,
ACT1 implies that ae = idS is the identity function on S and, for any x ∈ S

g · (g−1 · x)
ACT 2

= e · x ACT 2
= g−1 · (g · x).

Hence, for any x ∈ S

(ag ◦ ag−1 )(x) = ag (ag−1 (x)) = g · (g−1 · x) = e · x = ae(x)

1Recal that, for any set S we define Perm(S) to be the set of all bijective functions f : S → S .
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=⇒ ag ◦ ag−1 = idS ,

and similarly ag−1 ◦ ag = idS . Thus, ag is bijective with inverse (ag )−1 = ag−1 .

We need to check that ã is a group homomorphism: let g , h ∈ G . Then, we want to show an equality
of functions ã(gh) = ã(g) ◦ ã(h) or, using slightly different notation, agh = ag ◦ ah. Now, for x ∈ S we
have

agh(x) = (gh) · x ACT 2
= g · (h · x) = ag (h · x) = ag (ah(x)) = (ag ◦ ah)(x).

Hence, agh = ag ◦ ah and ã is a group homomorphism.

The converse result will be a homework problem.

Example 6.1.3. 1. Let G = Z/2Z = {1,−1}, S = R. Define

a : G × S → S ; (g , x) 7→ g · x def
=

{
x , if g = 1,

−x , if g = −1.

This defines an action of G on S .

2. Let G = Z/2Z = {1,−1}, S = R. Define

a : G × S → S ; (g , x) 7→ g · x def
=


x , if g = 1, x 6= 0,

x−1, if g = −1, x 6= 0,

0, if x = 0.

This defines an action of G on S .

Thus, it is possible for a group to act on a set via different actions.

3. Let G = Z, S = R. Define

a : G × S → S ; (n, x) 7→ n · x def
= x + n;

since
m · (n · x) = (n · x) + m = (x + n) + m = x + (n + m) = (n + m) · x ,

this is a group action.

4. Let G = GL2(Z), S = Mat2(Z). Define

a : G × S → S ; (g , x) 7→ gxg−1.

This defines an action of G on S .

5. Let G = SO(2)
def
=

{[
cos t sin t
− sin t cos t

]
| t ∈ R

}
⊂ GL2(R), S = R2. Define

a : G × S → S ; (g , v) 7→ g · v def
= gv .

This defines an action of G on S .

6. Let G = Z, S = Z. Define

a : G × S → S ; (n, x) 7→ n · x def
= nx .

This does not define a group action of G on S as ACT1 does not hold: 0 · 1 = 0 6= 1. ACT2 is
also not satisfied.
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7. Let G = GL2(Z), S = Mat2(Z). Define

a : G × S → S ; (g , x) 7→ g · x def
= xg .

ACT1 is satisfied - I2 · x = xI2 = x - but ACT2 is not satisfied: let g =

[
1 1
0 1

]
, h =

[
1 0
1 1

]
,

x = I2. Then,
g · (h · x) = (h · x)g = (I2h)g = hg ,

(gh) · x = I2(gh) = gh,

but gh =

[
2 1
1 1

]
6=
[

1 2
1 1

]
= hg .

The following examples are fundamental and will reappear frequently:

Example 6.1.4 (Fundamental group actions). Let G be a group. Then, G acts on the following sets S
in the prescribed manner:

1. Let S = G and define
a : G × S → S ; (g , h) 7→ g · h def

= gh.

This action is called permutation action of G on itself.

2. Let S = G and define
a : G × S → S ; (g , h) 7→ g · h def

= ghg−1.

This action is called the conjugation action of G on itself.

3. Let S = Sub(G ) = {H ⊂ G | H subgroup of G}, the set of all subgroups of G . Define

a : G × S → S ; (g , H) 7→ g · H def
= gHg−1,

where
gHg−1 def

= {ghg−1 | h ∈ H}.

4. Let S = P(G ) = {A ⊂ G}, the set of all subsets of G . Define

a : G × S → S ; (g , A) 7→ g · A def
= gA,

where
gA

def
= {ga | a ∈ A}.

Remark 6.1.5. If G is finite then, for a subgroup H ⊂ G and subset A ⊂ G ,

|gHg−1| = |H|, and |gA| = |A|,

for any g ∈ G .
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6.2 Orbits, stabilisers

A group action of G on S allows (a ‘shadow’ of) G to be realised as symmetries of the set S . Associated
to a group action are the fundamental concepts of orbit and stabiliser.

Definition 6.2.1. Suppose that G acts on S and let x ∈ S .

a) the orbit through x is the subset (of S)

G · x = {g · x | g ∈ G} ⊂ S .

We will also denote the orbit through x by Ox .

b) the stabiliser of x (in G) is the subset

StabG (x) = {g ∈ G | g · x = x}.

c) If Ox = S then the action is said to be transitive.

d) If StabG (x) = G then x is a fixed point of the action.

Lemma 6.2.2. Let G act on S, x ∈ S. The stabiliser of x in G, StabG (x), is a subgroup of G .

Proof: Let g , h ∈ StabG (x) -it suffices to show that SUB holds. Now,

x = e · x = h−1 · (h · x) = h−1 · x ,

since h · x = x , and

(gh−1) · x ACT 2
= g · (h−1 · x) = g · x = x .

Hence, gh−1 ∈ StabG (x).

Remark 6.2.3. Lemma 6.2.2 can be used to prove that a given subset H ⊂ G is a subgroup without
having to check the subgroup axiom SUB directly: if we can realise H = StabG (x) for some group action
of G , then H must be a subgroup.

Example 6.2.4. Recall Example 6.1.3:

1.
O0 = {0}, StabG (0) = Z/2Z,

O2 = {2,−2}, StabG (2) = {1} ⊂ Z/2Z.

2.
O1 = {1}, StabG (1) = Z/2Z,

O0 = {0}, StabG (0) = Z/2Z,

O2 =

{
2,

1

2

}
, StabG (2) = {1}.

3.
O0 = Z, StabG (0) = {0},

O1 = Z, StabG (1) = {0},

O 1
2

=

{
... ,−1

2
,

1

2
,

3

2
, ... ,

}
, StabG

(
1

2

)
= {0}.
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4.
O0 = {0}, StabG (0) = GL2(Z),

Let A =

[
0 1
0 0

]
, then OA = {B ∈ Mat2(Z) | B2 = 0, B 6= 0},

StabG (A) =

{[
a b
0 a

]
∈ GL2(Z) | a, b ∈ Z

}
.

5.
O0 = {0}, StabG (0) = SO(2),

Oe1 = {v ∈ R2 | ||v || = 1}, StabG (e1) = {I2}.

Theorem 6.2.5 (Orbit partition). Let G act on S (via a). Then, we can define an equivalence relation
on S such that the equivalence classes are precisely the orbits of the action as follows: if x , y ∈ S then
define

x ∼a y ⇔ y = g · x , for some g ∈ G .

Hence, S is partitioned into the orbits of the action of G on S.

Proof: ER1: since x = e · x then x ∼a x ,

ER2: If x ∼a y , so that y = g · x , for some g ∈ G . Then,

x = e · x = (g−1g) · x = g−1 · (g · x) = g−1 · y =⇒ y ∼a x .

ER3: Suppose that x ∼a y and y ∼a z , so that y = g · x , z = h · y , for some g , h ∈ G . Then,

z = h · y = h · (g · x) = (hg) · x =⇒ x ∼a z .

For any x ∈ S

Ox = {g · x | g ∈ G} = {y ∈ S | y = g · x , for some g ∈ G} = {y ∈ S | x ∼ y} = [x ].

Corollary 6.2.6. Let G act on S. Then, distinct orbits in S are disjoint; equivalently, if Ox ∩ Oy 6= ∅
then Ox = Oy .

Corollary 6.2.7 (Orbit decomposition formula). Let G act on the finite set S. If O1, ... ,Ok are the
distinct orbits in S then

|S | = |O1|+ ... + |Ok |.

6.3 Centralisers, normalisers

Let’s take a closer look at some of the fundamental group actions introduced above.

Definition 6.3.1 (Centraliser of g ∈ G ). Let g ∈ G , where G is a group. Consider Example 2 in
Example 6.1.4 (the conjugation action of G on itself). The centraliser of g (in G) is

CentG (g)
def
= StabG (g),

for this action. Thus,

CentG (g) = {h ∈ G | h · g = g} = {h ∈ G | hgh−1 = g}.

We define the centre of G , denoted Z (G ), to be

Z (G )
def
=
⋂

g∈G

CentG (g).

Hence, Z (G ) is the set of all elements in G that commute with every element in G .
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Definition 6.3.2 (Normaliser of H ⊂ G ). Let H ∈ Sub(G ) be a subgroup of a group G . Consider
Example 3 in Example 6.1.4. The normaliser of H (in G) is

NormG (H)
def
= StabG (H),

for this action. Thus,

NormG (H) = {g ∈ G | g · H = H} = {g ∈ G | gHg−1 = H}.

Since stabilisers of group actions are subgroups (Lemma 6.2.2) then the centraliser of g ∈ G is a
subgroup of G and the normaliser of H ⊂ G is a subgroup of G .

Definition 6.3.3 (Normal subgroup). Let H ⊂ G be a subgroup. If G = NormG (H), so that H is a
fixed point for the action in Example 3 of Example 6.1.4, then we say that H is a normal subgroup in
G .

Example 6.3.4. 1. Assume that G is abelian. Then, for any g ∈ G , CentG (g) = G . Moreover, the
converse is true: suppose that, for any g ∈ G , G = CentG (g), the G is abelian.

2. Let G = D8 = {e, r , r 2, r 3, s, sr , sr 2, sr 3}. Then, CentG (r 2) = G , while G is not abelian. Also,
CentG (s) = {e, s, r 2, sr 2} as can be seen by inspection.

3. Let G = S3 = {e, s, t, st, ts, sts}, where

s(1) = 2, s(2) = 1, s(3) = 3, t(1) = 1, t(2) = 3, t(3) = 2.

Then, CentG (s) = {e, s}: indeed, since CentG (s) ⊂ G is a subgroup, we must have its order
divides the order of G , equal to 6. Hence, |CentG (s)| = 2, 3, 6. We have seen that the only
subgroup of order 3 in G is H = {e, st, ts} so that, since s /∈ H, then H 6= CentG (s). So, we must
have |CentG (s)| = 2, 6 and, as st 6= ts - for example, st(1) = s(1) = 2 while ts(1) = t(2) = 3 -
then t /∈ CentG (s) and |CentG (s)| ≤ 5. Hence, |CentG (s)| = 2 and the claim follows.

4. Assume that G is abelian. Then, every subgroup of G is normal in G .

5. Let H ∈ Sub(G ), h ∈ H. Then, h ∈ NormG (H). Hence, H ⊂ NormG (H), for any subgroup H in
G .

6. Let G = D8 and H = {e, s} ⊂ G . Then, NormG (H) = {e, s, r 2, sr 2}: indeed, we have

r 2Hr−2 = r 2Hr 2 = {r 2hr 2 | h ∈ H} = {e, r 2sr 2} = {e, s} = H

sr 2H(sr 2)−1 = sr 2Hr 2s = s(r 2Hr 2)s = sHs = H,

since s ∈ H. This shows that {e, s, r 2, sr 2} ⊂ NormG (H) and, since NormG (H) is a subgroup, we
have that NormG (H) = {e, s, r 2, sr 2} or G . As

rsr−1 = rsr 3 = sr 3r 3 = sr 2 /∈ H,

then r /∈ NormG (H) and NormG (H) = {e, s, r 2, sr 2}.
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7 Lecture 7 - Conjugacy. Symmetric groups. Cayley’s Theorem.

Previous lecture - Next lecture

Keywords: Conjugacy class, conjugate elements. Class equation. Partitions of integers. Cycle
decomposition. Cayley’s Theorem.

We saw in Lecture 5 that Lagrange’s Theorem was a simple consequence of the existence of an equiva-
lence relation on a group G (dependent on a given subgroup H). In this lecture we introduce another
equivalence relation that exists on any group (not relying on a subgroup) and make use of the corre-
sponding partition of G into the equivalence classes that arise. We investigate this partition in the case
of G = Sn, the symmetric group on n letters. Finally, we prove Cayley’s Theorem - this states that any
(abstract) group can be realised as a group of symmetries of some set.

7.1 Conjugacy classes

Definition 7.1.1. Let G be a group, g , g ′ ∈ G . Say that g is conjugate to g ′ if there exists h ∈ G
such that g ′ = hgh−1.

Lemma 7.1.2. Let G be a group. The subset

Rconj = {(g , g ′) ∈ G × G | g conjugate to g ′} ⊂ G × G ,

defines an equivalence relation on G.

Proof: Homework/worksheet.

Definition 7.1.3 (Conjugacy class). Let g ∈ G . The equivalence class of g with respect to Rconj is
called the conjugacy class of g in G . We will denote the equivalence class of g by C (g); we see that

C (g) = {g ′ ∈ G | g ′ = hgh−1 for some h ∈ H}.

We will sometimes simply refer to a conjugacy class in G , the reference to g ∈ G being implicit.

Example 7.1.4. a) For any group G , C (eG ) = {eG}. Hence, if G is a nontrivial group then there
always exists at least two conjugacy classes.

b) Let G be an abelian group. Then, for any g ∈ G

C (g) = {g}.

In fact, G is abelian if and only if C (g) = {g}, for any g ∈ G .

c) Let G = D8. Then, you can verify (by direct computation) that

C (e) = {e}, C (r) = {r , r 3}, C (r 2) = {r 2}, C (s) = {s, sr 2}, C (sr) = {sr , sr 3}.

d) Let G = GL2(C). Then,

C

([
1 1
0 1

])
= {A ∈ GL2(C) | (A− I2)2 = 0, A 6= I2}.

This is a consequence of the theory of the Jordan form of a linear operator on C2; we will see how
to prove this in a homework/worksheet problem.

If G is finite then the existence of the equivalence relation Rconj described above imposes a condition
relating the order of G with the number/size of conjugacy classes:

Theorem 7.1.5 (Class equation). Let G be a finite group. Suppose that there exists k conjugacy classes
and eG , g2, ... , gk are distinct class representatives of the conjugacy classes of G. Then,

|G | = 1 +
k∑

i=2

|C (gi )|.

Proof: Homework/worksheet.
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7.2 Symmetric groups, cycle decompositions

Let [n] = {1, ... , n}. Then, the symmetric group Sn acts on [n] in the following (obvious) way (recall
that elements of Sn are functions on [n]):

Sn × [n]→ [n] ; (ω, i) 7→ ω(i).

In this way we obtain a permutation of [n]. Let ω ∈ Sn and consider the subgroup H(ω) = 〈ω〉 ⊂ Sn;
it is an abelian subgroup of order o(ω). We now restrict the action defined above to this subgroup

H(ω)× [n]→ [n] ; (ωr , i) 7→
r times

(ω ◦ · · · ◦ ω) (i).

This action defines a partition of [n] into the orbits of this action and, given i ∈ [n], we denote the orbit
of i

(i1 · · · ik )
def
= Oi = {i1, ... , ik}, 1 ≤ i1 < i2 ... < ik ≤ n

and call (i1 · · · ik ) a k-cycle, or simply a cycle. Note that we are saying that i ∈ {i1, ... , ik}. Conversely,
given a cycle (i1 · · · ik ), we obtain a unique element ω ∈ Sn corresponding to that cycle. Two cycles
(i1 · · · ir ) and (j1 · · · js) are said to be disjoint if

{i1, ... , ir} ∩ {j1, ... , js} = ∅.

Hence, to any ω ∈ Sn we can consider the above partition of [n] into orbits, and label the orbits by
(disjoint) cycles. Thus, we can denote an element ω ∈ Sn as

ω ↔ (i1 · · · ir )(j1 · · · js) · · · (k1 · · · kt),

where i1 < ... < ir , j1 < ... < js etc. and

{i1, ... , ir} ∩ {j1, ... , js} = ∅,

because cycles are orbits. This presentation of an element of ω ∈ Sn is called the cycle decomposition
of ω.

The cycle decomposition implies

the r-cycles, r = 1, ... , n, generate the symmetric group Sn

However, the relations satisfied by these generators are not so straightforward to determine.

Example 7.2.1. Consider the element ω ∈ S5, corresponding to the wiring diagram

1 2 3 4 5

f ≡

1 2 3 4 5

The partition of {1, 2, 3, 4, 5} is

{1, 2, 3, 4, 5} = {1} ∪ {2, 3, 4} ∪ {5}

as you can check that o(ω) = 3 and ω(1) = 1,ω(5) = 5 and

ω(2) = 3, ω2(2) = ω(ω(2)) = ω(3) = 4, ω3(2) = 2,

so the orbit of 2 under the action of H(ω) is {2, 3, 4}. Hence, the cycle decomposition of ω is (1)(234)(5).
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Remark 7.2.2. When a cycle contains exactly one integer we will not include it in the cycle decompo-
sition; so in the above example we have

ω = (234) ∈ S5.

This requires keeping track of the symmetric group we are working with - for example, the element
(2457)(16) ∈ S9 is missing the 1-cycles (3), (9), (8). However, if we did not state that (2457)(16) is an
element of S9 then there would be ambiguity in our notation.

Example 7.2.3. Let ω = (234) ∈ S5 and σ = (12)(34) ∈ S5. Then, the cycle decomposition of ωσ can
be determine as follows: since S5

∼= W5, we can make use of wiring diagrams. We see that the product
ωσ is the wiring diagram

1 2 3 4 5

1 2 3 4 5

ωσ = 1 2 3 4 5 =

1 2 3 4 5

1 2 3 4 5

so that ωσ = (132) ∈ S5.

Introducing the cycle notation for elements of Sn allows us to give a nice description of conjugacy classes
in Sn.

Definition 7.2.4 (Partitions of integers). A sequence of integers n1 ≥ ... ≥ nk ≥ 1 such that n1 + ... +
nk = n is called a partition of n.1

We will denote a partition n1 ≥ ... ≥ nk either as a sequence ν : (n1, n2, ... , nk ) or by the expression
ν : 1r1 2r2 · · · , where ri is the number of times i appears in the partition; partitions will be denoted by
Greek alphabet letters such as λ,µ, ν,π etc.

We define the length of ν : (n1, ... , nk ) to be |ν| = n1 + ... + nk .

For example, the partition
ν : 4 + 4 + 3 + 2 + 2 + 2 + 1 + 1 = 19,

will be expressed either as the sequence ν : (4, 4, 3, 2, 2, 2, 1, 1) or as the expression ν : 1223342; the
length of ν is |ν| = 19.

To any element ω ∈ Sn we associate a partition as follows: let 1 ≤ k1 ≤ ... ≤ kr be the lengths of
the cycles appearing in the cycle decomposition of ω. Then, we define the cycle type of ω to be the
partition of n

πω
def
= (kr , ... , k1).

Theorem 7.2.5 (Classification of conjugacy classes in Sn). Let ω,σ ∈ Sn. Then,

C (ω) = C (σ) ⇔ πω = πσ.

Proof: We prove the case of a single r -cycle: let ω = (i1 · · · ir ), σ = (j1 · · · jr ) ∈ Sn. Define τ ∈ Sn

as follows:
τ(i1) = j1, τ(i2) = j2, ... , τ(ir ) = jr .

Then,
τ−1στ = ω.

The general case will be a homework exercise.

Example 7.2.6. Consider the elements ω = (12)(34),σ = (13)(24) ∈ S4. Then, by Theorem 7.2.5, we
have that (12)(34) and (13)(24) are conjugate. You can check that

(23)σ(23) = ω,

using wiring diagrams.

1There’s potential for confusion of notation here as we have two definitions: partitions of a set and partitions of an
integer. However, the context in which we use the word should make it clear to which of these definitions we are referring.
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7.3 Cayley’s Theorem

If a group G acts on a set S then we obtain a group homomorphism

G → Perm(S),

so that im G is a subgroup of permutations of S . It is in this way that we consider that G captures
some of the symmetry of S . Loosely speaking, a ‘symmetry of S ’ should be an ‘operation’ that we can
apply to S that can be ‘undone’ and leaves S ‘unchanged’; this is precisely a ‘bijection/permutation of
S ’.

A group G is an abstract collection of symmetries, and whenever G acts on a set S then we obtain
a ‘realisation’ of these symmetries as permutations of S . However, it may be the case that distinct
elements of G are realised as the same permutation of S . Is there a way that we can realise any
group G concretely as the symmetries of some actual set, so that G can be considered as a group of
permutations? The answer is yes, and may be quite surprising:

Theorem 7.3.1 (Cayley’s Theorem). Let G be a group. Then, there is an injective homomorphism

L : G → Perm(G ) ; g 7→ Lg ∈ Perm(G ),

where Lg is the left multiplication function,

Lg : G → G ; h 7→ Lg (h) = gh.

Proof: We need to check the following:

- L is well-defined, namely Lg is a bijective function, for every g ∈ G : indeed, we have Lg ◦ Lg−1 =
idG = Lg−1 ◦ Lg , so that L−1

g = Lg−1 .

- L is a homomorphism: this follows from noticing that L is the homomorphism of groups associated
to the action of G on G

G × G → G ; (g , h) 7→ gh,

defined in Fundamental Example 6.1.4.

- L is injective: suppose that Lg is the identity function (so that g ∈ ker L). Then,

e = Lg (e) = ge = g =⇒ ker L = {e}.

Why does Cayley’s Theorem enable us to realise G as permutations of some set? Since the map L is
injective then we have that G is isomorphic2 to im G ⊂ Perm(G ) so that

G can be realised as a (sub)group of permutations of the set G .

2The isomorphism being defined by L!
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8 Lecture 8 - Orbit-Stabiliser Theorem.

Previous lecture - Next lecture

Keywords: Orbit-Stabiliser Theorem. p-group. Fixed point congruence for p-groups.

In this lecture we will see that there are tight restrictions on the size of an orbit O, whenever a group
G acts on the set S . We will investigate further some consequences when |G | = pr , for p a prime.

8.1 Orbit-Stabiliser Theorem

Theorem 8.1.1 (Orbit-Stabiliser Theorem). Let G be a finite group acting on the set S, x ∈ S. Then,

|Ox | = |G |/|StabG (x)|.

In particular,

the size of an orbit divides the order of G .

Proof: Denote H = StabG (x). Then, using Lagrange’s Theorem, it suffices to show that there is a
bijection

Ox → G/H.

Define
f : Ox → G/H ; y = g · x 7→ gH.

We need to check that f is well-defined: namely, suppose that we have y = g · x and y = g ′ · x . Then,
we need to ensure that

g ′H = f (y) = gH,

so that f is a function. As g ·x = g ′ ·x then x = g−1 ·(g ′ ·x) = (g−1g ′) ·x , then g−1g ′ ∈ StabG (x) = H
and gH = g ′H.

f is injective: suppose that y = g · x , y ′ = g ′ · x and f (y) = f (y ′). Then,

gH = g ′H =⇒ g−1g ′ ∈ H =⇒ x = g−1g ′ · x =⇒ y = g · x = g ′ · x = y ′.

f is surjective: let gH ∈ G/H. If y = g · x ∈ Ox then f (y) = gH.

Corollary 8.1.2. Let G be a finite group. The size of a conjugacy class in G divides the order of G.

Proof: Consider the action of G on itself by conjugation. Then, an orbit of this action is a conjugacy
class in G , and the result follows from the Orbit-Stabiliser Theorem.

Example 8.1.3. 1. The group Z/9Z acts on the set Z/3Z by

i · a def
= a + 2i , i ∈ Z/9Z, a ∈ Z/3Z.

If i ∈ StabZ/9Z(a) then a + 2i = a, so that (a + 2i)− a = 2i is divisible by 3, which means that i

is divisible by 3 (because 3 is prime). Conversly, if i is divisible by 3 then i ∈ StabZ/9Z(a); thus,

StabZ/9Z(a) = {0, 3, 6}. Hence, the Orbit-Stabiliser Theorem implies that

|O1| = 9/3 = 3 =⇒ O1 = Z/3Z.

2. Let S5 act on itself by conjugation. Theorem 7.2.5 tells us that two elements σ, τ ∈ Sn are
conjugate precisely when they have the same cycle type; the Orbit-Stabiliser theorem now allows
us to determine how many elements there are of a given cycle type. For example, there are 20
elements in S5 with cycle type (3, 2). Indeed, the element (123)(45) ∈ S5 has the following
stabiliser

StabS5 ((123)(45)) = {σ ∈ S5 | (σ(1)σ(2)σ(3))(σ(4)σ(5)) = (123)(45)}.
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This is because
σ · (123)(45) · σ−1 = (σ(1)σ(2)σ(3)) (σ(4)σ(5)) .

Now, (123) = (σ(1)σ(2)σ(3)) if and only if σ(i + 1) = σ(i) + 1 mod 3, for i ∈ {1, 2, 3}. This
means that σ({1, 2, 3}) = {1, 2, 3} and σ, when restricted to {1, 2, 3}, is completely determined
by what σ(1) is equal to; thus, there are three such choices. Similarly, σ, when restricted to {4, 5},
is completely determined by what σ(4) is equal to, and there are two such choices. Hence, there
are 2.3 = 6 such functions and |StabS5 ((123)(45))| = 2.3 = 6. Now, |S5| = 5! = 120, so that the
number of conjugates of (123)(45) is 120/6=20.

Furthermore, this calculation shows that there are 20 elements in S5 of order 6 - the elements of
cycle type (3, 2) are precisely the elements in S5 of order 6.

8.2 p-groups

In this section we will see that the Orbit-Stabiliser Theorem implies some restrictions on how certain
groups can act on sets.

Definition 8.2.1 (p-group). A finite group G is a p-group if the order of G is pr , for some prime p
and r > 0.

Example 8.2.2. 1. Let p be a prime. Then, G = Z/prZ is a p-group whenever r > 0.

2. Consider the vector space Fr
p. Then, (Fr

p, +) is a p-group.

3. The group of unit quaternions Q = {±1,±i ,±j ,±k} is a 2-group.

These examples show that a p-group need not be cyclic nor abelian, in contrast to a group whose order
is a prime p (the case r = 1).

The Orbit-Stabiliser Theorem has some useful consequences whenever a p-group acts on a set S .

Theorem 8.2.3 (Fixed point congruence for p-groups). Let G be a p-group acting on the set S. Suppose
there are k fixed points of this action. Then,

k ≡ |S | mod p.

Proof: If x ∈ S is a fixed point then the orbit through x admits a straightforward description:
Ox = {x}. The Orbit-Stabiliser Theorem implies that the size of any orbit must divide |G | = pr .
Hence, if an orbit contains more than one element then it must have size divisible by p. Thus, if
O1, ... ,Os are the distinct orbits in S , then there are exactly k orbits consisting of one element. Assume
that |O1| = ... = |Ok | = 1. Then, by the Orbit Decomposition Formula,

|S | = |O1|+ ... + |Os | = k + |Ok+1|+ ... + |Os | ≡ k mod p.

Corollary 8.2.4. Let G be a p-group. Suppose that G acts on S and |S | 6≡ 0 mod p. Then, there
exists a fixed point of this action.

Proof: If there is not a fixed point of this action then Theorem 8.2.3 implies that

|S | ≡ 0 mod p.

This contradicts the assumption on |S | in the statement of the result.

Here is an example of how we can use these ‘fixed-point results’:

Theorem 8.2.5. Let G be a p-group. Then, there exists nontrivial g ∈ G such that g p = e.
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Proof: Assume |G | = pr . Define

S = {(g0, ... , gp−1) | g0, ... , gp−1 ∈ G , g0 · · · gp−1 = e}.

Suppose (g0, ... , gp−1) ∈ S . If g0, ... , gp−2 ∈ G are arbitrary then gp−1 = (g0 · · · gp−2)−1. Hence,
|S | = (pr )p−1 = pr(p−1).

Now, if (g0, ... , gp−1) ∈ S then so is (g1, ... , gp−1, g0): g−1
0 = g1 · · · gp−1 and we always have

g0g−1
0 = g−1

0 g0 = e.

Hence, we can define an action of H = Z/pZ on S as follows: for i ∈ Z/pZ

i · (g0, ... , gp−1)
def
= (g0+i , ... , gp−1+i )

where the subscript x denotes x mod p (by some abuse of notation). For example,

2 · (g0, ... , gp−1) = (g2, g3, ... , gp−1, g0, g1).

So the action of H is by cyclically shifting the entries of an element of S .

Since (e, ... , e) is a fixed point, Theorem 8.2.3 implies that the number of fixed points is a positive
multiple of p. Any fixed point is of the form (g , ... , g), for some g ∈ G , and since (g , ... , g) ∈ S then
g p = e.
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9 Lecture 9 - Sylow’s Theorems.

Previous lecture - Next lecture

Keywords: Sylow p-subgroup. Sylow’s Theorems.

Lagrange’s Theorem gives a necessary condition on the order of a subgroup H of a finite group G - the
order of H divides the order of G . This gives a tight restriction on the potential subgroups of any finite
group G .

Is this a sufficient condition? That is: if k divides the order of G then is there a subgroup of G of
order k? A glance at some small groups (of order less than 10) would support this claim. However, this
statement is false: for example, there is no subgroup of T+, the group of rotational symmetries of the
tetrahedron (which has order 12), of order 6.

This lecture is concerned with a sufficient condition for a subgroup of a finite group to exist:

if p is a prime such that pr divides the order of G , with r maximal,
then there exists a subgroup of G of order pr .

Moreover, we will obtain strong conditions relating all possible such subgroups.

9.1 Sylow’s Theorems

Define
Sylp

def
= {H ⊂ G | H ∈ Sub(G ), |H| = pr}.

A subgroup H ∈ Sylp will be called a Sylow p-subgroup of G .

Most of this lecture is concerned with the proof of the following result:

Theorem 9.1.1 (Sylow). Let G be a finite group of order n. Suppose that n = pr m, where p is a prime,
m 6= 1, and p does not divide m. Then,

(SYL1) There exists a Sylow p-subgroup of G .

(SYL2) All Sylow p-subgroups are conjugate and any p-subgroup of G is contained in a Sylow p-subgroup.

(SYL3) If kp is the number of Sylow p-subgroups then kp ≡ 1 mod p.

Then,

- SYL1 is equivalent to showing that Sylp 6= ∅;

- if we let G act on Sylp by conjugation - g ·H = gHg−1 - then SYL2 is equivalent to showing that
there is exactly one orbit of this action;

- SYL3 is equivalent to showing that |Sylp| ≡ 1 mod p.

To establish SYL1, SYL2, SYL3 we consider G acting on several sets, illustrating the far-reaching
consequences of group actions.

Proof: Let G be a finite group of order n, with n = pr m, m 6= 1 and gcd(p, m) = 1. In particular,
n is not a prime power (otherwise the result is trivial!).

SYL1: let X = {A ∈ P(G ) | |A| = pr}. Then, |X | =
(

n
pr

)
and |X | 6≡ 0 mod p.1

We define an action of G on X as follows,

G × X → X ; (g , A) 7→ g · A def
= gA.

1This is a homework/worksheet problem.
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There must exist an orbit O such that |O| 6≡ 0 mod p, by the condition on |X | given above; moreover,
since |O| divides n, by the Orbit-Stabiliser Theorem, then |O| divides m. Suppose that O = OA for
some A ⊂ G , and denote S = StabG (A); the Orbit-Stabiliser Theorem implies that |S | is divisible by
pr , by the restriction on |O| just stated, in particular |S | ≥ pr . Fix a ∈ A. For g ∈ S we have ga ∈ A,
so that g ∈ Aa−1. Since g is arbitrary then S ⊂ Aa−1 and |S | ≤ |Aa−1| = pr . Hence, |S | = pr and
S ∈ Sylp.

SYL2: Let S ∈ Sylp, H a p-subgroup of G . Consider Y = G/S and let H act on Y via

H × Y → Y ; (h, gS) 7→ h · gS
def
= hgS .

As |Y | = m and gcd(p, m) = 1, the Orbit Decomposition Formula implies that some orbit O must satisfy
|O| 6≡ 0 mod p - else, every orbit has size divisible by p so that |Y | is divisible by p - and the Orbit-
Stabiliser Theorem then gives |O| divides |H|, a power of p. Hence, |O| = 1 so that some coset gS must
satisfy hgS = gS , for every h ∈ H. Hence, g−1hgS = S , for every h ∈ H, and g−1hg ∈ S , for every
h ∈ H. Thus, g−1Hg ⊂ S and, H ⊂ gSg−1. If H ∈ Sylp then H = gSg−1 and |H| = |gSg−1| = |S |,
giving H ∈ Sylp.

SYL3: Let S ∈ Sylp. Then, S acts on Sylp by conjugation:

S × Sylp → Sylp ; (g , H) 7→ g · H def
= gHg−1.

If S ′ ∈ Sylp is such that g · S ′ = S ′, for every g ∈ S , then

gS ′g−1 = S ′, for every g ∈ S , implying that SS ′ = S ′S .

Thus, K = SS ′ is a subgroup of G and S , S ′ are normal subgroups of K . In addition, S ′ is a Sylow
p-subgroup of K , hence conjugate to S by SYL2. So, there is k ∈ K with

S = kS ′k−1 = S ′,

the last equality a consequenc of S ′ being normal in K . Hence, we have seen that the only fixed point
in Sylp (under the action of S) is S . As S is a p-group then

no. of fixed points of action ≡ |Sylp| mod p,

by Theorem 8.2.3, and |Sylp| ≡ 1 mod p.

Corollary 9.1.2. The number of Sylow p-subgroups is equal to the index of NG (S), where S ∈ Sylp.

Proof: G acts on Sylp by conjugation and SYL2 implies that there is only one orbit O of this action;
hence, Sylp = O. If S ∈ Sylp then StabG (S) = NG (S) and the Orbit-Stabiliser Theorem gives

|Sylp| = |O| = |G |/|NG (S)| = [G : NG (S)].

9.2 An application: groups of order pq

Let G be a group of order n = pq, where p and q are distinct primes and p > q. Then, Sylow’s
Theorems imply that there exist subgroups H, K of G of order p, q respectively. As H and K have prime
orders then they are cyclic.

Consider the subgroup H of order p - we will see that H is normal. Recall that H is normal if and only
if gHg−1 = H, for every g ∈ G , and that this is equivalent to NormG (H) = G .

NormG (H) is a subgroup of G so that its order divides G - hence, |NormG (H)| equals either 1, p, q or
pq. Moreover, H ⊂ NormG (H) so that p divides NormG (H) - hence, |NormG (H)| is equal to p or pq.
If |NormG (H)| = p then |Sylp| = q, by Corollary 9.1.2, and SYL3 implies that

q = |Sylp| ≡ 1 mod p.
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As q < p then q ≡ 1 mod p if and only if q = 1. Hence, it is not possible that q ≡ 1 mod p so that
|NormG (H)| 6= p, implying that |NormG (H)| = pq. Thus, NormG (H) = G and H is normal.

We have just shown

every group of order pq has a proper, nontrivial normal subgroup
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10 Lecture 10 - Quotient groups, the canonical homomorphism.

Previous lecture - Next lecture

Keywords: Quotient group. Canonical homomorphism. First Isomorphism Theorem.

Let G be a group and N ⊂ G a normal subgroup - it is extremely important that N is normal in what
follows. Consider the set of (left) cosets of N in G , denoted G/N. Then, an element of the set G/N is
a (left) coset of N in G . In fact, since N is normal in G , we have that gNg−1 = N, for every g ∈ G .
This condition is equivalent to the equality of sets gN = Ng , for every every g ∈ G ; hence,

if N is normal, g ∈ G , then the left coset of N containing g is also
a right coset of N containing g

In this lecture we will investigate some of the consequences of this fact.

10.1 Quotient groups

Definition 10.1.1. Let G be a group, N ⊂ G a normal subgroup. Define the quotient group of G by
N to be (G/N, ∗), where we define

∗ : G/N × G/N → G/N ; (gN, hN) 7→ gN ∗ hN
def
= ghN.

The definition of ∗ above has some potential ambiguity: if gN = g ′N and hN = h′N (so that the cosets
of g and g ′ are equal, and the cosets of h and h′ are equal), then we need to ensure that ghN = g ′h′N,
otherwise ∗ is not a function. However, we need not worry: suppose that gN = g ′N and hN = h′N.
Thus, there exists n, m ∈ N such that

gn = g ′, hm = h′.

Moreover, since N is normal, then nh ∈ Nh = hN, and there is p ∈ N such that nh = hp. Thus,

g ′h′ = gnhm = gh(pm) ∈ ghN,

and g ′h′N = ghN.1

Of course, we need to justify the phrase ‘quotient group’:

Theorem 10.1.2. Let G be a group, N a normal subgroup. Then, (G/N, ∗), where ∗ is defined above,
is a group.

Proof: We need to show that (G/N, ∗) satisfies G1, G2, G3, G4 of Definition 3.1.1.

G1: this is precisely what we have established above.

G2: define eG/N
def
= eG N. Then, for any g ∈ G we have

eG/N ∗ gN = eG N ∗ gN = eG gN = gN = geG N = gN ∗ eG N = gN ∗ eG/N .

G3: homework/worksheet.

G4: homework/worksheet.

Remark 10.1.3. In general, it is not so straightforward to determine what the quotient group G/N is
for given G and N. However, we can determine some information about G/N:

1Recall that left cosets are equivalence classes of a particular equivalence relation, and equivalence classes are either
disjoint or equal.
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- if G is finite then Lagrange’s Theorem gives the order of G/N - we have |G/N| = |G |/|N|;

- if G is abelian then G/N is abelian;

- if G is cyclic then G/N is cyclic.

Beware, the converse of these statements are false in general.

Example 10.1.4. 1. Let G = D8 = {e, r , r 2, r 3, s, sr , sr 2, sr 3}. Then, N = {e, r , r 2, r 3} is a normal
subgroup of G and G/N is isomorphic to Z/2Z: indeed, we have |G/N| = |G |/|N| = 2, so that
G/N is a group of prime order and so must be isomorphic to a cyclic group (THEOREM ???) of
order 2.

Note that G/N is cyclic (and abelian) while G is not cyclic (and not abelian).

2. Let G = Q = {±1,±i ,±j ,±k}, the group of unit quaternions with identity element e = 1. Then,
N = {1,−1} is a normal subgroup of G and the quotient group G/N has order 4. Every group
of order 4 is isomorphic to either Z/4Z or the subgroup

K4 =

{[
a 0
0 b

]
| a, b ∈ {1,−1}

}
⊂ Mat2(Z).

Note that K4 is not isomorphic to Z/4Z: indeed, K4 does not possess an element of order 4.

We will see that G/N is isomorphic to K4 by showing that there is no element of order 4 in G/N.
Note that

G/N = {eN, iN, jN, kN},

because iN = {±i}, jN = {±j}, kN = {±k}, and, for example,

(iN)2 = iN ∗ iN = i2N = (−1)N = eN.

Similarly, (jN)2 = (kN)2 = eN. Hence, each of the nontrivial elements in G/N has order 2 and
the claim follows. In fact, the isomorphism from G/N is

f : K4 → G/N ;

[1 1] 7→ eN
[1 − 1] 7→ iN
[−1 1] 7→ jN

[−1 − 1] 7→ kN

,

where [a b] denotes the matrix

[
a 0
0 b

]
. f is a bijection by construction and it is not too hard to

check that f is a homomorphism: for example,

f ([1 − 1] ∗ [−1 1]) = f ([−1 − 1]) = kN,

f ([1 − 1]) ∗ f ([−1 1]) = iN ∗ jN = ijN = kN,

so that
f ([1 − 1] ∗ [−1 1]) = f ([1 − 1]) ∗ f ([−1 1]).

3. Let G be a group, H ⊂ G any subgroup. Then, H is a normal subgroup of NormG (H) always (but
not necessarily a normal subgroup of G ). Hence, we can consider the quotient group NormG (H)/H.

For example, if G = GL3(Z) and D3 ⊂ G is the subgroup of diagonal (invertible) matrices, then
it can be shown that NormG (D3)/D3 is isomorphic to S3. In general, if G = GLn(Z) and Dn ⊂ G
is the subgroup of diagonal matrices, then NormG (Dn)/Dn is isomorphic to Sn.

40



10.2 The canonical homomorphism and the First Isomorphism Theorem

If G is a group and N ⊂ G is a normal subgroup, we have seen how we can obtain a new group, the
quotient group G/N. Recall from the section on Equivalence Relations that to any equivalence relation
R defined on a set A we can consider the natural mapping associated to R

π : A→ A/ ∼ ; a 7→ [a].

Since G/N is the set of equivalence classes of a certain equivalence relation defined on G - arising from
the left N-partition - we have the natural mapping

π : G → G/N ; g 7→ gN.

In the given situation we will denote the above natural mapping by πN , so that

πN : G → G/N ; g 7→ gN,

and call it the canonical homomorphism (associated to N) or simply the quotient homomorphism
of G/N.

Lemma 10.2.1. Let G be a group, N a normal subgroup. Then,

a) πN is a group homomorphism.

b) ker πN = N.

c) im πN = G/N.

Proof:

a) let g , h ∈ G . Then,
πN (gh) = ghN = gN ∗ hN = πN (g) ∗ πN (h).

Thus, πN is a group homomorphism.2

b) Let n ∈ N. Then, πN (n) = nN = N = eN = eG/N , so that n ∈ ker πN . Hence, N ⊂ ker πN . We
will now show that ker πN ⊂ N: if g ∈ ker πN then πN (g) = eG/N . Thus, gN = eN implying that
g ∈ N.

c) This is straightforward.

In fact, the quotient homomorphism is ‘the only’ surjective homomorphism with domain G and kernel
N: this is (essentially) what the First Isomorphism Theorem states. First, we need the following

Lemma 10.2.2. Let f : G → H be a group homomorphism. Then, ker f ⊂ G is a normal subgroup.

Proof: Homework/worksheet.

Thus, since every normal subgroup is the kernel of some homomorphism (the quotient homomorphism),
we obtain the following slogan

the normal subgroups of G are precisely those subgroups that are kernels

Theorem 10.2.3 (First Isomorphism Theorem). Let f : G → H be a group homomorphism. Then, if
we denote K = ker f , the induced homomorphism

f : G/K → im f ; gK 7→ f (g),

is an isomorphism. In particular, if G is finite then |im f | = |G |/| ker f |.
2In fact, the definition of the law of composition on the quotient group is defined so that the natural mapping associated

to the equivalence relation definiing G/N is a group homomorphism.
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Proof: There are several things we must establish:

- the map f is well-defined, so that its definition does not depend on the choice of representative
we have chosen for a coset in G/K . So, if gK = g ′K we need to show that f (gK ) = f (g ′K )
(otherwise f is not a function!). Now, gK = g ′K implies that there is k ∈ K such that g = g ′k.
Then,

f (gK ) = f (g) = f (g ′k) = f (g ′)f (k) = f (g ′)eH = f (g ′) = f (g ′K ).

- f is a homomorphism: let gK , hK ∈ G/K . Then,

f (gK ∗ hK ) = f (ghK ) = f (gh) = f (g)f (h) = f (gK )f (hK ).

- f is injective: if hK ∈ ker f then

f (hK ) = eH =⇒ f (h) = eH =⇒ h ∈ K = ker f =⇒ hK = eK .

Hence, ker f = {eG/K} and f is injective.

- f is surjective: let h ∈ im f . Then, there is some g ∈ G such that f (g) = h. Hence, we have
f (gK ) = f (g) = h.

Remark 10.2.4. The First Isomorphism Theorem (Theorem 10.2.3) is the group-theoretic analogue of
the Rank Theorem from linear algebra (in a sense that can be made precise). When G is finite, this result
implies that there is a strong restriction on the existence of nontrivial homomorphisms with domain G .

Example 10.2.5. 1. Let f : G → H be a group a homomorphism, with |G | = 15, |H| = 28. Then,
f must be the trivial homomorphism

f : G → H ; g 7→ eH .

Indeed, since im f ⊂ H is a subgroup then |im f | must divide 28. Theorem 10.2.3 implies that
|im f | must also be a divisor of |G | = 15. However, gcd(15, 28) = 1 so that |im f | = 1 and
im f = {eH} is the trivial subgroup of H.

2. Suppose that f : D10 → Z/5Z is a surjective homomorphism of groups. Thus, im f = Z/5Z so
that D10/ ker f ∼= Z/5Z, by Theorem 10.2.3. We must have that | ker f | = |D10|/|im f | = 10/5 =
2, so that ker f = {e, s}, for some s ∈ D10 of order 2. The only elements of order 2 are precisely
the reflections of the pentagon. Now, we can write D10 = {e, r , ... , r 4, s, sr , ... , sr 4}, where r is
‘rotate by 2π/5 counterclockwise’. Thus, we must have

f (srs) = f (r−1) =⇒ f (s) + f (r) + f (s) = −f (r) =⇒ f (r) + f (r) = 0 ∈ Z/5Z.

Since there are no elements of order two in Z/5Z this last equality is impossible, so that our
assumption of the existence of a surjective homomorphism f : D10 → Z/5Z is false. Hence, there
are no surjective homomorphisms D10 → Z/5Z.
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11 Lecture 11 - Direct products. Finite abelian groups.

Previous lecture - Next lecture

Keywords: Direct product group. Structure theorem of finite abelian groups.

In this lecture we introduce the fundamental notion of the direct product group - it provides a way of
building a new group given any two groups G , H, and such that G and H arise as normal subgroups.

11.1 Direct products

Let G be a group. We have seen how to construct a new group - the quotient group G/N - from G
given a normal subgroup N of G . In general, it is not so straightforward to identify the group G/N;
that is, it might be difficult to determine if the group G/N is a group that we are familiar with (for
example, a symmetric group. a dihedral group, a cyclic group etc.).

Consider the following question: given a group G and a group H, is there a group M such that G
is a normal subgroup of M and M/G is isomorphic to H? We will see that the answer is yes and
is actually quite simple to establish.

Definition 11.1.1. Let G , H be two groups. The direct product of G and H is the group (G ×H, ∗),
where

G × H = {(g , h) | g ∈ G , h ∈ H}, (the set of ordered pairs)

(g , h) ∗ (g ′, h′)
def
= (gg ′, hh′).

In particular, the law of composition in G × H is ‘component-wise composition’.

The identity element in G × H is eG×H = (eG , eH ), and (g , h)−1 = (g−1, h−1).

Example 11.1.2. 1. Let G = Z/3Z, H = Z/4Z. Then,

G × H = {(i , j) | i ∈ Z/3Z, j ∈ Z/4Z}.

We have |G × H| = 12, and eG×H = (0, 0). Also,

(2, 2) ∗ (1, 2) = (2 + 1, 2 + 2) = (0, 0),

so that the inverse of (2, 2) in G × H is (1, 2).

Notice that the order of x = (1, 1) is 12, so that G × H is a cyclic group isomorphic to Z/12Z.1

2. If G = Z/4Z, H = Z/2Z then G × H has order 8. However, G × H is abelian but not cyclic -
hence, not isomorphic to Z/8Z.

Theorem 11.1.3 below implies that G is a normal subgroup of G × H isomorphic to Z/4Z and
G×H/G×{eH} is isomorphic to Z/2Z. Recall that there is a normal subgroup N = {e, r , r 2, r 3} ⊂
D8 isomorphic to Z/4Z and D8/N is isomorphic to Z/2Z. Considering the question asked at the
beginning of this section, this example shows that there may be two non-isomorphic groups M
and M ′ that provide a resolution of this question.

Theorem 11.1.3. Let G , H be groups. Then,

G × {eH} = {(g , eH ) | g ∈ G} ⊂ G × H,

is a normal subgroup in G × H isomorphic to G . Moreover, the quotient group G × H/G × {eH} is
isomorphic to H.

1In general, if gcd(m, n) = 1 then Z/mZ× Z/nZ is cyclic of order mn.
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Proof: Let K = G×{eH}. Then, K is a subgroup: if (g , eH ), (g ′, eH ) ∈ K then (g , eH )∗(g ′, eH )−1 =
(g(g ′)−1, eH ) ∈ K . Furthermore, if (g , eH ) ∈ K and (z , h) ∈ G × H then

(z , h) ∗ (g , eH ) ∗ (z , h)−1 = (zgz−1, zz−1) = (zgz−1, eH ) ∈ K =⇒ (z , h)K (z , h)−1 = K ,

so that K is normal in G × H. The function

α : G → K ; g 7→ (g , eH ),

provides an isomorphism from G to K .

Now, define
β : H → (G × H)/K ; h 7→ (eG , h)K .

Then,

- β is a homomorphism: let h, h′ ∈ H then

β(hh′) = (eG , hh′)K = ((eG , h) ∗ (eG , h′)) K = (eG , h)K (eG , h′)K = β(h)β(h′).

- β is injective: let h ∈ ker β. Then,

β(h) = (eG , eH )K =⇒ (eG , h)K = (eG , eH )K =⇒ (eG , h) ∈ K =⇒ h = eH .

- β is surjective: let (g , h)K ∈ (G × H)/K . Then, (g , h) = (eG , h) ∗ (g , eH ) ∈ (eG , h)K , and
(g , h)K = (eG , h)K . Then, β(h) = (g , h)K .

11.2 Structure Theorem of finite abelian groups

In this section we will prove the following

Theorem 11.2.1 (Structure Theorem of finite abelian groups). Let A be an abelian group with |A| =
pn1

1 · · · pnr
r , where p1, ... , pr are distinct primes and n1, ... , nr ≥ 1. Then, A is isomorphic to a product

U1 × U2 × · · · × Ur ,

where Ui is a pi -group and |Ui | = pni

i .

Lemma 11.2.2. Let G be a finite abelian group, H ⊂ G a Sylow p-subgroup, for some prime p dividing
|G |. Consider the subset

K = {g ∈ G | p does not divide o(g)}.

Then, K is a subgroup of G isomorphic to the quotient group G/H.

Proof: Since o(eG ) = 1, we see that eG ∈ K so that K is nonempty. Let g , h ∈ K and denote
r = o(g), s = o(h) = o(h−1). Then, p does not divide r nor s so that p does not divide rs. Since

(gh−1)rs = g rsh−rs = (g r )s(h−s)r = eG ,

the order of gh−1 divides rs. Hence, p does not divide o(gh−1) and gh−1 ∈ K , showing that K is a
subgroup of G .

Consider the following map
α : K → G/H ; k 7→ kH.

As α = πH ◦ iK is the composition of two group homomorphisms, α is a group homomorphism; we will
see that α is an isomorphism.

- α is injective: let k ∈ kerα ⊂ K . Then, α(k) = kH = eG/H = eH, implying that k ∈ H. As H is
a p-group then every element has order equal to a power of p. However, p does not divide o(k)
so that the only possibility is k = e ∈ K (as o(k) = 1).
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- α is surjective: let gH ∈ G/H. Suppose that |G | = pam, with gcd(p, m) = 1. Then, we can find
integers u, v ∈ Z such that pau + mv = 1. Hence,

g = g 1 = g paug mv .

Note that e = (g pam)u = (g pau)m, so that the order of g pau divides m; hence, g pau ∈ K , because
gcd(p, m) = 1.

Claim: g mv ∈ H: notice that (g mv )pa

= e so that g mv has order a power of p. Thus, the
subgroup 〈g mv 〉 ⊂ G is a p-subgroup. Sylow’s Theorem implies that a conjugate of 〈g mv 〉 is a
subgroup of H, say x〈g mv 〉x−1 ⊂ H. Since G is abelian then xAx−1 = A, for any subset A ⊂ G ;
in particular, 〈g mv 〉 = x〈g mv 〉x−1 ⊂ H and g mv ∈ H.

Now, g = g paug mv ∈ g pauH =⇒ gH = g pauH, with g pau ∈ K , so that α(g pau) = gH and α is
surjective.

Lemma 11.2.3. Let G be a finite abelian group, H ⊂ G a Sylow p-subgroup for some prime p dividing
|G |. Then, G is isomorphic to the direct product H × G/H.

Proof: Let G be a finite abelian group, H ⊂ G a Sylow p-subgroup, and let K be the subgroup
defined in Lemma 11.2.2.

Consider the function
β : H × K → G ; (h, k) 7→ hk.

We will show that β is an isomorphism.

- β is a group homomorphism: homework/worksheet problem.

- β is injective: let (h, k) ∈ ker β then β(hk) = hk = eG so that k = h−1. Since o(h) is a power of
p, and o(k) is not divisible by k , the only possibility is that o(h) = o(k) = 1, so that h = k = eG .
Hence, ker β = {(eG , eG )}.

- β is surjective: homework problem.

We combine this isomorphism with the one from Lemma 11.2.2 to obtain the desired isomorphism
between G and H × G/H.

We are now in a position to prove Theorem 11.2.1.

Proof:[of Structure Theorem] Let A be abelian. If A is a p-group, for some prime p, (this is the case
r = 1), then there is nothing to prove. We are going to proceed by induction on r : assume that the
result is true for r < k , we will show it holds true for r = k.

So, let r = k and consider the prime pk . Sylow’s Theorem (Theorem 9.1.1) implies the existence of
a Sylow pk -subgroup Uk ⊂ A such that |Uk | = pnk

k , and Uk is normal as A is abelian. Hence, we
can consider the (finite abelian) quotient group A/Uk . Since |A/Uk | = |A|/|Uk | = pn1

1 · · · p
nk−1

k−1 , the
induction hypothesis implies that A/Uk is isomorphic to

U1 × · · · × Uk−1,

with each Ui a pi -group of order pni

i . Lemma 11.2.3 implies that

A ∼= (A/Uk )× Uk
∼= U1 × · · · × Uk−1 × Uk .
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12 Lecture 12 - Finite abelian p-groups. The Hall polynomial.

Previous lecture - Next lecture

Keywords: Structure theorem of abelian p-groups. Type of an abelian p-group. Labelled Young
diagrams, Hall polynomial.

12.1 Structure Theorem of finite abelian p-groups

Recall that a p-group is a group G whose order is a power of a prime p.

Theorem 12.1.1. Let A be a finite abelian group, |A| = pr for some prime p. Then, there exists unique
integers r1 ≥ r2 ≥ ... ≥ rk ≥ 1 such that A is isomorphic to

(Z/pr1Z)× (Z/pr2Z)× · · · × (Z/prkZ) .

Proof: We will not discuss the proof of this result - a supplementary note of the the proof will be
posted online for those that are interested. The proof and its contents will not be examinable.

Suppose that A is a finite abelian p-group, B ⊂ A a subgroup. Then, Lagrange’s Theorem implies that
B is a finite abelian p-group; moreover, as B ⊂ A is normal then we can consider the quotient group
B/A and, again by Lagrange’s Theorem, we have that B/A is a finite abelian group. Hence, we can
find sequences of integers

s1 ≥ ... ≥ sl ≥ 1, and t1 ≥ ... ≥ tm ≥ 1,

such that

B ∼= (Z/ps1Z)× · · · × (Z/pslZ) , and A/B ∼=
(
Z/pt1Z

)
× · · · ×

(
Z/ptmZ

)
.

Definition 12.1.2. Let A be a finite abelian p-group. Then, since A is isomorphic to

(Z/pr1Z)× (Z/pr2Z)× · · · × (Z/prkZ) .,

with r1 ≥ r2 ≥ ... ≥ rk ≥ 1, we can associate a partition πA : (r1, ... , rk ) to A - we call πA the type of
A.

12.2 Combinatorics of finite abelian p-groups of type (a, b)

For the remainder of this lecture we will only consider finite abelian p-groups A whose type is
of the form πA : (a, b) - these are those finite abelian p-groups that are isomorphic to

(Z/paZ)× (Z/pbZ), a ≥ b ≥ 1.

Let A be a finite abelian p-group (of type (a, b)), B ⊂ A a subgroup. We are going to investigate the
following

Questions: What are the allowed types of B? How many subgroups of A exist with a given type?

It suffices to consider the case A = (Z/paZ) × (Z/pbZ). Then, any element g ∈ A can be written as
an ordered pair

g = (x , y), x ∈ Z/paZ, y ∈ Z/pbZ.

We will always assume that 0 ≤ x ≤ pa − 1 and 0 ≤ y ≤ pb − 1, so that we will simply write
(x , y) instead of (x , y).

We are going to introduce a pictorial way of representing g ∈ A:
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1. Write x and y in their ‘base p’ expansions

x = ca−1pa−1 + ca−2pa−2 + ... + c1p + c0,

y = db−1pb−1 + db−2pb−2 + ... + d1p + d0.

2. Define the labelled Young diagram associated to g , denoted Yng(g),

ca−1 ca−2 · · · · · · · · · · · · c1 c0

db−1 db−2 · · · d1 d0

If ci = 0 (or di = 0) then we will leave the box empty. In particular,

Yng(eA) =
· · · · · · · · · · · ·

· · ·

We will also refer to the unlabelled diagram Yng(eA) as the Young diagram of A (or πA).

For example, the element (3, 2) ∈ Z/8Z× Z/4Z would be represented as

1 1
1

since a = 3, b = 2 and
3 = 0.4 + 1.2 + 1.1, 2 = 1.2 + 0.1.

Consider the ‘multiplication by p’ homomorphism

mp : A→ A ; (x , y) 7→ (px , py).

We see that, in our pictorial representation,

ca−1 ca−2 · · · · · · · · · c1 c0

db−1 db−2 · · · d1 d0

7→ ca−2 · · · · · · · · · c1 c0

db−2 · · · d1 d0

For example, since 2 · (3, 2) = (6, 0) ∈ Z/8Z× Z/4Z, and 6 = 1.4 + 1.2, then

1 1
1

7→ 1 1

In a similar way, the ‘multiplication by pi ’ homomorphism

mpi : A→ A ; (x , y) 7→ (pi x , pi y),

shifts all entries in the labelled Young diagram Yng(x , y) i entries to the left.

Theorem 12.2.1. Let A be a finite abelian p-group of type λ = (a, b), B ⊂ A a subgroup of type
µ = (r1, r2, ... , rk ). Then, k ≤ 2 and r1 ≤ a, r2 ≤ b.

Proof: It is straightforward to see that r1 ≤ a: otherwise there is an element x ∈ B such that
xpr1

= eB , while xn 6= e for any n < pr1 , implying that there is an element in A of order strictly
larger than pa. Considering how mpa operates on labelled Young diagrams, we see that mpa is the zero
homomorphism on A, so that no such x can exist.

If r2 > b, then we have b < r2 ≤ r1 ≤ a.

In A there are exactly p2−1 elements of order p: every element g ∈ A of order p is a nontrivial element
in ker mp, and these are precisely those elements in A with Yng(g) having empty boxes in every column
except the first, and there must be at least one box in the first column labelled. A quick count sees that
there are p2 − 1 possible ways to label the first column so that this holds. A similar argument shows
that there exists pk − 1 elements in B of order p. However, B ⊂ A so that the maximum number of
elements of order p is no larger than p2 − 1. Hence, pk − 1 ≤ p2 − 1 implying that k ≤ 2.
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Remark 12.2.2. It is also possible to show the following: if A is a finite abelian p-group of type
λ = (a, b), B ⊂ A a subgroup such that A/B has type µ = (s1, ... , sl ), then l ≤ 2 and s1 ≤ a, s2 ≤ b.

If A is a finite abelian p-group of type λ = (a, b), we have just seen that any subgroup B must have
type ν such that the Young diagram of B ‘sits inside’ the Young diagram of A. Moreover, given any
partition ν such that the corresponding Young diagram of ν sits inside the Young diagram of A, there is
a subgroup B ⊂ A of type ν.1 This gives an answer to the first question posed at the beginning
of this lecture. The remaining question - determining the number of subgroups of a given type - is
more subtle.

12.3 The Hall polynomial

Consider the case A = Z/4Z× Z/2Z, so that πA = (2, 1), and the partition ν = (1). Then, the Young
diagram of ν sits inside the Young diagram of πA

∗ → ∗

so that there is a subgroup B ⊂ A such that B ∼= Z/2Z. Notice that the following subgroups are all
isomorphic to Z/2Z

B1 = {(0, 0), (0, 1)}, B2 = {(0, 0), (2, 0)}, B3 = {(0, 0), (2, 1)}.

In fact, this gives all such subgroups of A with type ν = (1), there are 3 = 2 + 1 of them.

You can check that there are 4 = 3 + 1 subgroups in Z/9Z × Z/3Z of type ν = (1), and 6 = 5 + 1
subgroups in Z/25Z× 5Z of type ν = (1). We will see that this type of behaviour is not coincidental;
it is a consequence of the following remarkable Theorem due to Phillip Hall:

Theorem 12.3.1 (Hall polynomial - P. Hall). Let A be a finite abelian p-group of type λ (not necessarily
of type (a, b)), µ, ν arbitrary partitions. Then, there exists a polynomial gλµν(t) with integer coefficients,
called the Hall polynomial corresponding to λ,µ, ν, such that

gλµν(p) = no. of subgroups B ⊂ A of type ν, such that A/B has type µ.

In particular, gλµν(t) is independent of p.

The proof of this result utilises requires techniques that are too sophisticated for a first class in algebra:
it makes use of the pictorial description of elements of A and the combinatorics of (skew) Young
tableaux and Littlewood-Richardson combinatorics, as well as facts on discrete valuation rings.
However, we will content ourselves with a formula for gλµν(t) when ν = (r) - this enables the computation
of the number of cyclic subgroups of A.

Suppose that A is a finite abelian p-group of type λ = (a, b) (as before). Let µ be a partition whose
Young diagram is a subdiagram of the Young diagram of λ, and such that the boxes leftover in the
Young diagram of λ when we ‘delete’ the Young (sub)diagram of µ satisfy the following property: each
leftover box occupies a distinct column.

If (λ,µ) is such a pair of partitions, and the number of leftover boxes equals r , then we say that (λ,µ)
is r-admissable.

For example, if λ = (5, 3) then the allowed µ are given below (the ∗’d subdiagrams):

∗ ∗ ∗ ∗ ∗ , ∗ ∗ ∗ ∗ , ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ , ∗ ∗ ∗ ∗∗ , ∗ ∗ ∗∗

∗ ∗ ∗ ∗ ∗
∗ ∗ , ∗ ∗ ∗ ∗∗ ∗ , ∗ ∗ ∗∗ ∗

1Homework/worksheet problem.
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∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ , ∗ ∗ ∗ ∗∗ ∗ ∗ , ∗ ∗ ∗∗ ∗ ∗

Also, we see that µ = (2, 1) is not allowed:

∗ ∗ •
∗ •

there are two leftover boxes occupying the same column (the •’d boxes).

Definition 12.3.2. Let (λ,µ) be r -admissable. Define

I (λ,µ) = {i ∈ {1, ... , a} | there is a leftover box in column i , but no leftover box in column i + 1}

For example, if λ = (5, 3),µ = (4, 2) then I (λ,µ) = {3, 5} (see above).

Theorem 12.3.3. Let A be a finite abelian p-group of type λ = (a, b), µ = (c , d) a partition such that
(λ,µ) is r -admissable (for r ≤ a). Then,

gλµ(r) =
tb−d

1− t−1

∏
i∈I (λ,µ)

(1− t−mi (λ)).

Here, mi (λ) is the number of times i appears in the partition λ.

Corollary 12.3.4. Let A be a finite abelian p-group of type λ = (a, b). The number of cyclic subgroups
of A of order pr is equal to ∑

µ

gλµ(r)(p),

the sum being taken over all µ such that (λ,µ) is r -admissable.

Example 12.3.5. 1. Let A be a finite abelian p-group of type λ = (2, 1). Then, there are exactly
two partitions µ for which (λ,µ) is 1-admissable - namely µ1 = (2, 0),µ2 = (1, 1), as can be seen

∗ ∗ , ∗∗

In this case I (λ,µ1) = {1}, I (λ,µ2) = {2}, so that

gλµ1(r)(t) =
t

1− t−1

(
1− t−1

)
= t,

since i = 1 appears once in λ, and

gλµ2(r)(t) =
1

1− t−1

(
1− t−1

)
= 1,

since i = 2 appears once in λ. Hence, the number of cyclic subgroups of A of order p is p + 1.

2. Let A be a finite abelian p-group of type (a, b) with a > b. Then, there is exactly one partition
µ for which (λ,µ) is a-admissable: µ = (b, 0). In this case, I (λ,µ) = {a} so that

gλ(b)(a)(t) =
tb

1− t−1

(
1− t−1

)
= tb.

Hence, there are pb cyclic subgroups of order pa in Z/paZ× Z/pbZ.
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13 Lecture 13 - Structure Theorem of finitely generated abelian
groups.

Previous lecture

Keywords: Elementary divisors, invariant factors. Classification of finite abelian groups. Finitely
generated abelian groups, free abelian groups. Torsion subgroup.

In this Lecture we will only be considering abelian groups and will always write the law of composition
additively. We are going to provide a complete classification of abelian groups that can be generated
by a finite number of elements - we will see that such groups can be written as a direct product of an
infinite subgroup and a finite subgroup. The infinite subgroup will obey similar properties to a (finite
dimensional) vector space; in particular, it admits a well defined rank (analogue of dimension for a
vector space).

13.1 Classification of finite abelian groups

Let A be a finite abelian group. We have seen the following results for A:

Theorem (Theorem 11.2.1). If |A| = pn1
1 · · · pnr

r , with p1, ... , pr distinct primes, then

A ∼= U1 × · · · × Ur ,

where Ui is a pi -group, |Ui | = pni

i . Moreover, Ui is the Sylow pi -subgroup of A.

Theorem (Theorem 12.1.1). If U is a p-group, say |U| = pr , then there exists unique integers r1 ≥
... ≥ rk ≥ 1 such that r =

∑k
i=1 ri and

U ∼= (Z/pr1Z)× · · · × (Z/prkZ).

These results imply the following:

every finite abelian group is isomorphic to a product of cyclic groups.

Since the product of cyclic groups Z/3Z×Z/2Z is isomorphic to the cyclic group Z/6Z - Z/2Z×Z/3Z is
generated by (1, 1), for example - we see that a finite abelian group may be isomorphic to different
products of cyclic groups. In general, we have already seen that

Lemma 13.1.1. Let a1, ... , ak be positive integers and, for i = 1, ... , k, denote bi = a1 · · · ai−1ai+1 · · · ak .
Assume that gcd(ai , bi ) = 1, for each i = 1, ... , k. Then,

(Z/a1Z)× · · · × (Z/akZ) ∼= Z/a1 · · · akZ.

Question: Is there a way to write a finite abelian group uniquely as a product of cyclic groups?

Suppose that A is a finite abelian group such that |A| = pn1
1 · · · pnm

m , and let πi = (r1,i , ... , rki ,i ) be the
type of the Sylow pi -subgroup Ui of A, so πi is a partition of ni . Hence, we have

Ui
∼= (Z/p

r1,i

i Z)× · · · (Z/p
rki ,i

i Z).

Definition 13.1.2. Define the elementary divisors of A to be the prime powers appearing above:

p
r1,1

1 , ... , p
rk1,1

1 , p
r1,2

2 , ... , p
rk2,2

2 , ... , pr1,m
m , ... , p

rkm ,m
m .

Let k = max{k1, ... , km}. Define the invariant factors of A to be the following integers: for i = 1, ... , k,

ci = p
ri ,1

1 · · · p
ri ,m
m ,

where, if ri ,j is not defined we omit the prime pj in the product (eg. if i > kj ).
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Example 13.1.3. Suppose that

A = Z/16Z× Z/2Z× Z/9Z× Z/3Z× Z/3Z× Z/25Z.

The elementary divisors of A are 24, 2, 32, 3, 3, 52. The invariant factors are

c1 = 24.32.52 =, c2 = 2.3, c3 = 3.

Lemma 13.1.4. Let A be a finite abelian group and c1, ... , cm its invariant factors. Then, ci+1 divides
ci .

Proof: Homework/worksheet problem.

Combining the above Theorems with Lemma 13.1.1 and Lemma 13.1.4 shows that the answer to the
question posed is yes!

Theorem 13.1.5 (Classification of finite abelian groups). Let A be a finite abelian group, |A| = n.
Then, there exists unique integers c1, ... , ck such that ci+1 divides ci , and A is isomorphic to

(Z/c1Z)× · · · × (Z/ckZ).

Example 13.1.6. Theorem 13.1.5 allows us to determine all possible finite abelian groups of a given
order. For example, we will determine all finite abelian groups of order n = 25.11 = 352:

1. Denote p1 = 2, p2 = 11, n1 = 5, n2 = 1 (the exponents of the primes appearing in the prime
decomposition of n).

2. Determine all possible elementary divisors: this amounts to determining all partitions of n1, n2.
We see that

5, 14, 23, 123, 122, 132, 15,

are all partitions of n1 = 5, and there is exactly one partition of n2 = 1.

3. For each list of partitions (λ1,λ2) of (n1, n2) we write down the corresponding elementary divisiors:

(5, 1) : 25, 11,

(14, 1) : 24, 2, 11,

(23, 1) : 23, 22, 11,

(123, 1) : 23, 2, 2, 11,

(122, 1) : 22, 22, 2, 11,

(132, 1) : 22, 2, 2, 2, 11,

(15, 11) : 2, 2, 2, 2, 2, 11.

4. For each of the collection of elementary divisors listed determine the invariant factors:

(5, 1) : c1 = 25.11,

(14, 1) : c1 = 24.11, c2 = 2,

(23, 1) : c1 = 23.11, c2 = 22,

(123, 1) : c1 = 23.11, c2 = 2, c3 = 2,

(122, 1) : c1 = 22.11, c2 = 22, c3 = 2,

(132, 1) : c1 = 22.11, c2 = 2, c3 = 2, c4 = 2,

(15, 11) : c1 = 2.11, c2 = 2, c3 = 2, c4 = 2, c5 = 2.
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5. List the possible groups with the given invariant factors:

(5, 1) : Z/(25.11)Z,

(14, 1) : Z/(24.11)Z× Z/2Z,

(23, 1) : Z/(23.11)Z× Z/22Z,

(123, 1) : Z/(23.11)Z× Z/2Z× Z/2Z,

(122, 1) : Z/(22.11)Z× Z/22Z× Z/2Z,

(132, 1) : Z/(22.11)Z× Z/2Z× Z/2Z× Z/2Z,

(15, 11) : Z/(2.11)Z× Z/2Z× Z/2Z× Z/2Z× Z/2Z.

Every finite abelian group of order 352 is isomorphic to precisely one of the groups listed.

13.2 Finitely generated abelian groups

Definition 13.2.1. Let G be an abelian group. We say that G is finitely generated if there exists
{g1, ... , gn} ⊂ G such that, for every g ∈ G , there exist integers r1, ... , rn with

g = r1g1 + · · ·+ rngn.

If such a set {g1, ... , gn} exists then we will call it a spanning set of G (in analogy with spanning sets
in the theory of vector spaces).

We say that a finitely generated abelian group G is free( if there exists a spanning set {g1, ... , gn} of G
such that, for every g ∈ G , there exists unique integers r1, ... , rn with

g = r1g1 + · · ·+ rngn.

In this case we will call such a spanning set {g1, ... , gn} a basis of G and define the rank of G to be n
(the size of a basis).1

It is tempting to think of (finitely generated) free abelian groups as being ‘the same as’ vector spaces:
this means that both objects possess similar properties. This is true in some respects (eg. Lemma ??),
but there is a major difference - if G is a free group of rank n then G can contain a subgroup H,
H 6= G , that is free and has rank n. For example, the group Z is a free abelian group of rank 1, and
the subgroup 2Z = {2x | x ∈ Z} ⊂ Z, is also a free group of rank 1.

Example 13.2.2. 1. Any finite abelian group A is finitely generated - a set of generators is given by
A itself!

2. For any n ≥ 1, the abelian group

Zn = Z
n times
× · · ·× Z

is finitely generated and free - a basis is given by {(1, 0, ... , 0), (0, 1, 0 ... , 0), ... , (0, ... , 0, 1)}.

3. Let A be a finite abelian group, n ≥ 1. Then, Zn × A is finitely generated. In fact, if G and H
are finitely generated then so is G × H.

4. The abelian group (Q, +) is not finitely generated: if {x1, ... , xn} ⊂ Q were a spanning set, with
xi = ai/bi , gcd(ai , bi ) = 1, then we have, for any integers r1, ... , rn

r1x1 + ... + rnxn =
y

b1 · · · bn
, for some y ∈ Z.

In particular, if c > |b1 · · · bn| then it is not possible to write 1
c as a linear combination of

{x1, ... , xn}.

In fact, Example 3 above gives essentially all examples of finitely generated abelian groups, as we will
see in the next section.

1This is a well-defined definition - if {g1, ... , gn} and {h1, ... , hm} are two bases of G then n = m. We will not see a
proof of this fact in this course, however.
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13.3 Structure theorem of finitely generated abelian groups

Definition 13.3.1. Let G be an abelian group. Define the torsion subgroup of G to be

Gtor = {g ∈ G | g has finite order}.

This is a well-defined definition - namely, Gtor is a subgroup of G .

Lemma 13.3.2. Let G be a finitely generated abelian group, Gtor the torsion subgroup of G . Then,
Gtor is a finite abelian group.

Lemma 13.3.3. Let G be a finitely generated abelian group, Gtor the torsion subgroup of G . Then,
G/Gtor is a (finitely generated) free abelian group.

Theorem 13.3.4 (Structure Theorem of finitely generated abelian groups). Let G be a finitely generated
abelian group. Then, there exists a finitely generated free abelian group F and a finite abelian group A
such that G is isomorphic to F × A. Moreover, A is isomorphic to Gtor .
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structure theorem of cyclic groups, 21
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structure theorem of finite abelian p-groups, 46
structure theorem of finite abelian groups, 44
structure theorem of finitely generated abelian groups,

53
subgroup, 9
subgroup generated by g 〈g〉 , 10
Sylow p-subgroup, 36
Sylow’s Theorems, 36
symmetric group Sn, 11

torsion subgroup, 53
transitive, 26
trivial element, 9
trivial subgroup, 10
type of abelian p-group, 46

word, 12
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