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8 CHAPTER 1. INTRODUCTION

The purpose of this book is to collect all fundamental results for decision
making under uncertainty in one place, much as the book by Puterman on
Markov decision processes did for Markov decision process theory. In particu-
lar, the aim is to give a unified account of algorithms and theory for sequential
problems and reinforcement learning. Starting from elementary statistical deci-
sion theory, we progress to the reinforcement learning problem, its formalisation
and various solution methods. The end of the book focuses on the current state
of the art in approximations.

The book may be read as follows . . .

The problem of decision making under uncertainty

� Modelling our uncertainty about the world ⇒ learning

� Optimising our decisions given our knowlege ⇒ planning

Applications and related problems

� Optimisation: robust decisions, efficient search, planning.

� AI: modelling, learning from interaction and/or demonstration.

� Economics: Mechanism design, behavioural modelling.

� Security: Cryptography, Biometrics, Intrusion detection and response

� Biology and Medicine: Automatic experiment design, clinical trials,
congitive science.

Planning and learning are connected through the exploration-exploitation
trade-off.

1.1 Exploration-exploitation

1.1.1 Introduction

The exploration-exploitation trade-off

Example 1.1.1 (Selecting a restaurant). Consider the problem of selecting the
restaurant to go to.

� You usually go to Les Epinards. The food there is usually to your taste
and satisfactory.

� You heard that King’s Arm is really good! It is tempting to try it out. But
there is a risk involved.
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� It’s Friday. Do you:

– Go to Les Epinards?

– Call King’s Arm to reserve?

– Check the menu of King’s Arm and then decide?

The exploration-exploitation trade-off

� Exploit knowledge about the world to gain a known reward.

� Explore the world to learn, potentially getting less or more reward.

� Arises when data collection is interactive.

Formalising decision problems

� How do our decisions depend on what we want?

� How do we weigh alternatives?

� Is there a good concept of rationality?

Beliefs, learning and planning

� How can we express belief and how does belief change?

� How might we make decisions according to our beliefs?

� What if our decisions can affect our beliefs?

Why decision theory?

� Formalising trade-offs makes problems well-posed.

� Better overall solutions could be found.

� We may ignore non-essential aspects.

Reinforcement learning is the problem of learning to act in an unknown
environment, solely through interaction and some limited feedback. The learner
does not necessarily have access to detailed instructions on how to perform a
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task. Instead, it performs actions, which affect the environment and obtains
some feedback. Sometimes the actions result in rewards, which represent the
agent’s desires. The learning problem is then formulated as the problem of
learning how to act to maximise total reward.

This is a fundamental problem in artificial intelligence, since frequently we
can tell robots, computers and cars only what we want them to do, but have no
idea how we can program them. We would like to simply give them a description
of our goals and then let them explore the environment on their own to find a
good solution. Since the world is partially unknown, the learner always has
to decide between two general types of decisions. It can either decide to do
something which will give it some known reward, or it could take a risk and try
something new. This is called the exploration-exploitation tradeoff.

Of course, animals and humans do learn in this way. Through imitation,
exploration and reward signals, humans shape their behaviour to achieve their
goals. In fact, it has been known since the 90s that there is some connection
between some reinforcement learning algorithms and mechanisms in the basal
ganglia.

Finally, there are many connections between reinforcement learning and
other fields. Some algorithms used for reinforcement learning are also equiva-
lent to fundamental algorithms in other fields. In particular, the general Bayes-
optimal reinforcement learning algorithm is formally identical to Bayes-optimal
algorithms for the automatic design of experiments and clinical trials. In addi-
tion, algorithms developed for more specialised problems have found application
in optimisation of stochastic functions and game-theoretic problems.

Outline

* Probability refresher. Measure theory; Axiomatic definition of probability;
Conditional probability; Bayes’ theorem; Random variables; Expectation

1. Subjective probability and utility. The notion of subjective probability;
eliciting priors; the concept of utility; expected utility

2. Decision problems. maximising expected utility; maximin utility; regret;

3. Estimation. Estimation as conditioning; families of distributions that are
closed under conditioning; conjugate priors; concentration inequalities;
PAC and high-probability bounds; (*) Markov Chain Monte Carlo; (*)
ABC estimation

* Hypothesis testing. Bayesian hypothesis testing; point hypotheses; null
hypothesis testing; unconditional and conditional hypothesis test proce-
dures; frequentist testing; the fallacy of p-values

4. Sequential sampling and optimal stopping. Sequential sampling problems;
the cost of sampling; optimal stopping; Martingales

5. Automatic experiment design and bandit problems. Belief and informa-
tion state; bandit problems; Markov decision processes; backwards induc-
tion
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6. Reinforcement learning I: Markov decision processes and fundamental al-
gorithms. simple learning strategies for bandit problems; Markov decision
processes; value iteration; policy iteration; policy search; model-free meth-
ods

7. Reinforcement learning II: Stochastic and approximation algorithms Q-
learning; approximate value iteration; approximate policy iteration

8. Reinforcement learning III: Generalised problems. continuous case; par-
tially observable case; (*) multi-agent case

9. Project meeting.

10. Reinforcement learning IV: Bayesian algorithms Bounds on the utility;
Thompson sampling; Stochastic Branch and Bound; Sparse sampling;
Rollout sampling;

11. Reinforcement learning V: Bandit algorithms and regret Tree and metric
bandits; UCRL; (*) Bounds for Thompson sampling

12. Project meeting.

13. Learning with expert advice Regret; Prediction with expert advice; Predic-
tion with incomplete information; Prediction with side-information; Con-
nections with game theory

14. Learning by demonstration; Preference Elicitation

Assessment

Exercises and feedback: 40%

� Exercises after every unit.

� Exercise sets include feedback form.

� Necessary for a good project!

Participation: 10%

� Active participation in the course.

� Corrections on course notes.

Project: 50%
Competition, presentation and report.
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� Team competition using rl-glue socket API.

� Each team codes:

– An environment (test-bed).

– An agent.

� Agents are evaluated on all environments.

Themes

� Models for representing belief and preferences.

� Algorithms for decision making.

� Fast optimisation.

� Applications in finance.

� Decision making in animals.

� Inferring preferences and beliefs.

� Automatic design of experiments.
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14 CHAPTER 2. PROBABILITY CONCEPTS

2.1 Probability

Two notions of probability

While probability is a simple mathematical construction, philosophically it
has had at least two different meanings. In the classical sense, a probability
distribution is a description for a truly random event. In the subjectivist sense,
probabilty is merely a description for uncertainty which may or may not be due
to randomness.

Classical Probability

� A random experiment is performed, with a given set Ω of possible
outcomes. A simple example is the 2-slit experiment in physics,
where a particle is generated and which can go through either one of
two slits. According to our current understanding of quantum theory,
it is impossible to predict which slit the particle will go through.
There, the set of possible events correspond to the particle passing
through one or the other slit.

� We care about the probability that the particle will go through one of
the two slots in the experiment. Does it depend on where the other
particles have passed through? In the 2-slit experiment, the proba-
bilities of either event can be actually accurately calculated. However,
which slit the particle will go through is fundamentally unpredictable.

Such quantum experiments are the only ones that are currently thought of
as truly random (though some people disagree about that too). Any other
procedure, such as tossing a coin or casting a die, is inherently deterministic
and only appears random due to the difficulty in predicting the outcome.
That is, modelling a coin toss as a random process is usually the best
approximation we can make in practice, given our uncertainty about the
complex dynamics involved.

Subjective Probability

� We assume that Ω is a set of possible worlds or realities, This set can
be quite large and include anything imaginable. For example, it may
include worlds where dragons are real. However, in practice one only
cares about certain aspects of the world.

� We can interpret the probability of a world in Ω as a belief that it is
the true world.

In such a setting there is an actual true world ω∗ ∈ Ω, which is simply
unknown. This could have been set by Nature to an arbritrary value deter-
ministically. The probability only reflects our lack of knowledge.
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2.1.1 Sets, experiments and sample spaces

Set theory definitions

A very useful way to describe a set A is as follows

A , {x | x have property Y }

for example

B(c, r) , {x ∈ R
n | ‖x− c‖ ≤ r}

describes the set of points enclosed in an n-dimensional sphere of radius r with
center c ∈ R

n.

� If an element x belongs to a set A, we write x ∈ A.

� Let the sample space Ω be a set such that ω ∈ Ω always.

� We say that A is a subset of B or that B contains A, and write A ⊂ B,
iff, x ∈ B for any x ∈ A.

� Let B \A , {x | x ∈ B ∧ x /∈ A} be the set difference.

� Let A △ B , (B \A) ∪ (A \B) be the symmetric set difference.

� The complement of any A ⊂ Ω is A∁ , Ω \A.

� The empty set is ∅ = Ω∁.

� The union of n sets: A1, . . . , An is
⋃n
i=1Ai = A1 ∪ · · · ∪An.

� The intersection of n sets A1, . . . , An is
⋂n
i=1Ai = A1 ∩ · · · ∩An.

� A and B are disjoint if A ∩B = ∅.

Experiments and sample spaces

Experiments
The set of possible experimental outcomes of an experiment is called the
sample space Ω.

� Ω must contain all possible outcomes.

� Each statistician i may consider a different Ωi for the same experi-
ment.

Example 2.1.1. Experiment: give medication to a patient.

� Ω1 = {Recovery within a day,No recovery after a day}.

� Ω2 = {The medication has side-effects,No side-effect}.

� Ω3 = all combinations of the above.
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Product spaces

� We perform n experiments.

� Assume that the i-th experiment has sample space Ωi.

� The Cartesian product or product space is defined as

Ω1 × · · · ×Ωn = {(s1, . . . , sn) | si ∈ Ωi, ∀i ∈ {1, . . . , n}} (2.1.1)

the set of all ordered n-tuples (s1, . . . , sn).

� The sample space
∏n
i=1Ωi can be thought of as a sample space of a com-

posite experiment in which all n experiments are performed.

Identical experiment sample spaces

� In many cases, Ωi = Ω for all i, i.e. the sample space is identical for
all individual experiment (e.g. n coin tosses).

� We then write Ωn =
∏n
i=1Ω.

2.1.2 Events, measure and probability

Events and probability

Probability of a set
If A is a subset of Ω, the probability of A is a measure of the chances that
the outcome of the experiment will be an element of A.

Which sets?

Ideally, we would like to be able to assign a probability to every subset
of Ω. However, for technical reasons, this is not possible.

Example 2.1.2. Let X be uniformly distributed on [0, 1].

� What is the probability that X will be in [0, 1/4)?

� What is the probability that X will be in [1/4, 1]?

� What is the probability that X will be a rational number?
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Figure 2.1: A fashionable apartment

Measure theory primer
Imagine that you have an apartment Ω composed of three rooms, A,B,C.

There are some coins on the floor and a 5-meter-long red carpet. We can measure
various things in this apartment.

Area

� A: 4× 5 = 20m2.

� B: 6× 4 = 24m2.

� C: 2× 5 = 10m2.

Coins on the floor

� A: 3.

� B: 4

� C: 5.

Length of red carpet

� A: 0m

� B: 0.5m

� C: 4.5m.

Measure the sets: F = {∅, A,B,C,A ∪B,A ∪ C,B ∪ C,A ∪B ∪ C}. It is
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easy to see that the union of any sets in F is also in F . In other words, F is
closed under union. Furthermore, F contains the whole space Ω.

Note that all those measures have an additive property.

Measure and probability
As previously mentioned, the probability of A ⊂ Ω is a measure of the

chances that the outcome of the experiment will be an element of A. Here we
give a precise definition of what we mean by measure and probability.

Definition 2.1.1 (A field on Ω). A family F of sets, such that for each A ∈ F ,
A ⊂ Ω, is called a field on Ω if and only if

1. Ω ∈ F

2. if A ∈ F , then A∁ ∈ F .

3. For any A1, A2, . . . , An such that Ai ∈ F , it holds that:
⋃n
i=1Ai ∈ F .

From the above definition, it is easy to see that Ai ∩Aj is also in the field.

Definition 2.1.2 (σ-field on Ω). A family F of sets, such that ∀A ∈ F , A ⊂ Ω,
is called a σ-field on Ω if and only if

1. Ω ∈ F

2. if A ∈ F , then A∁ ∈ F .

3. For any sequence A1, A2, . . . such that Ai ∈ F , it holds that:
⋃∞
i=1Ai ∈ F .

It is easy to verify that the F given in the apartment example satisfies these
properties.

Definition 2.1.3 (Measure). A measure λ on (Ω,F) is a function λ : F → R
+

such that

1. λ(∅) = 0.

2. λ(A) ≥ 0 for any A ∈ F .

3. For any collection of subsets A1, . . . , An with Ai ∈ F and Ai ∩Aj = ∅.

λ

( ∞⋃

i=1

Ai

)
=

∞∑

i=1

λ(Ai) (2.1.2)

It is easy to verify that the floor area, the number of coins, and the length of
the red carpet are all measures. In fact, the area and length correspond to what
is called a Lebesgue measure and the number of coins to a counting measure.

Definition 2.1.4 (Probability measure). A probability measure P on (Ω,F) is
a function P : F → [0, 1] such that:

1. P (Ω) = 1

2. P (∅) = 0

3. P (A) ≥ 0 for any A ∈ F .
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4. If A1, A2, . . . are disjoint then

P

( ∞⋃

i=1

Ai

)
=

∞∑

i=1

P (Ai) (union)

(S,F , P ) is called a probability space.

So, probability is just a special type of measure.

The Lebesgue measure

Definition 2.1.5 (Outer measure). Let (Ω,F , λ) be a measure space. The outer
measure of a set A ⊂ Ω is:

λ∗ , inf A ⊂
⋃

k

Bk
∑

k

λ(Bk). (2.1.3)

Definition 2.1.6 (Inner measure). Let (Ω,F , λ) be a measure space. The outer
measure of a set A ⊂ Ω is:

λ∗ , λ(Ω)− λ(Ω \A). (2.1.4)

Definition 2.1.7 (Lebesgue measurable sets). A set A is (Lebesgue) measurable
if the outer and inner measures are equal.

λ∗(A) = λ∗(B). (2.1.5)

The common value of the inner and outer measure is called the Lebesgue mea-
sure1 λ̄ = λ∗(A).

2.1.3 Conditioning and independence

Independent events and conditional probability
Events correspond to sets. Thus, the probability of the event that a draw

from Ω is in A is equal to the probability measure of A, P (A).

Definition 2.1.8 (Independent events). Two events A,B are independent if
P (A ∩B) = P (A)P (B). The events in a family F of events are independent if
for any sequence A1, A2, . . . of events in F ,

P

(
n⋂

i=1

Ai

)
=

n∏

i=1

P (Ai) (independence)

Definition 2.1.9 (Conditional probability). The conditional probability of A
when B, s.t. P (B) > 0, is given is:

P (A | B) ,
P (A ∩B)

P (B)
. (2.1.6)

Of course, P (A ∩B) = P(A | B)P(B) even if A,B are not independent.

1It is easy to see that λ̄ is a measure.
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w

hB

A S

Figure 2.2: In the above case, S is a unit square and taking P to be the Lebesgue
measure, we see that P (S) = 1·1, P (A) = 1·w, P (B) = h·1 and P (A∩B) = wh,
so A and B are independent.
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Bayes’ theorem
The following theorem trivially follows from the above discussion. However,

versions of it shall be used repeatedly throughout. For this reason we present
it here together with a detailed proof.

Theorem 2.1.1 (Bayes’ theorem). Let A1, A2, . . . be a (possibly infinite) se-
quence of disjoint events such that

⋃∞
i=1Ai = Ω and P (Ai) > 0 for all i. Let B

be another event with P (B) > 0. Then

P (Ai | B) =
P (B | Ai)P (Ai)∑∞
j=1 P (B | Aj)P (Aj)

(2.1.7)

Proof. From (2.1.6), P (Ai | B) = P (Ai ∩B)/P (B) and also P (Ai∩B) = P (B |
Ai)P (Ai). Thus

P (Ai | B) =
P (B | Ai)P (Ai)

P (B)
,

and we continue analyzing the denominator P (B). First, due to
⋃∞
i=1Ai = Ω

we have B =
⋃∞
j=1(B ∩ Aj). Since Ai are disjoint, so are B ∩ Ai. Then from

the union property of probability distributions we have

P (B) = P




∞⋃

j=1

(B ∩Aj)


 =

∞∑

j=1

P (B ∩Aj) =
∞∑

j=1

P (B | Aj)P (Aj),

which finishes the proof.

Binomial coefficients
Binomial coefficients appear in a lot of different distributions. They are

especially useful for combinatorial problems.

(
x

n

)
,

∏n−1
i=0 (x− i)

n!
, x ∈ R, n ∈ N, (2.1.8)

and
(
x
0

)
= 1. It follows that

(
k

n

)
=

k!

n!(k − n)!
k, n ∈ N, k ≥ n. (2.1.9)

2.2 Random variables

Random variables
A random variable X is a special kind of random quantity, defined as a real

function of outcomes in Ω. Thus, it also defines a mapping from a probability
measure P on (Ω,F) to a probability measure PX on (R,B(R)). More precisely,
we define the following.

Definition 2.2.1 (Measurable function). Let F on Ω be a σ-field. A function
g : Ω → R is said to be measurable with respect to F , or F-measurable, if, for
any x ∈ R,

{s ∈ Ω | g(s) ≤ x} ∈ F .
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Figure 2.3: A distribution function F

Definition 2.2.2 (Random variable). Let (Ω,F , P ) be a probability space. A
random variable X : Ω → R is a real-valued, F-measurable function.

The distribution of X

Every random variable X induces a probability measure PX on R. For
any B ⊂ R we define

PX(B) = P(X ∈ B) = P ({s | X(s) ∈ B}). (2.2.1)

Thus, the probability that X is in B is equal to the P -measure of the points
s ∈ Ω such that X(s) ∈ B and also equal to the PX -measure of B.

Here P is used as a short-hand notation.

Exercise 1. Ω is the set of 52 playing cards. X(s) is the value of each card
(1, 10 for the ace and figures respectively). What is the probability of drawing a
card s with X(s) > 7?

(Cumulative) Distribution functions

Definition 2.2.3 ((Cumulative) Distribution function). The distribution func-
tion of a random variable X is the function F : R → R:

F (t) = P(X ≤ t). (2.2.2)

Properties

� If x ≤ y, then F (x) ≤ F (y).

� F is right-continuous.

� At the limit,
lim

t→−∞
F (t) = 0, lim

t→∞
F (t) = 1.
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2.2.1 Discrete and continuous random variables

Types of distributions
On the real line, there are two types of distributions for a random variable.

Here, once more, we employ the P notation as a shorthand for the probability
of general events involving random variables, so that we don’t have to deal with
the measure notation. The two following examples should give some intuition.

Discrete distributions
X : Ω → {x1, . . . , xn} takes n discrete values (n can be infinite). The
probability function of X is

f(x) , P(X = x),

defined for x ∈ {x1, . . . , xn}. For any B ⊂ R:

PX(B) =
∑

xi∈B
f(xi).

In addition, we write P(X ∈ B) to mean PX(B).

Continuous distributions
X has a continuous distribution if there exists a probability density function
f s.t. ∀B ⊂ R:

PX(B) =

∫

B

f(x) dx.

It is possible that X has neither a continuous, nor a discrete distribution.

2.2.2 Random vectors

Generalisation to R
m

We can generalise to random vectors in a Euclidean space. Once more, there
are two special cases of distributions for the random vector X = (X1, . . . , Xn).

Discrete distributions

P(X1 = x1, . . . , Xm = xm) = f(x1, . . . , xm)

Continuous distributions
For B ⊂ R

m

P {(X1, . . . , Xm) ∈ B} =

∫

B

f(x1, . . . , xm) dx1 · · · dxm
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Measure-theoretic notation
The previously seen special cases can be handled with a unified notation if we

take advantage of the fact that probability is only a particular type of measure.
As a first step, we note that summation can also be seen as integration with
respect to the counting measure and that Riemann integration is integration
with respect to the Lebesgue measure.

Integral with respect to a measure µ

Introduce the common notation
∫
· · · dµ(x), where µ is a measure. Let

some real function g : Ω → R. Then for any subset B ⊂ Ω we can write

� Discrete case: f is the probability function and we choose the counting
measure for µ, so:

∑

x∈B
g(x)f(x) =

∫

B

g(x)f(x) dµ(x)

Roughly speaking, the counting measure µ(Ω) is equal to the number
of elements in Ω.

� Continuous case: f is the probability density function and we choose
the Lebesgue measure for µ, so:

∫

B

g(x)f(x) dx =

∫

B

g(x)f(x) dµ(x)

Roughly speaking, the Lebesgue measure µ(S) is equal to the volume
of S.

In fact, since probability is a measure in itself, we do not need to complicate
things by using f and µ at the same time! This allows us to use the following
notation.

Lebesgue-Stiletjes notation
If P is a probability measure on (Ω,F) and B ⊂ Ω, and g is F-measurable,
we write the probability that g(x) takes the value B can be written equiv-
alently as:

P(g ∈ B) = Pg(B) =

∫

B

g(x) dP (x) =

∫

B

g dP. (2.2.3)

Intuitively, dP is related to densities in the following way. If P is a measure
on Ω and is absolutely continuous with respect to another measure µ, then
p , dP

dµ is the (Radon-Nikodyn) derivative of P with respect to µ. We write

the integral as
∫
gpdµ. If µ is the Lebesgue measure, then p coincides with the

probability density function.
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Marginal distributions and independence
Although this is a straightforward outcome of the set-theoretic definition of

probability, we also define the marginal explicitly for random vectors.

Marginal distribution
The marginal distribution of X1, . . . , Xk from a set of variables X1, . . . , Xm,
is

P(X1, . . . , Xk) ,

∫
P(X1, . . . , Xk, Xk+1 = xk+1, . . . , Xm = xm) dµ(xk+1, . . . , xm).

(2.2.4)

In the above, P(X1, . . . Xk) can be thought of as the probability measure
for any events related to the random vector (X1, . . . , Xk). Thus, it defines
a probability measure over

(
R
k,B

(
R
k
))
. In fact, let Y = (X1, . . . , Xk) and

Z = (Xk+1, . . . , Xm) for simplicity. Then define Q(A) , P(Z ∈ A), with
A ⊂ R

m−k−1. Then the above can be re-written as:

P(Y ∈ B) =

∫

Rm−k−1

P(Y ∈ B | Z = z) dQ(z).

Similarly, P(Y | Z = z) can be thought of as a function mapping from values
of Z to probability measures. Let Pz(B) , P(Y ∈ B | Z = z) be this measure
corresponding to a particular value of z. Then we can write

P(Y ∈ B) =

∫

Rm−k−1

(∫

B

dPz(y)

)
dQ(z).

Independence
If Xi is independent of Xj for all i 6= j:

P(X1, . . . , Xm) =

M∏

i=1

P(Xi), f(x1, . . . , xm) =

M∏

i=1

gi(xi) (2.2.5)

2.2.3 Moments

There are some simple properties of the random variable under consideration
which are frequently of interest in statistics. Two of those properties are expec-
tation and variance.

Expectation

Definition 2.2.4. The expectation E(X) of any random variable X : Ω →
R,where R is a vector space, with distribution PX is defined by

E(X) ,

∫

R

t dPX(t), (2.2.6)

as long as the integral exists.
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Furthermore,

E[g(X)] =

∫
g(t) dPX(t),

for any function g.

Variance

Definition 2.2.5. The variance V(X) of any random variable X : Ω → R with
distribution PX is defined by

V(X) ,

∫ ∞

−∞
[t− E(X)]

2
dPX(t)

= E
{
[X − E(X)]

2
}

= E(X2)− E2(X).

(2.2.7)

When X : Ω → R with R an arbitrary vector space, the above becomes the
covariance matrix :

V(X) ,

∫ ∞

−∞
[t− E(X)] [t− E(X)]

⊤
dPX(t)

= E
{
[X − E(X)] [X − E(X)]

⊤
}

= E(XX⊤)− E(X)E(X)⊤.

(2.2.8)

Divergences
One useful idea is KL-divergences on measures.

Definition 2.2.6. KL-Divergence

D (P ‖ Q) ,

∫
dP

dQ
dP. (2.2.9)

Empirical distributions

Definition 2.2.7. Let xn = (x1, . . . , xn) drawn from a product measure xn ∼
Pn on the measurable space (Xn,Fn). Let S be any σ-field on X . Then empir-
ical distribution of xn is defined as

P̂n(B) ,
1

n

n∑

t=1

I {xt ∈ B} . (2.2.10)

2.3 Conclusion

Recommended further reading
Most of this material is based on DeGroot [1970]. See Kolmogorov and Fomin

[1999] for a really clear exposition of measure, starting from rectangle areas
(developed from course notes in 1957). Also see Savage [1972] for a verbose, but
interesting and rigorous introduction to subjective probability. More technical
books, such as Ash and Doleéans-Dade [2000] are not very approachable by
non-math graduates.



2.3. CONCLUSION 27

Summary

� Sample space Ω contains all possible outcomes of an experiment.

� σ-field F s.t. ∀A,B ∈ F , A ⊂ Ω, A ∪B ∈ F , Ω ∈ F .

� Measurable space (Ω,F), measure space (Ω,F , µ).

� Measure µ : F → R such that µ(∅) = 0, and µ(Ai) ≥ 0 for any Ai ∈ F .
For disjoint Ai, µ (

⋃
iAi) =

∑
i µ(Ai).

� Probability space (Ω,F , P ), with probability measure P such that P (Ω) =
1.

� Probability that x ∈ A:

P(x ∈ A) , P (A) =

∫

A

dP (t), A ⊂ Ω

� Expectation of X : Ω → Z

E(X) ,

∫

Ω

X(t) dP (t) =

∫

Z

u dPX(u)

� Conditional probability

P(A | B) =
P(A,B)

P(B)
, P (A | B) =

P (A ∩B)

P (B)
,

� Marginal distribution

P(B) =
∑

i

P(B,A = i),
∑

i

P(A = i) = 1,

P (B) =
∑

i

P (B ∩Ai),
⋃

i

Ai = Ω.

� If A,B are independent

P(A,B) = P(A)P(B), P (A ∩B) = P (A)P (B).
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3.1 Subjective probability

In order to make decisions, we need to be able to make predictions about the
possible outcomes of each decision. Usually, we have uncertainty about what
those outcomes are. This can be due to stochasticity, which is frequently used to
model games of chance and inherently unpredictable physical phenomena. It can
also be due to partial information, a characteristic of many natural problems.
For example, it might be hard to guess at any one moment how much change
you have in your wallet, whether you will be able to catch the next bus, or to
remember where you left your keys.

In either case, this uncertainty can be expressed as a subjective belief. This
does not have to correspond to reality. For example, some people believe, quite
inaccurately, that if a coin comes up tails for a long time, it is quite likely to
come up heads very soon. Or, you might quite happily believe your keys are in
your pocket, only to realise that you left them at home as soon you arrive at
the office.

In this book, we assume the view that subjective beliefs can be modelled as
probabilities. This allows us to treat uncertainty due to stochasticity and due to
partial information in a unified framework. In doing so, we shall treat each part
of the problem as specifying a space of possible outcomes. What we wish to do
is to find a consistent way of defining probabilities in the space of outcomes.

3.1.1 Relative likelihood

Let us consider the simple example of guessing whether a tossed coin will come
up head, or tails. Let S be the sample space, and let A ⊂ S be the set of tosses
where the coin comes up heads, and B ⊂ S be the set of tosses where it comes
up tails. Here A ∩B = ∅, but there may be some other events such as the coin
becoming lost, so it does not necessarily hold that A∪B = S. Nevertheless, we
only care about whether A is more likely to occur than B. We can express that
via the concept of relative likelihood:

Definition 3.1.1. (The relative likelihood of two events A and B)

� If one thinks that A is more likely than B, then we write A ≻ B, or
equivalently B ≺ A.

� If one thinks A is as likely as B, then we write A h B.

We also use % and - for at least as likely as and for no more likely than.

Let us now speak more generally about the case where we have defined an
appropriate σ-field F on S. Then each element Ai ∈ F will be a subset of
S. Furthermore, we have defined a relative likelihood relation for all elements
Ai ∈ F .1

As we would like to use the language of probability to talk about likelihoods,
we would like to be able to define a probability measure that agrees with our
given relations.

1More formally, we can define three classes: C≻, C≺, Ch ⊂ F2 such that a pair (Ai, Aj) ∈
CR if an only if it satisfies the relation AiRAj , where R ∈ {≻,≺,h}. It is easy to see that
the three classes form a partition of F2.
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A probability measure P : F → [0, 1] is said to agree with a relation A - B,
if it has the property that: P (A) ≤ P (B) if and only if A - B, for all A,B ∈ F .

Of course, there are many possible measures that can agree with a given
relation. It could even be that a given relational structure is incompatible with
any possible probability measure. For that reason, we shall have to make some
assumptions about relative likelihoods of events.

3.1.2 Subjective probability assumptions

Our beliefs must be consistent. This can be achieved if they satisfy some as-
sumptions. First of all, it must always be possible to say whether one event is
more likely than the other. Consequently, we are not allowed to claim ignorance.

Assumption 3.1.1 (SP1). For any pair of events A,B ∈ F , one of the follow-
ing must hold: Either A ≻ B, A ≺ B, or A h B.

If we can partition A,B in such a way that each part of A is less likely than
its counterpart in B, then A is less likely than B. For example, let A1 be the
event that it rains tomorrow morning and A2 the event that does not. Let B1,
B2 be the corresponding events for the afternoon. If it is more likely that it
rains than it does not, both in the morning and the afternoon, then it is more
likely that it rains sometime in the day that not. This is formalised by the
following assumption.

Assumption 3.1.2 (SP2). Let A = A1 ∪ A2, B = B1 ∪ B2 with A1 ∩ A2 =
B1 ∩B2 = ∅. If Ai - Bi for i = 1, 2 then A - B.

We also require the simple technical assumption that any event A ∈ F is at
least as likely as the empty event ∅, which never happens.

Assumption 3.1.3 (SP3). If S is the certain event, and ∅ = S∁ the empty set,
then: ∅ - A and ∅ ≺ S.

As it turns out, these assumptions are sufficient for proving the following
theorems DeGroot [1970]. The first theorem tells us that our belief must be
consistent with respect to transitivity.

Theorem 3.1.1 (Transitivity). For all events A,B,D, if A - B and B - D,
then A - D.

The second theorem says that if two events have a certain relation, then
their negations have the converse relation.

Theorem 3.1.2 (Complement). For any A,B: A - B iff A∁ ≻ B∁.

Finally, note that if A ⊂ B, then it must be the case that whenever A
happens, B must happen and hence B must be at least as likely as A. This is
demonstrated in the following theorem.

Theorem 3.1.3 (Fundamental property of relative likelihoods). If A ⊂ B then
A - B. Furthermore, ∅ - A - S for any event A.

Since we are dealing with σ-fields, we need to introduce properties for infinite
sequences of events. While these are not necessary if the field F is finite, it is
good to include them for generality.
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Assumption 3.1.4 (SP4). If A1 ⊃ A2 ⊃ · · · is a decreasing sequence of events
in F and B ∈ F is such that Ai % B for all i, then

⋂∞
i=1Ai % B.

As a consequence, we obtain the following dual theorem:

Theorem 3.1.4. If A1 ⊂ A2 ⊂ · · · is an increasing sequence of events in F
and B ∈ F is such that Ai - B for all i, then

⋃∞
i=1Ai - B.

We are now able to state a theorem for the unions of infinite sequences of
disjoint events.

Theorem 3.1.5. If (Ai)
∞
i=1 and (Bi)

∞
i=1 are infinite sequences of disjoint events

in F such that Ai - Bi for all i, then
⋃∞
i=1Ai -

⋃∞
i=1Bi.

Exercise 2. Here we prove that a probability measure P always satisfies the
stipulated assumptions.

(i) For any events P (A) > P (B), P (A) < P (B) or P (A) = P (B).

(ii) If Ai, Bi are partitions of A,B, ∀iP (Ai) ≤ P (Bi) ⇒ P (A) ≤ P (B).

(iii) For any A, P (∅) ≤ P (A) and P (∅) < P (S)

Solution. Part (i) is trivial, as P : F → [0, 1]. Part (ii) follows from P (A) =
P (
⋃
iAi) =

∑
i P (Ai) ≤ ∑

i P (Bi) = P (B). Part (iiI) P (∅) = 0, P (A) ≥ 0.
Also, P (S) = 1.

3.1.3 Assigning unique probabilities

In many cases, and particularly when F is a finite field, there is a large number
of probability distributions agreeing with our relative likelihoods.

How can we assign probabilities to events in an unambiguous manner?

Example 3.1.1. Consider F =
{
∅, A,A∁,S

}
and say A ≻ A∁. Consequently,

P (A) > 1/2. But this is insufficient for assigning a specific value to P (A).

Let A be an interval on the real line, with length λ(A).

Definition 3.1.2 (Uniform distribution). x : S → [0, 1] has a uniform distri-
bution on [0, 1] if, for any subintervals A,B of [0, 1],

(x ∈ A) - (x ∈ B) iff λ(A) ≤ λ(B)

This means that any larger interval is more likely than any smaller interval.
Now we shall connect the uniform distribution to the original sample space S
by assuming that there is some function with uniform distribution.

Assumption 3.1.5 (SP5). There exists a random variable x : S → [0, 1] with
a uniform distribution in [0, 1].
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Constructing the probability distribution
We can now use the uniform distribution to create a unique probability

measure that agrees with our likelihood relation. First, we have to map each
event in S to an equivalent event in [0, 1].

Theorem 3.1.6 (Equivalent event). For any event A ∈ F , there exists some
α ∈ [0, 1] such that A h (X ∈ [0, α]).

This means that we can now define the probability of an event A by matching
it to a specific equivalent event on [0, 1].

Definition 3.1.3 (The probability of A). Given any event A, define P (A) to
be the α with A h (X ∈ [0, α]).

Hence
A h (X ∈ [0, P (A)]).

The above is sufficient to show the following theorem.

Theorem 3.1.7 (Relative likelihood and probability). If assumptions SP1-SP5
are satisfied, then the probability measure P defined above is unique. Further-
more, for any two events A,B, A - B iff P (A) ≤ P (B).

3.1.4 Conditional likelihoods

Conditional likelihood
So far we have only considered the problem of forming opinions about which

events are more likely a priori. However, we also need to have a way to incorpo-
rate evidence which may adjust our opinions. For example, while we ordinarily
may think that A - B, we may have additional information D, given which
we think the opposite is true. We can formalise this through the notion of
conditional likelihoods.

Example 3.1.2. Say that A is the event that it rains in Gothenburg, Sweden
tomorrow. We know that Gothenburg is quite rainy due to its oceanic climate, so
we set A % A∁. Now, let us try and incorporate some additional information.
Let D denote the fact that good weather is forecast. I personally believe that
(A | D) - (A∁ | D), i.e. that good weather is more probable than rain, given the
evidence of the weather forecast.

Conditional likelihoods
Define (A | D) - (B | D) to mean that B is at least as likely as A when it

is known that D has occurred.

Assumption 3.1.6 (CP). For any events A,B,D,

(A | D) - (B | D) iff A ∩D - B ∩D.
Theorem 3.1.8. If a relation - satisfies assumptions SP1 to SP5 and CP,
then P is the unique probability distribution such that:

For any A,B,D such that P (D) > 0,

(A | D) - (B | D) iff P (A | D) ≤ P (B | D)

Definition 3.1.4 (Conditional probability).

P (A | D) =
P (A ∩D)

P (D)
(3.1.1)
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3.1.5 Probability elicitation

Probability elicitation is the problem of quantifying the subjective probabilities
that a particular individual uses. One of the simplest, and most direct, meth-
ods, is to simply ask. However, because we cannot simply ask somebody to
completely specify a probability distribution, we can ask for this distribution
iteratively.

Example 3.1.3 (Temperature prediction). Let τ be the temperature tomorrow
at noon in Gothenburg. What are your estimates?

Eliciting the prior / forming the subjective probability measure P

� Select temperature x0 s.t. (τ ≤ x0) h (τ > x0).

� Select temperature x1 s.t. (τ ≤ x1 | τ ≤ x0) h (τ > x1 | τ ≤ x0).

Note that, necessarily, P (τ ≤ x0) = P (τ > x0) = p0. Since P (τ ≤ x0) +
P (τ > x0) = P (τ ≤ x0 ∪ τ > x0) = P (τ ∈ R) = 1, it follows that p0 = 1/2.
Similarly, P (τ ≤ x1 | τ ≤ x0) = P (τ > x1 | τ ≤ x0) = 1/4.

Updating beliefs
Although we always start with a particular belief, this belief must be ad-

justed when we receive new evidence. In probabilistic inference, the updated be-
liefs are simply the probability of future events conditioned on observed events.
This idea is captured neatly by Bayes’ theorem, which links together the prior
probability of events P (Ai) with their posterior probability P (Ai | B) given
some event B and the probability P (B | Ai) of observing the evidence B given
that hypothesis Ai is true.

Theorem 3.1.9 (Bayes’ theorem). Let A1, A2, . . . be a (possibly infinite) se-
quence of disjoint events such that

⋃n
i=1Ai = S and P (Ai) > 0 for all i. Let B

be another event with P (B) > 0. Then

P (Ai | B) =
P (B | Ai)P (Ai)∑n
j=1 P (B | Aj)P (Aj)

(3.1.2)

Proof. By definition, P (Ai | B) = P (Ai ∩ B)/P (B), and P (Ai ∩ B) = P (B |
Ai)P (Ai), so:

P (Ai | B) =
P (B | Ai)P (Ai)

P (B)
, (3.1.3)

As
⋃n
i=1Ai = S, we have B =

⋃n
j=1(B ∩ Aj). Since Ai are disjoint, so are

B ∩ Ai. As P is a probability, the union property and an application of 3.1.3
gives

P (B) = P




n⋃

j=1

(B ∩Aj)


 =

n∑

j=1

P (B ∩Aj) =
n∑

j=1

P (B | Aj)P (Aj).
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A simple exercise in updating beliefs

The area of Germany
Form a subjective probability for the area a of Germany in km2.

A1 : a < 105 km2

A2 : a ∈ [105, 2.5 · 105) km2

A3 : a ∈ [2.5 · 105, 5 · 105) km2

A4 : a ∈ [5 · 105, 106) km2

A5 : a ≥ 106 km2.

Choose P (Ai) for all i.

Additional information

� The EU’s largest country is France (6.7 · 105km2) and the smallest is
Malta with 316km2.

� Germany is the 4th largest of the 27 EU states

� UK (2.4 · 105km2) is the 8th largest EU state

The correct answer is A3, since a = 3.57 · 105

3.2 Utility theory

While probability can be used to describe how likely an event is, utility can be
used to describe how desirable it is. More concretely, our subjective probabilities
are numerical representations of our beliefs and information. They can be taken
to represent our “internal model” of the world. By analogy, our utilities are
numerical representations of our tastes and preferences. Even if they are not
directly known to us, we assume that our actions are such that we act so as to
obtain maximum utility, in some sense.

3.2.1 Rewards and preferences

Rewards

Consider that we have to choose a reward r from a set R of possible rewards.
While the elements of R may be abritrary, we shall in general find that we prefer
some rewards to others. In fact, some elements of R may not even be desirable.
As an example, R might be a set of tickets to different musical events, or a set
of financial commodities.
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Preferences

Example 3.2.1 (Musical event tickets). We have a set of tickets R, and we
must choose the ticket r ∈ R we prefer best.

� Case 1: R are tickets to different music events at the same time, at equally
good halls with equally good seats and the same price. Here preferences
simply coincide with the preferences for a certain type of music or an
artist.

� Case 2: R are tickets to different events at different times, at different
quality halls with different quality seats and different prices. Here, prefer-
ences may depend on all the factors.

Example 3.2.2 (Route selection). We have a set of alternate routes and must
pick one.

� R contains two routes, one short and one long, of the same quality.

� R contains two routes, one short and one long, but the long route is more
scenic.

Preferences among rewards

We will treat preferences in a similar manner as we have treated probabilities.
That is, we will define a linear ordering among possible rewards.

Let a, b ∈ R be two rewards. When we prefer a to b, we write a ≻∗ b.
Conversely, when we like a less than b we write a ≺∗ b. If we like a as much as
b, we write a h∗ b. We also use %∗ and -∗ for I like at least as much as and for
I don’t like any more than, respectively.

Assumption 3.2.1. We make the following assumptions about the preference
relations.

(i) For any a, b ∈ R, one of the following holds: a ≻∗ b, a ≺∗ b, a h∗ b.

(ii) If a, b, c ∈ R are such that a -∗ b and b -∗ c, then a -∗ c.

The first assumption means that we must always be able to decide between
any two rewards. It may seem that it does not always hold in practice, since
humans are frequently indecisive. This could be attributed to the difficulty of
computing the value of the relation ?. Consider an algorithm that, taking r, r′

as input returns R ∈ {≻∗,≺∗,h∗}. If the algorithm does not halt, then the
preference relation is not defined.

The second assumption is a bit stronger. It is in fact possible to create a
preference relation that will be cyclic.

Example 3.2.3 (Counter example for transitive preferences). Consider for ex-
ample vector rewards in R = R

2. Given rewards ri = (ai, bi), our preference
relation is:

� ri ≻∗ rj if ai ≥ aj and |bi − bj | < ǫ

� ri ≻∗ rj if bi ≥ bj + ǫ′.
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This may correspond for example to an employer deciding to hire one of two
employees, i, j, depending on their experience (a) or their school grades (b).
Since grades are not very reliable, if two people have grades, then we prefer the
one with the most experience. However, that may lead to a cycle. Consider
a sequence of candidates i = 1, . . . , n, such that each candidate satisfies bi =
bi+1 + δ, with δ < ǫ and ai > ai+1. Then clearly, we must always prefer ri to
ri+1. However, if δn > ǫ, we will prefer rn to r1.

3.2.2 Preferences among distributions

When we cannot select rewards directly

In most problems, we cannot choose the rewards directly. Rather, we must
make some decision, and then obtain a reward depending on this decision. Since
we may be uncertain about the outcome of a decision, we can specify our un-
certainty regarding the rewards obtained by a decision in terms of a probability
distribution.

Example 3.2.4 (Route selection). � Each reward r ∈ R is the time it takes
to travel from A to B.

� We prefer shorter times.

� There are two routes, P1, P2.

� Route P1 takes 10 minutes when the road is clear, but 30 minutes when
the traffic is heavy. The probability of heavy traffic on P1 is q1.

� Route P2 takes 15 minutes when the road is clear, but 25 minutes when
the traffic is heavy. The probability of heavy traffic on P2 is q2.

Preferences among probability distributions

Consequently, we have to define preferences between probability distribu-
tions, rather than rewards. We use the same notation as before. Let P1, P2 be
two distributions on (R,FR). If we prefer P1 to P2, we write P1 ≻∗ P2. If w like
P1 less than P2, write P1 ≺∗ P2. If we like P1 as much as P2, we write P1 h∗ P2.
Finally, we also use %∗ and -∗ do denote strict preference relations.

3.2.3 Utility

The concept of utility allows us to create a unifying framework, such that given
a particular set of rewards and probability distributions on them, we can define
preferences among distributions automatically. The first step is to define utility
as a way to define a preference relation among rewards.

Definition 3.2.1 (Utility). The utility is a function U : R → R, such that for
all a, b ∈ R

a %∗ b iff U(a) ≥ U(b), (3.2.1)

The above definition is very similar to how we defined relative likelihood in
terms of probability. For a given utility function, its expectation for a distribu-
tion over rewards as:
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Definition 3.2.2 (Expected utility). The expected utility of a distribution P
on R is:

EP (U) =

∫

R

U(r) dP (r) (3.2.2)

Finally, we make the assumption that the utility function is such that the
expected utility remains consistent with the preference relations between all
probability distributions we are choosing between.

Assumption 3.2.2. The expected utility hypothesis The utility of P is equal to
the expected utility of the reward under P . Consequently,

P %∗ Q iff EP (U) ≥ EQ(U). (3.2.3)

Example 3.2.5. Consider the following decision problem. You have the option
of entering a lottery, for 1 CU, that gives you a prize of 10 CU. The probability
of winning is 0.01. This can be formalised by making it a choice between P ,
where you do not enter the lottery and Q, which represents entering the lottery.
Now we can calculate the expected utility for each choice. This is simply E(U |

r U(r) P Q
did not enter 0 1 0

paid 1 CU and lost −1 0 0.99
paid 1 CU and won 10 9 0 0.01

Table 3.1: A simple gambling problem

P ) =
∑
r U(r)P (r) and E(U | Q) =

∑
r U(r)Q(r) respectively.

P Q
E(U | ·) 0 −0.9

Table 3.2: Expected utility for the gambling problem

Monetary rewards

Example 3.2.6. Choose between the following two gambles:

1. The reward is 500,000 with certainty.

2. The reward is 2,500,000 with probability 0.10. It is 500,000 with probability
0.89, and 0 with probability 0.01.

Example 3.2.7. Choose between the following two gambles:

1. The reward is 500,000 with probability 0.11, or 0 with probability 0.89.

2. The reward is: 2,500,000 with probability 0.1, or 0 with probability 0.9.

Exercise 3. Show that if gamble 1 is preferred in the first example, gamble 1
must also be preferred in the second example.
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The St. Petersburg Paradox

A simple game [Bernoulli, 1713]

� A fair coin is tossed until a head is obtained.

� If the first head is obtained on the n-th toss, our reward will be 2n

currency units.

How much are you willing to pay, to play this game once?

� The probability to stop at round n is 2−n.

� Thus, the expected monetary gain of the game is

∞∑

n=1

2n2−n = ∞.

� If your utility function were linear you’d be willing to pay any amount to
play.

3.2.4 Measuring utility

Experimental measurement of utility

Example 3.2.8. We shall try and measure the utility of all monetary rewards
in some interval [a, b].

Let 〈a, b〉 denote a lottery ticket that yields a or b CU with equal probability.
Consider the following sequence:

1. Find x1 such that receiving x1 CU with certainty is equivalent to receiving
〈a, b〉.

2. Find x2 such that receiving x2 CU with certainty is equivalent to receiving
〈a, x1〉.

3. Find x3 such that receiving x3 CU with certainty is equivalent to receiving
〈x1, b〉.

4. Find x4 such that receiving x4 CU with certainty is equivalent to receiving
〈x2, x3〉.

If x1 6= x4, then your preferences do not meet the requirements of a utility
function.

Exercise 4. 1. Specify an amount a, then observe random value Y .

2. If Y ≥ a, receive Y .

3. If Y < a, receive random reward X with known distribution (independent
of Y ).

4. Show that you should choose a s.t. U(a) = E[U(X)].
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3.2.5 Convex and concave utility functions

Convex functions

Definition 3.2.3. A function g is convex on A if, for any points x, y ∈ A, and
any α ∈ [0, 1]:

αg(x) + (1− α)g(y) ≥ g[αx+ (1− α)y]

Theorem 3.2.1 (Jensen’s inequality). If g is convex on S and x ∈ S with
measure P (A) = 1 and E(x) and E[g(x)] exist, then:

E[g(x)] ≥ g[E(x)]. (3.2.4)

Example 3.2.9. If the utility function is convex, then we choose a gamble giving
a random gain x rather than one giving a fixed gain E(x). Thus, a convex utility
function implies risk-taking.

Concave functions

Definition 3.2.4. A function g is concave on S if, for any points x, y ∈ S, and
any α ∈ [0, 1]:

αg(x) + (1− α)g(y) ≤ g[αx+ (1− α)y]

For concave functions, an analogue of Jensen’s inequality holds (in the other
direction). If the utility function is concave, then we choose a gamble giving
a fixed gain E[X] rather than one giving a random gain X. Consequently, a
concave utility function implies risk aversion.

Example 3.2.10 (Insurance). The act of buying insurance can be related to
concavity of our utility function.

Let x be the insurance cost, h our insurance cover and ǫ the probability of
needing the cover. Then we are going to buy insurance if the utility of losing x
with certainty is greater than the utility of losing −h with probability ǫ.

U(−x) > ǫU(−h) + (1− ǫ)U(0). (3.2.5)

The company has a linear utility, and fixes the premium x high enough for

x > ǫh. (3.2.6)

Consequently, we see that from (3.2.6) that U(−ǫh) ≥ U(−x), as U is an
increasing function. Thus, from (3.2.5) we obtain U(−ǫh) > ǫU(−h) + (1 −
ǫ)U(0). Now the −ǫh term is the utility of our expected monetary loss, while
the right hand side is our expected utility. Consequently if the inequality holds,
our utility function is (at least locally) concave.

3.3 Summary

Summary

� We can subjectively indicate which events we think are more likely.

� Using relative likelihoods, we can define a subjective probability P for all
events.
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� Similarly, we can subjectively indicate preferences for rewards.

� We can determine a utility function for all rewards.

� Hypothesis: we prefer the probability distribution (over rewards) with the
highest expected utility.

� Concave utility functions imply risk aversion (and convex, risk-taking).
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4.1 Introduction

In this chapter we describe how to actually formulate statistical decision prob-
lems. The simplest such problem arises when we have a choice between a number
of different decisions, where each decision gives us different rewards with dif-
ferent probabilities. If these probabilities are known, then the framework of
expected utility maximisation gives a solution to the problem. An example in-
cludes gambling, where we must choose between a number of possible lotteries,
each one having different payoffs and winning probabilities.

Another classical setting is parameter estimation. Therein, we stipulate the
existence of a parameterised law of nature, and we wish to choose a best-guess
set of parameters for the law through measurements and some prior information,
such as for example determining the gravitational attraction constant from ob-
serving planetary movements. These measurements are always obtained through
experiments, and the automatic design of those experiment is a topic we shall
consider in later chapters.

Finally, these decisions will necessarily depend on our prior information,
even if have access to some additional measurements. The last section of this
chapter will examine how sensitive our decisions are to the prior, and how we
can choose a prior distribution so that our decisions are robust.

4.2 Rewards that depend on the outcome of an

experiment

Consider the problem of choosing between a two different types of tickets in
raffle. Each type of ticket gives you the chance to win a different prize. The
first is a bicycle and the second is a tea set. As most people opt for the bicycle,
your chance of actually winning it is much smaller. However, if you prefer
winning a bicycle to winning the tea set, it is not clear what choice you should
make in the raffle. The above is the quintessential example for problems where
the reward that we obtain depends not only on our decisions, but also in the
outcome of an experiment.

This problem can be viewed more generally, for scenarios where the reward
you receive depends not only on your own choice, but also some other, unknown
fact in the world. This may be something completely uncontrollable, and hence
you only have to make the best possible guess.

More formally, we must make a decision d ∈ D before knowing the outcome
ω of an experiment with outcomes in Ω. After the experiment is performed, we
obtain a reward r ∈ R which depends on both the outcome of the experiment
ω and our decision. As discussed in the previous chapter, our preferences for
some rewards over others is determined by a utility function U : R → R, such
that we prefer r to r′ if and only if U(r) ≥ U(r′). Now, however, we cannot
choose rewards directly. Another example, which will be used throughout this
section, is the following.

Example 4.2.1 (Taking the umbrella). We must decide whether to take an
umbrella to work. Our reward is a combination of whether we get wet and the
amount of objects that we carry. We would rather not get wet and not carry too
many things, which can be made more precise by choosing an appropriate utility
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function. For example, we might put a value of −1 for carrying the umbrella,
a value of −10 for getting wet. In this example, the only events of interest are
whether it rains or not.

4.2.1 Formalisation of the problem setting

We are now ready to formulate the problem setting more precisely.

Assumption 4.2.1 (Outcomes). There exists a probability measure P on (Ω,FΩ)
such that the probability of the random outcome ω being in A ⊂ Ω is:

P(ω ∈ A) = P (A), ∀A ∈ FΩ . (4.2.1)

This probability is completely independent of any decision that we make.

Assumption 4.2.2 (Utilities). Our rewards satisfy all our assumptions from
Chapter 3: Preferences are transitive, all rewards are comparable and there exists
a utility function U , measurable with respect to FR such that U(r′) ≥ U(r) iff
r ≻∗ r′.

Since the random outcome ω does not depend on our decision d, we must
find a way to connect the two. This can be formalised via a reward function, so
that the reward that we obtain (whether we get wet or not) depends on both
our decision (to take the umbrella) and the random outcome (whether it rains).

Definition 4.2.1 (Reward function). A reward function ρ : Ω×D → R defines
the reward we obtain if we select d ∈ D and the experimental outcome is ω ∈ Ω:

r = ρ(ω, d). (4.2.2)

The decision space might be arbitrarily more complex than the one we have
seen so far. For example, our decisions may be distributions over simple de-
cisions, or functions whose value depends on future events. We shall examine
those problems later in the chapter.

When we discussed the problem of choosing between distributions, in sec-
tion 3.2.2, we had directly defined probability distributions on rewards. We can
now formulate our problem in that setting. First, we define a set of distributions
{Pd | d ∈ D} on the reward space (R,FR), such that the decision d amounts to
choosing a particular distribution Pd on the rewards.

Example 4.2.2 (Rock/Paper/Scissors). Consider a simple game of rock-paper-
scissors, where your opponent plays a move at the same time as you, so that you
cannot influence his move. The opponents moves are thus Ω = {ωR, ωP, ωS}.

You have studied your opponent for some time and you believe that he is
most likely to play rock P (ωR) = 3/6, somewhat likely to play paper P (ωP) = 2/6,
and less likely to play scissors: P (ωS) = 1/6. Your decision set is your own
moves: D = {dR, dP, dS}, for rock, paper, scissors, respectively. The reward set
is R = {Win,Draw,Lose}.

What is the probability of each reward, for each decision you make? Taking
the example of dR, we see that you win if the opponent plays scissors with
probability 1/6, you lose if the opponent plays paper (2/6), and you draw if he plays
rock (3/6). Consequently, we can convert the outcome probabilities to reward
probabilities for every decision:
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PdR(Win) = 1/6, PdR(Draw) = 3/6, PdR(Lose) = 2/6

PdP(Win) = 3/6, PdP(Draw) = 2/6, PdP(Lose) = 1/6

PdS(Win) = 2/6, PdS(Draw) = 1/6, PdS(Lose) = 3/6.

Of course, what we play depends on our own utility function. If we prefer
winning over drawing or losing, we could for example have the utility function
U(Win) = 1, U(Draw) = 0, U(Lose) = −1. Then, since Ed U =

∑
ω∈Ω U(ω, d)Pd(ω),

we have

EdRU = −1/6

EdPU = 2/6

EdSU = −1/6

More generally, every decision that we make creates a corresponding proba-
bility distribution on rewards.

The probability measure induced by decisions
For every d ∈ D, the function ρ : Ω × D → R induces a probability distri-
bution Pd on R. In fact, for any B ∈ FR:

Pd(B) , P(ρ(ω, d) ∈ B) = P ({ω | ρ(ω, d) ∈ B}). (4.2.3)

The above equation requires that the following technical assumption is sat-
isfied:

Assumption 4.2.3. The sets {ω | ρ(ω, d) ∈ B} must belong to FΩ. That is, ρ
must be FΩ-measurable for any d.

In other words, while the outcome of the experiment is independent of the
decision, the distribution of rewards is effectively chosen by our decision, as
before. However, this structure allows us to clearly distinguish the controllable
from the random part of the rewards.

In either case, we employ the expected utility hypothesis (Assumption 3.2.2).
Thus, we should choose the decision that results in the highest expected utility.

Expected utility
The expected utility of any decision d ∈ D under P is: the expected utility
is:

EPd
(U) =

∫

R

U(r) dPd(r) =

∫

Ω

U [ρ(ω, d)] dP (ω) (4.2.4)

From now on, we shall use the simple notation

U(P, d) , EPd
U (4.2.5)

to denote the expected utility of d under distribution P .
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UrPdd

(a) The combined decision
problem

U

r

ω d

P

(b) The separated de-
cision problem

Figure 4.1: Decision diagrams for the combined and separated formulation of the
decision problem. Squares denote decision variables, diamonds denote utilities.
All other variables are denoted by circles. Arrows denote the flow of dependency.

ρ(ω, d) d1 d2
ω1 dry, carrying umbrella wet
ω2 dry, carrying umbrella dry

U [ρ(ω, d)] d1 d2
ω1 0 -10
ω2 0 1

EP (U | d) 0 -1.2

Table 4.1: Rewards, utilities, expected utility for 20% probability of rain.

Instead of viewing the decision as effectively choosing a distribution over
rewards (Fig. 4.1(a)) we can separate the random part of the process from the
deterministic part (Fig. 4.1(b)) by considering a measure P on some space of
outcomes Ω, such that the reward depends on both d and the outcome ω ∈ Ω
through a function ρ(ω, d). The optimal decision is of course always the d ∈ D
maximising E(U | Pd).

The dependency structure of this problem in either formulation can be vi-
sualised in the decision diagram shown in Figure 4.1(a).

Example 4.2.3. You are going to work, and it might rain. The forecast said
that the probability of rain (ω1) was 20%. What do you do?

� d1: Take the umbrella.

� d2: Risk it!

The reward of a given outcome and decision combination, as well as the expected
utility is given in table 4.1.

4.2.2 Decision diagrams

Decision diagrams are also known as decision networks or influence diagrams.
Like the examples shown in Figure 4.1, they are used to show dependencies
between different variables. In general, these include the following types of
nodes:
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� Choice nodes, denoted by squares. These are nodes whose values the
decision maker can directly choose. Sometimes there is more than one
decision maker involved.

� Value nodes, denoted by diamonds. These are the nodes that the decision
maker is interested in influencing. The utility of the decision maker is
always a function of the value nodes.

� Circle nodes are used to denote all other types of variables. These include
deterministic, stochastic, known or unknown variables.

The nodes are connected via directed edges. These denote the dependencies
between nodes. For example, in Figure 4.1(b), the reward is a function of both
ω and d, i.e. r = ρ(ω, d), while ω depends only on the probability distribution P .
Typically, there must be a path from a choice node to a value node, otherwise
nothing the decision maker can do will influence its utility. Nodes belonging
to or observed by different players will usually be denoted by different lines or
colors. In Figure 4.1(b), ω, which is not observed, is shown in a lighter color.

4.2.3 Statistical estimation*

This is especially the case in statistical problem of parameter estimation, such
as estimating the covariance matrix of a Gaussian random variable. A sim-
ple example is estimating the distribution of votes in an election from a small
sample, given below.

Example 4.2.4 (Voting). Let us say for example that you wish to estimate
the number of votes for different candidates in an election. The unknown pa-
rameters of the problem mainly include: the percentage of likely voters in the
population, the probability that a likely voter is going to vote for each candidate.
One simple way to estimate this is by polling.

Consider a nation with k political parties. Let ω = (ω1, . . . , ωk) ∈ [0, 1]k be
the voting percentages for each party. We wish to make a guess d ∈ [0, 1]k. How
should we guess, given a distribution P (ω)? How should we select U and ρ?
This depends on what our goals is, when we make the guess.

If we wish to give a reasonable estimate about all the k parties votes, we
can use the squared error: First, set ρ(ω, d) = (ω1 − d1, . . . , ωk − dk), our error
vector r ∈ [0, 1]k. Then we set U(r) , −‖r‖2, where ‖r‖2 =

∑
i |xi|2.

If on the other hand, we just want to predict the winner of the election,
then the actual percentages of all individual parties are not important. In that
case, we can set ρ(ω, d) = 1 if argmaxi ωi = argmaxi di and 0 otherwise, and
U(r) = r.

� The unknown outcome of the experiment ω is called a parameter.

� The set of outcomes Ω is called the parameter space.

Losses and risks
In such problems, it is common to specify a loss instead of a utility. This
is usually the negative utility:
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Definition 4.2.2 (Loss).

ℓ(ω, d) = −U [ρ(ω, d)]. (4.2.6)

Given the above, instead of the expected utility, we consider the ex-
pected loss, or risk.

Definition 4.2.3 (Risk).

σ(P, d) =

∫

Ω

ℓ(ω, d) dP (ω). (4.2.7)

Of course, the optimal decision is d minimising σ.

4.3 Bayes decisions

The decision which maximises the expected utility under a particular distribu-
tion P , is called the Bayes-optimal decision, or simply the Bayes decision. The
probability distribution P is supposed to reflect all our uncertainty about the
problem.

Definition 4.3.1 (Bayes-optimal utility). Consider an outcome (or parameter)
space Ω, decision space D, and a utility function U : Ω × D → R. For any
probability distribution P on Ω, the Bayes-optimal utility U∗(P ) is defined as
the smallest upper bound on U(P, d) for all decisions d ∈ D. That is,

U∗(P ) = sup
d∈D

U(P, d). (4.3.1)

Remark 4.3.1 (The sup notation). A clarification of the supremum notation
is in order. When we say that

M = sup
x∈A

f(x),

then: (i) M ≥ f(x) for any x ∈ A. In other words, M is an upper bound on
f(x). (ii) for any M ′ > M , there exists some x′ ∈ A s.t. M ′ < f(x′). In other
words, there exists no smaller upper bound than M . When the function f has a
maximum, then the supremum is identical to the maximum.

As can be seen from Figure ??, for absolute loss, the optimal decision is to
choose the d that is closest to the most likely ω. However, for quadratic loss,
Figure ?? appears to indicate that the optimal choice should be equal to the
expected value of ω. This is actually true in general for quadratic loss, and for
d, ω ∈ R, as shall be seen from the following example.

Example 4.3.1 (Quadratic loss). Now consider Ω = R with measure P and
D = R. For any point ω ∈ R, we define the utility as:

U(ω, d) = −|ω − d|2. (4.3.2)
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The optimal decision maximises

U(P, d) = −
∫

R

|ω − d|2 dP (ω).

Then, as long as ∂/∂d|ω − d|2 is measurable with respect to FR

∂

∂d

∫

R

|ω − d|2 dP (ω) =
∫

R

∂

∂d
|ω − d|2 dP (ω) (4.3.3)

= 2

∫

R

(d− ω) dP (ω) (4.3.4)

= 2

∫

R

d dP (ω)− 2

∫

R

ω dP (ω) (4.3.5)

= 2d− 2E(ω), (4.3.6)

so the expected utility is maximised for d = E(ω).

4.3.1 Convexity of the Bayes-optimal utility*

We shall show now the expected utility is linear. Consequently, the Bayes-utility
is convex with respect to the distribution P . This firstly implies that there is a
unique “worst” distribution P , against which we cannot do very well. Secondly,
we can approximate the Bayes-utility very well for all possible distributions by
generalising from a small number of distributions. In order to define linearity
and convexity, we must first introduce the concept of a mixture of distributions.

A mixture of distributions

Consider two probability measures P,Q on (Ω,FΩ).

These define two alternative distributions for ω. For any P,Q and α ∈ [0, 1],
we define

Zα , αP + (1− α)Q (4.3.7)

to mean the probability measure such that Zα(A) = αP (A) + (1− α)Q(A) for
any A ∈ FΩ .

Remark 4.3.2 (Linearity of the expected utility). If Zα is as defined in (4.3.7),
then, for any d ∈ D:

U(Zα, d) = αU(P, d) + (1− α)U(Q, d). (4.3.8)

Proof. This follows from the linearity of expectation, i.e.

U(Zα, d) =

∫

Ω

U(ω, d) dZα(ω) (4.3.9)

= α

∫

Ω

U(ω, d) dP (ω) + (1− α)

∫

Ω

U(ω, d) dQ(ω) (4.3.10)

= αU(P, d) + (1− α)U(Q, d). (4.3.11)
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Figure 4.2: A strictly convex Bayes utility.

Theorem 4.3.1. For probability measures P,Q on Ω and any α ∈ [0, 1],

U∗[Zα] ≤ αU∗(P ) + (1− α)U∗(Q), (4.3.12)

where Zα = αP + (1− α)Q.

Proof. From the definition of the expected utility (4.3.8), for any decision d ∈ D,

U(Zα, d) = αU(P, d) + (1− α)U(Q, d).

Hence, by definition (4.3.1) of the Bayes-utility:

U∗(Zα) = sup
d∈D

U(Zα, d)

= sup
d∈D

[αU(P, d) + (1− α)U(Q, d)].

Use supx[f(x) + g(x)] ≤ supx f(x) + supx g(x) to bound r.h.s:

U∗[Zα] ≤ α sup
d∈D

U(P, d) + (1− α) sup
d∈D

U(Q, d)

= αU∗(P ) + (1− α)U∗(Q).

Convexity of the Bayes utility
As we have proven, the expected utility is linear with respect to P . Thus, for

any fixed decision d we obtain one of the lines in Fig. 4.2. Due to the theorem
just proved, the Bayes risk is concave. Furthermore, the minimising decision
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Figure 4.3: Statistical decision problem with observations

for any P is tangent to the risk at the point (P,U∗(P )). If we take a decision
that is optimal with respect to some P , but the distribution is in fact Q 6= P ,
then we are not far from the optimal when P and Q are close and U∗ is smooth.
Consequently, we can trivially lower bound the Bayes utility by examining a
finite set of decisions D̂:

U∗(P ) ≥ max
d∈D̂

U(P, d)∀P

In addition, we can upper-bound the Bayes utility as follows. Take any two
distributions P1, P2 in the set of allowed distributions. Then, the following
upper bound holds

U∗(αP1 + (1− α)P2) ≤ αU∗(P1) + (1− α)U∗(P2)

due to convexity. The two bounds suggest an algorithm for successive approxi-
mation of the Bayes risk, by looking for the largest gap between the lower and
the upper bounds.

4.4 Decision problems with observations

So far we have only examined problems where the outcomes were drawn from
some fixed distribution. This distribution constituted our subjective belief about
what the unknown parameter is. Now, we examine the case where we can obtain
some observations that depend on the unknown ω before we make our decision.
These observations should give us more information about ω, before making a
decision. Intuitively, we should be able to make decisions by simply considering
the posterior distribution. The following section will investigate whether this is
true.

Obtaining information
In this setting, we once more need to take some decision d ∈ D so as to

maximise expected utility. As before, we have a prior distribution ξ on some
parameter ω ∈ Ω, representing what we know about ω. Consequently, the
expected utility of any fixed decision d is going to be Eξ(U | d).

However, it might be possible to obtain more infomation about ω before
making a decision. In particular, each ω corresponds to a model of the world
ψω. This is expressed as a probability distribution over the observation space
S, such that ψω(X) is the probability that the observation is in X ⊂ S. The
set of parameters Ω thus defines a family of models:

Ψ , {ψω | ω ∈ Ω} . (4.4.1)
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Now, consider the case where we take an observation x from the true model
ψω∗ before having to make a decision. We can represent the dependency of our
decisions on the observations by making our decision a function of x:

Definition 4.4.1 (Decision function). A decision function δ : S → D maps
from the set of possible observations S to the set of possible decisions.

The expected utility of a decision function δ is:

U(ξ, δ) , Eξ {U [ω, δ(x)]} =

∫

Ω

(∫

S
U [ω, δ(x)] dψω(x)

)
dξ(ω). (4.4.2)

When the set of decision functions includes all fixed decisions, then there is a
decision function δ∗ at least as good as the best fixed decision d∗. More formally:

Remark 4.4.1. Let D denote the set of decision functions δ : S → D. If, ∀d ∈
D ∃δ ∈ D such that δ(x) = d ∀x ∈ S, then supδ∈D Eξ(U | δ) ≥ supd∈D Eξ(U |
d).

Proof. The proof follows by setting D0 to be the set of fixed decision functions.
The result follows since D0 ⊂ D .

This is the standard Bayesian framework for decision making. It may be
slightly more intuitive in some case to use the notation ψ(x | ω), in order to
emphasize that this is a conditional distribution. However, there is no technical
difference between the two notations.

Example 4.4.1. Consider the problem of deciding whether or not to go to a
particular restaurant. Let Ω = [0, 1] with ω = 0 meaning the food is in general
horrible and ω = 1 meaning the restaurant is great. Let x1, . . . , xn be n expert
opinions in S = {0, 1} about the restaurant. Under our model, the probability of
observing xi = 1 when the quality of the restaurant is ω is given by ψω(1) = ω
and conversely ψω(0) = 1−ω. The probability of observing a particular1 sequence
x of length n is

ψω(x) = ωs(1− ω)n−s

with s =
∑n
i=1 xi.

Maximising utility when making observations

Statistical procedures based on the notion that a distribution can be assigned
to any parameter in a statistical decision problem, as we are assuming here, are
called Bayesian statistical methods. The scope of these methods has been the
subject of much discussion in the statistical literature. See e.g. Savage [1972].

In the following, we shall look at different expressions for the expected utility.
We shall overload the utility operator U for various cases: when the parameter
is fixed, when the parameter is random, when the decision is fixed, and when
the decision depends on the observation x and thus is random as well.

1We obtain a slightly different probability under the binomial model, but the end result is
the same.
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Expected utility of a fixed decision d with ω ∼ ξ
We first consider the expected utility of taking a fixed decision d ∈ D, when
P(ω ∈ A) = ξ(A). This is the case we have dealt with so far.

U(ξ, d) , Eξ(U | d) =
∫

Ω

U(ω, d) dξ(ω). (4.4.3)

Expected utility of a decision function δ with fixed ω ∈ Ω
Now assume that ω is fixed, but instead of selecting a decision directly,
we select a decision that depends on the random observation x, which is
distributed according to ψω on S. We do this by defining a function δ :
S → D.

U(ω, δ) =

∫

S
U(ω, δ(x)) dψω(x). (4.4.4)

Expected utility of a decision function δ with ω ∼ ξ
Now we generalise to the case where ω is distributed with measure ξ. Note
that the expectation of the previous expression (4.4.4) is by definition writ-
ten as:

U(ξ, δ) =

∫

Ω

U(ω, δ) dξ(ω), U∗(ξ) , sup
δ
U(ξ, δ) = U(ξ, δ∗). (4.4.5)

Bayes decision rules

We wish to construct the Bayes decision rule, that is, the decision function
with maximal ξ-expected utility. However, doing so by examining all possible
decision functions is hard, because (usually) there are many more decision func-
tions than decisions. It is however, easy to find the Bayes decision for each
possible observation.

Theorem 4.4.1. If U is non-negative or bounded, then we can reverse the
integration order of

U(ξ, δ) = E {U [ω, δ(x)]} =

∫

Ω

∫

S
U [ω, δ(x)] dψω(x) dξ(ω),

which is the normal form, to obtain the risk in extensive form.

U(ξ, δ) =

∫

S

∫

Ω

U [ω, δ(x)] dξ(ω | x) df(x), (4.4.6)

where f(x) =
∫
Ω
ψω(x) dξ(ω).
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Proof. To prove this when U is non-negative, we shall use Tonelli’s theorem.
First we need to construct an appropriate product measure. Note that the

original is written Let p(x | ω) , dψω(x)
dν(x) be the Radon-Nikodym derivative of

ψω with respect to some dominating measure ν on S. Similarly, let p(ω) , dξ(ω)
dµ(x)

be the corresponding derivative for ξ. Now, the utility can be written as:

U(ξ, δ) =

∫

Ω

∫

S
U [ω, δ(x)]p(x | ω)p(ω) dν(x) dµ(ω) (4.4.7)

=

∫

Ω

∫

S
h(ω, x) dν(x) dµ(ω). (4.4.8)

Clearly, if U is non-negative, then h is non-negative. Then, Tonelli’s theorem
applies and

U(ξ, δ) =

∫

S

∫

Ω

h(ω, x) dµ(ω) dµ(x) (4.4.9)

=

∫

S

∫

Ω

p(x | ω)p(ω) dµ(ω) dν(x) (4.4.10)

=

∫

S

∫

Ω

p(ω | x) dµ(ω)p(x) dν(x) (4.4.11)

=

∫

S

[∫

Ω

p(ω | x) dµ(ω)
]
p(x) dν(x) =

∫

S

[∫

Ω

dξ(ω | x)
]
df(x),

(4.4.12)

where p(x) = df(x)/dν(x).

We can construct an optimal decision function δ∗ as follows. For any specific
observed x ∈ S, we set δ∗(x) to:

δ∗(x) , argmax
d∈D

Eξ(U | x, d) = argmax
d∈D

∫

Ω

U(ω, d) dξ(ω | x).

So now we can plug δ∗ in the extensive form to obtain:

∫

S

∫

Ω

U [ω, δ∗(x)] dξ(ω | x) df(x) =
∫

S

{
min
d

∫

Ω

U [ω, d] dξ(ω | x)
}

df(x).

Consequently, there is no need to completely specify the decision function before
we have seen x. In particular, this would create problems when S is large.

Definition 4.4.2 (Prior distribution). The distribution ξ is called the prior
distribution of ω.

Definition 4.4.3 (Marginal distribution). The distribution f is called the (prior)
marginal distribution of x.

Definition 4.4.4 (Posterior distribution). The conditional distribution ξ(· | x)
is called the posterior distribution of ω.
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Bayes decision rule.

The optimal decision given x, is the optimal decision with respect to
the posterior ξ(ω | x). Thus, we do not need to pre-compute the complete
Bayes-optimal decision rule.

4.4.1 Calculating posteriors

Posterior distributions for multiple observations
We now consider how we can re-write the posterior distribution over Ω

incrementally. Assume that we observe xn , x1, . . . , xn. We have a prior
ξ on Ω. For the observations, we write:

Observation probability given history xn−1 and parameter ω

ψω(xn | xn−1) =
ψω(x

n)

ψω(xn−1)

Now we can write the posterior as follows:

Posterior recursion

ξ(ω | xn) = ψω(x
n)ξ(ω)

f(xn)
=
ψω(xn | xn−1)ξ(ω | xn−1)

f(xn | xn−1)
. (4.4.13)

Here f(· | ·) =
∫
Ω
ψω(· | ·) dξ(ω) is a marginal distribution.

Posterior distributions for multiple independent observations
Now we consider the case where, given the parameter, the next observation

does not depend on the history: If ψ(xn | ω, xn−1) = ψω(xn) then ψω(x
n) =∏n

k=1 ψω(xk). Then:

Posterior recursion with conditional independence

ξn(ω) , ξ0(ω | xn) = ψω(x
n)ξ0(ω)

f0(xn)
(4.4.14)

= ξn−1(ω | xn) =
ψω(xn)ξn−1(ω)

fn−1(xn)
, (4.4.15)

where we define ξt to be the belief at time t. Here fn(· | ·) =
∫
Ω
ψ(· |

·, ω) dξn(ω) is the marginal distribution with respect to the n-th posterior.
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Conditional independence allows us to write the posterior update as an iden-
tical recursion at each time t. We shall take advantage of that when we look at
conjugate prior distributions. For such models, the recursion involves a partic-
ularly simple parameter update.

Quick summary

� We want to make a decision against an unknown parameter ω.

� The risk is the negative expected utility.

� The Bayes risk is the minimum risk, and it is concave with respect to the
distribution of ω.

� Our decisions can depend on observations, via a decision function.

� We can construct a complete decision function by computing U(ξ, δ) for
all decision functions (normal form).

� We can instead wait until we observe x and compute U [ξ(· | x), d] for all
decisions (extensive form).

� The posterior given multiple observations can be computed recursively
using independence.
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5.1 Calculation of posterior distributions

In the previous unit, we have seen how to make optimal decisions with respect to
a given risk function and belief. However, one important question is how belief
can be calculated. It is one thing to say that we simply calculate the posterior
distribution of a parameter and another thing to actually do it. In this unit, we
shall look at cases when calculating the posterior distributions of parameters is
easy. This occurs when the posterior distribution can be expressed by a function
that belongs to the same family as the prior distribution, no matter what the
observations are.

In the Bayesian setting, we need to calculate posterior distributions of pa-
rameters given data. The basic problem can be stated as follows. Let P ,
{Pω | ω ∈ Ω} be a family of probability measures on (S,FS) and ξ be our prior
probability measure on (Ω,FΩ). Given some data x ∼ Pω∗ , with ω∗ ∈ Ω, how
can we estimate ω∗? The Bayesian answer is, instead of guessing a single ω∗, to
estimate the posterior distribution ξ(· | x). In general, the posterior measure is
a function ξ(· | x) : FΩ → [0, 1], with:

ξ(B | x) =
∫
B
Pω(x) dξ(ω)∫

Ω
Pω(x) dξ(ω)

. (5.1.1)

The main question is how to calculate this posterior for any value of x in prac-
tice. One imagines that if x is a complicated object, this may be a difficult job.
However, there exist distribution families and priors such that this calculation
is very easy. This happens when a summary of the data that does contains all
necessary information can be calculated easily. Formally, this is captured via
the concept of a sufficient statistic.

5.2 Sufficient statistics

Sometimes we want to summarise the data we have observed. This can happen
when the data is a long sequence of simple observations xt = (x1, . . . , xt), with
xk ∈ R. It may also be useful to do so when we have a single observation x,
such as a high-resolution image. For some applications, it maybe sufficient to
only calculate a really simple function of the data, such as the sample mean,
defined below:

Definition 5.2.1 (Sample mean). The sample-mean x̄t : R
t → R of a sequence

xk is defined as:

x̄t ,
1

t

t∑

k=1

xk, xk ∈ R. (5.2.1)

This summary, or any other function of the observations is called a statis-
tic. In particular, we would be interested in using statistics with which we
could completely replace all the real data in our calculations, without losing
any information. Such statistics are called sufficient.
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5.2.1 Formalisation of sufficient statistics

We consider the standard probabilistic setting. Let S be a sample space and Ω
be a parameter space defining a family of measures on S:

P = {Pω | ω ∈ Ω} .

In addition, we must also define an appropriate prior distribution ξ on the
parameter space Ω.

Example 5.2.1. Consider a sequence of random variables xk taking values
in X = {0, 1}. Let Ω =

{
0, 12 , 1

}
be a family of Bernoulli distributions with

parameter ω:
P(xk = 1 | ω) = Pω({1}) = ω,

such that xk ∼ Pω for all k. A suitable prior distribution could be defined via
ξ(ω) = θi for some vector θ ∈ ∆

3 on the three-dimensional simplex.

Definition 5.2.2. Let Ξ be a set of prior distributions on Ω, P = {Pω | ω ∈ Ω}
be a family of distributions on S. A statistic T : S → Z is a sufficient statistic
for 〈P, Ξ〉 if:

ξ(ω | x) = ξ(ω | x′), (5.2.2)

for any prior ξ ∈ Ξ and any x, x′ ∈ S such that:

T (x) = T (x′).

Theorem 5.2.1. A statistic T : S → Z is sufficient for a family P =
{Pω | ω ∈ Ω} of probability functions on S iff there exist functions u : S →
(0,∞), and v : Z ×Ω → [0,∞) such that ∀x ∈ S, ω ∈ Ω:

Pω(x) = u(x)v[T (x), ω], u > 0, v ≥ 0. (5.2.3)

Proof. The proof will be for the general case. The case when Ω is finite is
technically simpler and is left as an exercise. Assume the existence of u, v.
Then for B ∈ FΩ :

ξ(B | x) =
∫
B
u(x)v[T (x), ω] dξ(ω)∫

Ω
u(x)v[T (x), ω] dξ(ω)

=

∫
B
v[T (x), ω] dξ(ω)∫

Ω
v[T (x), ω] dξ(ω)

.

If T (x) = T (x′), then the above is also equal to ξ(ω | x′), so T is a sufficient
statistic.

Conversely, let T be a sufficient statistic. Let µ be a dominating measure on

S so that p(ω) , dξ(ω)
dµ(ω) and take the derivative at B → ω so that:

p(ω | x) , dξ(ω | x)
dµ(ω)

=
Pω(x)p(ω)∫

Ω
Pω(x) dξ(ω)

Consequently, we can write:

Pω(x) =
p(ω | x)
p(ω)

∫

Ω

Pω(x) dξ(ω).
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Since T is sufficient, there is some function g : Z × Ω such that p(ω | x) =
g[T (x), x]. Consequently, we can factorise Pω as:

Pω(x) = v[T (x), ω]u(x),

where u(x) =
∫
Ω
Pω(x) dξ(ω) and v[T (x), w] = g[T (x), w]/ξ(ω).

With this factorisation, u is the only factor that depends directly on x.

Example 5.2.2. Suppose xt = (x1, . . . , xt) is a random sample from a Bernoulli
distribution with parameter ω. Then the joint probability is

Pω(x
t) =

t∏

k=1

Pω(xk) = ωst(1− ω)t−st

with st =
∑t
k=1 xk being the number of times 1 has been observed until time t.

Then the statistic:

T (xt) =
t∑

k=1

xk.

satisfies (5.2.3) with u(x) = 1, while Pω(x
t) only depends on the data trough the

statistic st = T (xt).

5.2.2 Exponential families

Many well-known distributions such as the Gaussian, Bernoulli and Dirichlet
distribution are members of the exponential family of distributions. All such
distributions are factorisable in the manner shown below, while at the same
time they have fixed-dimension sufficient statistics.

Definition 5.2.3. A distribution family P = {Pω | ω ∈ Ω} with Pω a proba-
bility density or a probability function defined on the sample space S, is said to
be an exponential family if for any x ∈ S, ω ∈ Ω:

Pω(x) = a(ω)b(x) exp

[
k∑

i=1

gi(ω)hi(x)

]
. (5.2.4)

Remark 5.2.1. Among families of distributions satisfying certain regularity
conditions, only exponential familes have a fixed-dimension sufficient statistic.
That is, there is some constant C <∞ such that:

sup
X∈FS

dim({T (x) | x ∈ S}) ≤ C. (5.2.5)

Because of this property, exponential family distributions admit so-called
conjugate prior distribution families. These have the property that any poste-
rior distribution calculated will remain within the conjugate family. Frequently,
because of the simplicity of the statistic used, calculation of the conjugate pos-
terior parameters is very simple.
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5.3 Conjugate priors

In this section, we examine some well-known conjugate families. First, we give
sufficient conditions for the of existence of conjugate family of priors for a given
distribution family and statistic.

Remark 5.3.1. If a family P of distributions on S has a sufficient statistic
T : S → Z of fixed dimension for any x ∈ S, then there exists a conjugate
family of priors Ξ = {ξα | α ∈ A}, where A is a set of possible parameters for
the prior distribution, such that:

1. Pω(x) is proportional to some ξα ∈ Ξ:

∀x ∈ S, ∃ξα ∈ Ξ, c > 0 :

∫

B

Pω(x) dξα(ω) = cξα(B), ∀B ∈ FΩ

2. The family is closed under multiplication:

∀ξ1, ξ2 ∈ Ξ, ∃ξα ∈ Ξ, c > 0

such that:

ξα = cξ1ξ2.

5.3.1 Bernoulli-Beta conjugate pair

The Bernoulli-Beta conjugate pair of families is the simplest example. It is
useful for problems where we wish to measure success rates of independent
trials. First, we shall give details on the Bernoulli distribution. Then, we shall
define the Beta distribution and describe its conjugate relation to the Bernoulli.

Bernoulli distribution
The Bernoulli distribution is a discrete distribution with outcomes taking

values in {0, 1}. It is ideal for modelling the outcomes of independent random
trials with fixed probability of success.

ω xt

Figure 5.1: Bernoulli graphical model

Definition 5.3.1 (Bernoulli distribution). The Bernoulli distribution is dis-
crete, with outcomes S = {0, 1}, prameter ω ∈ [0, 1], and probability function:

Pω(u) =

{
ω, u = 1

1− ω, u = 0
= ωu(1− ω)1−u.

If xt is distributed according to a Bernoulli distribution with parameter ω, we
write xt ∼ Bern(ω). The Bernoulli distribution can be extended to S = {0, 1}t
by modelling each out come as independent. Then Pω(x

t) =
∏t
k=1 Pω(xk). In

that case, it directly related to the Binomial distribution.



64 CHAPTER 5. ESTIMATION

Definition 5.3.2 (Binomial Distribution). Let us denote the total number of 1’s
observed until time t by st =

∑t
k=1 xk. Then P(st = k | ω) =

(
t
k

)
ωk(1 − ω)t−k

is the probability that, k out of t trials will be positive. Remember that
(
x
k

)
=∏k−1

i=0 (x− i)/(1+ i). If st is drawn from a binomial distribution with parameters
ω, t, we write st ∼ Binom(ω, t).

The difference between the two distributions, is that the Bernoulli is a dis-
tribution on a sequence of outcomes, while the binomial a distribution on the
total number of positive outcomes.

Example 5.3.1. A fair coin toss can be modelled as a Bernoulli distribution
with ω = 1

2 .

Thus, the Bernoulli distribution is the simplest possible parametric model.
If the ω parameter is known, then all the observations are independent of each
other. However, this is not the case when ω is unknown. For example, let
Ω = {ω1, ω2}. Then P(xt) =

∑
ω∈Ω P(xt | ω)P(ω) =∑ω

∏t
k=1 P(xk | ω)P(ω).

Beta distribution
The Beta distribution is a distribution on the interval [0, 1]. It has two

parameters that determine the density of the observations. Because the out-
comes of this distribution can be used to define the parameter of the Bernoulli
distribution, we can now call the distribution’s outcomes ω and its parameter
α.

α ω

Figure 5.2: Beta graphical model

Definition 5.3.3 (Beta distribution). The Beta distribution has outcomes ω ∈
Ω = [0, 1] and parameters α0, α1 > 0, α = (α1, α0). It is defined via its proba-
bility density function:

f(ω | α) = Γ (α0 + α1)

Γ (α0)Γ (α1)
ωα1−1(1− ω)α0−1, (5.3.1)

where Γ is the gamma function. If xt is distributed according to a Beta distri-
bution with parameters α1, α0, we write: xt ∼ Beta(α1, α0).

The Beta family defines a family of probability measures P = {Pα | α0, α1 > 0},
with the probability of A ⊂ [0, 1]: P(ω ∈ A | α) = Pα(A) ,

∫
A
p(ω | α) dω.

A Beta distribution with parameter α has expectation E(x | α) = α1/‖α‖1.

Example 5.3.2. The parameter ω ∈ [0, 1] of a randomly selected coin can be
modelled as a Beta distribution peaking around 1/2. Usually one assumes that
coins are fair. However, not all coins are exactly the same. Thus, it is possible
that each coin deviates slightly from fairness. We can use a Beta distribution
to model how likely (we think) different values ω of coin parameters are.

Figure 5.3 shows the density of a Beta distribution for four different parame-
ter vectors. When α0 = α1 = 1, the distribution is equivalent to a uniform one.
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Figure 5.3: Four example Beta densities

The Beta distribution is useful for expressing probabilities of random variables
in bounded intervals. In particular, since probabilities of events take values
in [0, 1], the Beta distribution is an excellent choice for expressing uncertainty
about a probability.

Beta prior for Bernoulli distributions

One simple idea is to encode our uncertainty about an unknown parameter
of the Bernoulli distribution, is to use a Beta distribution. The main idea is
to assume that the Bernoulli parameter ω ∈ [0, 1] is unknown but fixed. We
define a Beta prior distribution for ω to represent our uncertainty. This can be
summarised by a paramter α and we write ξ0(B) ,

∫
p(ω | α) dω for our prior

distribution ξ0.

The posterior probability in that case is

p(ω | xt, α) =
∏t
k=1 Pω(xk)p(ω | α)∫

Ω

∏t
k=1 Pω(xk)p(ω | α) dω

(5.3.2)

∝ ωst,1+α1−1(1− ω)st,0+α0−1 (5.3.3)

and f(x) ∝ g(x) means that f(x) = cg(x) for some constant c.

α ω xt

Figure 5.4: Beta-Bernoulli graphical model.
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Coin tossing

A simple illustration of the use of the Beta-Bernoulli model is to estimate the
bias of a particualr coin. The following figure shows a sequence of beliefs at times
0, 10, 100, 1000 respectively, from a coin with bias ω = 0.6. To demonstrate

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1

ξ0
ξ10
ξ100
ξ1000

Figure 5.5: Changing beliefs as we observe tosses from a coin with probability
ω = 0.6 of heads.

how belief changes, we can perform the following simple experiment. Imagine a
coin such that, when it is tossed, it has a probability 0.6 of coming heads every
time it is tossed, independently of previous outcomes. Thus, the distribution of
outcomes is a Bernoulli distribution with parameter ω = 0.6.

We wish to form an accurate belief about how biased the coin is, under
the assumption that the outcomes are Bernoulli with parameter ω. Our initial
belief, ξ0, is modelled as a Beta distribution on the parameter space Ω = [0, 1],
with parameters α0 = α1 = 100. This places a strong prior on the coin being
close to fair. However, we still allow for the possibility that the coin is biased.

Due to the strength of our prior, after 10 observations, the situation has not
changed much and the belief ξ10 is very close to the starting one. However,
after 100 observations, our belief has now shifted towards 0.6, the true bias of
the coin. After a total of 1000 observations, our belief is centered very close to
0.6, and is now much more concentrated, reflecting the fact that we are almost
certain about the value of ω.

5.4 Credible intervals

Credible interval

According to our current belief ξ, there is a certain subjective probability
that the unknown parameter ω takes a certain value. We can use this to con-
struct intervals where we think the unknown parameter is most likely to be.

Definition 5.4.1. Given some probability measure ξ on Ω representing our
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Figure 5.6: 90% credible interval after 1000 observations from a Bernoulli with
ω = 0.6.

belief and some interval A ⊂ Ω,

ξ(A) =

∫

A

dξ = P(ω ∈ A | ξ).

is our subjective belief that the unknown parameter ω is in A. If ξ(A) = s,
then we say that A is an s-credible interval (or set), or an interval of size (or
measure) s.

Constructing the credible interval.
For prior distributions on R, constructing an s-credible interval is usually
done by finding ωu, ωl ∈ R such that

ξ([ωl, ωu]) = s.

However, any choice of A such that ξ(A) = s is valid.

Figure 5.6 shows the 90% credible interval. (The measure of A under ξ is
ξ(A) = 0.9.)

What is the probability that the true value of ω will be within a particular
credible interval? This will depend on how well our prior ξ0 matches the true
distribution from which the parameter ω was drawn.

Reliability of credible intervals
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Assume φ, ξ0 are probability measures on the parameter set Ω, where our
prior belief is ξ0 and φ is the actual distribution of ω ∈ Ω. Each ω defines
a measure Pω on the observation set S. Let us construct a credible interval
At ⊂ Ω (which is a random variable At : S

t → PΩ) such that it has measure
s = ξt(At) for all t. Finally, let Q ,

∫
ω
Pω dφ(ω) be the marginal distribution

on S. Then the probability that the credible interval At will not include ω is

Q
({
xt ∈ St

∣∣ ω /∈ At
})
.

The main question is how this failure probability relates to s, t and ξ0. There
are some results that show that

Q
({
xt ∈ St

∣∣ ω ∈ At
})

≤ (1− s)[1 +D (ξ0 ‖ φ)O(t−1/2)].

Let us now design an experiment for examining how often a typical credible
interval includes the parameter we are interested in. In order to do so, we will
have Nature draw the parameter from some arbitrary distibution φ, which may
differ from our own assumed prior distribution ξ0.

Experimental testing of a credible interval

1: Given a probability family P = {Pω | w ∈ Ω}.
2: Nature chooses distribution φ over Ω.
3: We choose another distribution ξ0 over Ω.
4: for k = 1, . . . , n do
5: Draw ωk ∼ φ.
6: Draw xT | ωk ∼ Pωk

.
7: for t = 1, . . . , T do
8: Calculate ξt(·) = ξ0(· | xt) for all t.
9: Calculate At, the 50% CI for all t.

10: Check failure: ǫt,k = I {ωk /∈ At}
11: end for
12: end for
13: Average over all k: ǫt =

1
n

∑n
k=1 ǫt,k.

We performed this experiment for n = 1000 trials and for T = 100 obser-
vations per trial. Figure 5.7 illustrates what happens when φ = ξ0. We see
that the credible interval is always centered around our initial mean guess and
that it is quite tight. Figure 5.8 shows the average number of times the credible
interval At around our estimated mean did not match the actual value of ωk.
Since the measure of our interval At is always ξt(At) = 1/2, we expect our error
probability to be 1/2. This is always the case.

On the other hand, Figure 5.9 illustrates what happens when φ 6= ξ0. In fact
in that case, φ(ω) = δ(ω−0.6), so that ωk = 0.6 for all trials k. We see that the
credible interval is always centered around our initial mean guess and that it is
always quite tight. Figure 5.10 shows the average number of failures. We see
that initially, due to the fact that our prior is different from the distribution from
which the ωk are selected, we make many more mistakes. However, eventually,
our prior is swamped by the data and our error rate converges to 50%.
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Figure 5.7: 50% credible intervals for a prior Beta(10, 10), matching the distri-
bution of ω.

5.5 Concentration inequalities

The sample mean revisited

It is interesting to consider the case calculating a sample mean. We have
seen that, for the Beta-Bernoulli conjugate prior, it is a simple enough matter to
calculate a posterior distribution. From that, we can obtain a credible interval
on the expected value of the unknown Bernoulli distribution. However, we
would like to do the same for arbitrary distributions on [0, 1], rather than the
Bernoulli, which is defined on {0, 1}.

Example 5.5.1 (Sample mean). Let xt = (x1, . . . , xt), with x
t ∼ P , EP xk =

µ ∈ [0, 1] for all k, with P an unknown distribution with support in [0, 1]. Let

x̄t ,
1

t

t∑

k=1

xk.

be the sample mean. We are going to look at a number of well-known
inequalities that allow to bound |x̂t − µ|.

The Markov inequality

Theorem 5.5.1 (Markov inequality). If X ∼ P , with P a distribution on
[0,∞), then:

P(X ≥ t) ≤ EX

t
, (5.5.1)

where P(X ≥ t) = P ({x | x ≥ t}).
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Figure 5.8: Failure rate of 50% CI for a prior Beta(10, 10), matching the distri-
bution of ω.

Proof. The expectation of X is:

EX =

∫ ∞

0

x dP (x) (5.5.2)

=

∫ t

0

x dP (x) +

∫ ∞

t

x dP (x) (5.5.3)

≥ 0 +

∫ ∞

t

t dP (x) (5.5.4)

= tP ({x | x ≥ t}) = tP(X ≥ t). (5.5.5)

Consequently, we have that P(|x̄t− p| ≥ ǫ) ≤ E |x̄t− p|/ǫ. For X ∈ [0, 1], we
obtain the bound

P(|x̄t − p| ≥ ǫ) ≤ 1/ǫ.

Can we do better? We might, if we take advantage of the following trick. For
monotonic f ,

P(X ≥ t) = P(f(X) ≥ f(t)) (5.5.6)

as {x | x ≥ t} = {x | f(x) ≥ f(t)}. Thus, we can apply the Markov inequality
in a large number of contexts.

The Chebyshev inequality

Theorem 5.5.2. Let X be a random variable with expectation µ = EX and
variance σ2 = VX. Then, for all k > 0:

P(|X − µ| ≥ kσ) ≤ k−2. (5.5.7)
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Figure 5.9: 50% credible intervals for a prior Beta(10, 10), when ω = 0.6.

Proof.

P(|X − µ| ≥ kσ) = P

( |X − µ|
kσ

≥ 1

)
= P

( |X − µ|2
k2σ2

≥ 1

)

≤ E

(
(X − µ)2

k2σ2

)
=

E(X − µ)2

k2σ2
= k−2

Example 5.5.2 (Application to sample mean). It is easy to show that the sam-
ple mean has expectation µ and variance σ2

x/t, where σ
2
x = Vxk. Consequently:

P
(
|x̄t − µ| ≥ kσx/

√
t
)
≤ k−2.

Setting ǫ = kσx/
√
t we get k = ǫ

√
t/σx and hence

P(|x̄t − µ| ≥ ǫ) ≤ σ2
x

ǫ2t
.

Chernoff-Hoeffding bounds
The previous inequality can be quite loose. In fact, one can prove tighter

bounds for the estimation of an expected value. All these bounds rest upon a
different application of the Markov inequality, due to Chernoff.

Main idea of Chernoff bounds.
Let St =

∑t
k=1Xk, with Xk ∼ P independently, i.e. Xt ∼ P t. By defini-

tion, from Markov’s inequality we obtain in turn, for any α > 0

P(St ≥ u) = P(eαSt ≥ eαu) ≤ e−αu E eαSt = e−αu
∏

k

E eαXk . (5.5.8)
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Figure 5.10: Failure rate of 50% CI for a prior Beta(10, 10), when ω = 0.6.

Theorem 5.5.3. Hoeffding inequality (Hoeffding [1963], Theorem 2) Let xk ∼
Pk with xk ∈ [ak, bk] with EXk = µk. Then

P (x̄t − µ ≥ ǫ) ≤ exp

(
− 2t2ǫ2∑t

k=1(bk − ak)2

)
, (5.5.9)

where x̄t =
1
t

∑t
k=1 xk and µ = 1

t

∑t
k=1 µk.

Proof. Use (5.5.8), setting Xk = xk − µk so that St = t(x̄t − µ) and u = tǫ.
Then:

P(x̄t − µ ≥ ǫ) = P(St ≥ u)

≤ e−θu
t∏

k=1

E eθXk = e−θtǫ
t∏

k=1

E eθ(xk−µ).

Applying Jensen’s inequality directly to the expectation does not help. However,
we can use convexity in another way. Let f(x) be the linear upper bound on
eθx on the interval [a, b], i.e.

f(x) =
b− x

b− a
eθa +

x− a

b− a
eθb ≥ eθx.

Then obviously E θx ≤ E f(x). Applying this to the above we get

P(x̄t − µ ≥ ǫ) ≤ e−θtǫ
t∏

k=1

E eθ(xk−µ).

Now

eθ(xk−µk) ≤ e−θµk

bk − ak

{
(bk − µk)e

θak + (µk − ak)e
θbk
}
= eF (θi),
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where

F (θi) = −θipi + ln(1− pi + pie
θi),

θi = θ(bi − ai), pi =
µi − ai
bi − ai

.

Taking derivatives and computing the Taylor expansion, we get

E eθ(xk−µk) ≤ e
1
8 θ

2(bk−ak)2

P(x̄t − µ ≥ ǫ) ≤ e−θtǫ+
1
8 θ

2 ∑t
k=1(bk−ak)

2

.

This is minimised at θ = 4tǫ/
∑t
k=1(bk − ak)

2. Plugging it into the above, we
obtain the required result.

Example 5.5.3 (Application to sample mean). For xk ∈ [0, 1]:

P (|x̄t − µ| ≥ ǫ) ≤ 2e−2tǫ2

5.6 Approximate Bayesian approaches

Monte-Carlo inference

Estimating expectations.
Let f : S → [0, 1] and P a measure on S. Then

EP f =

∫

S

f(x) dP (x). (5.6.1)

Estimating expectations is relatively easy, as long as we can generate samples
from P . Then, we can our error in estimating its expectation by using the
Hoeffding bound.

Corollary 5.6.1. Let f̂n = 1
n

∑
t f(xt) with xt ∼ P and f : S → [0, 1]. Then:

P
({
xn ∈ Sn

∣∣∣ |f̂n − E f | ≥ ǫ
})

≤ 2e−2nǫ2 . (5.6.2)

This technique is simple and fast. However, we frequently cannot sample
from P , but only from some alternative distribution Q. Then it is hard to
bound our error.

Another interesting application of this technique is the calculation of poste-
rior distributions.

Example 5.6.1 (Calculation of posterior distributions). Assume a probability
family P = {Pω | ω ∈ Ω} and a prior distribution ξ on Ω such that we can
draw ω ∼ ξ. The posterior distribution can be written according to (5.1.1). The
nominator can be written as
∫

B

Pω(x) dξ(ω) =

∫

Ω

I {ω ∈ B}Pω(x) dξ(ω) = Eξ [I {ω ∈ B}Pω(x)] . (5.6.3)

Similarly, the denominator can be written as Eξ[Pω(x)]. If Pω is bounded, then
the errors can be bounded too.
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An extension of this approach involves Markov chain Monte-Carlo (MCMC)
methods. These are sequential sampling procedures, where data is sampled
iteratively. At the k-th iteration, we obtain a sample x(k) ∼ Qk, where Qk
depends on the previous sample drawn, x(k−1). Although under mild conditions
Qk → P , there is no easy way to determine a priori when the procedure has
converged.

5.6.1 Approximate Bayesian Computation

Many times, we have a more fundamental problem. The family of models that
we consider An approach that has been popularised by

Algorithm 1 ABC Rejection Sampling

1: ωk ∼ ξ.
2: x̂(k) ∼Mωk

.
3: If D[T (x), T (x̂(k))] ≤ ǫ accept ωk as a sample from ξ(ω | x).

5.7 Other conjugate families

5.7.1 Conjugates for the normal distribution

Normal distribution

ω

r

xt

Figure 5.11: Normal graphical model

� Continuous distribution, outcomes: S = R.

� Parameters: mean ω ∈ R, precision r ∈ R
+.

� Probability density function: f(xt | ω, r) = r√
2π

exp
(
− r

2 (xt − ω)2
)

� Independence: f(xt | ω, r) =∏t
k=1 f(xk | ω, r) =

(
r√
2π

)n
exp

(
− r

2

∑t
k=1(xk − ω)2

)

Normal prior for normal distribution with known precision, unknown
mean

The simplest normal estimation problem occurs when we only need to esti-
mate the mean, but we assume that the variance, or equivalently the precision,
is known. For Bayesian estimation, it is convenient to assume that the mean ω
is drawn from another normal distribution with known mean.

The model
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Figure 5.12: Normal with unknown mean, graphical model

� Known precision r.

� Unknown mean ω with assumed distribution ω ∼ N (µ, τ).

� µ, τ are the mean and precision of our belief about ω, respectively.

Theorem 5.7.1. Let xt be a random sample from N (ω, r). If ω ∼ ξ0 = N (µ, τ),
then ξt = N (µ′, τ ′), with

µ′ =
τµ+ nrx̄t

τ ′
, τ ′ = τ + nr, (5.7.1)

and x̄t ,
1
t

∑t
k=1 xk.

Gamma distribution

α

β

rt

Figure 5.13: Gamma graphical model

The Gamma distribution is a distribution on the interval [0,∞). It has two
parameters that determine the density of the observations.

� Continuous distribution, outcomes r ∈ Ω = [0,∞).

� Parameters α, β > 0.

� Probability density function: f(r | α) = βα

Γ (α)r
α−1e−βr, for r > 0.

� Γ (α) =
∫∞
0
uα−1e−u du.

Relations to other distributions
For α = 1, β > 0 one obtains an exponential distribution with parameter β.

For n ∈ N and α = n/2, β = 1/2 one obtains a χ2 distribution with
n degrees of freedom. Also, if xn are i.i.d. standard normal, then

∑n
k=1 x

2
t

has a χ2 distribution with n-degrees of freedom.
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Figure 5.15: Normal with unknown precision, graphical model

Gamma prior for the precision

Theorem 5.7.2. Given a sample xn from a normal distribution with mean ω
and unknown precision with Gamma prior ξ0(r) , f(r | α, β), the posterior
distribution is

ξn(r) , ξ0(r | xn) = f(r | α′, β′), (5.7.2)

where α′ = α+ n
2 , β

′ = β + 1
2

∑n
i=1(xi − ω)2.

Normals with unknown precision and unknown mean

α

β

µ

τ ω

r

xt

Figure 5.16: Normal with unknown mean and precision, graphical model



5.7. OTHER CONJUGATE FAMILIES 77

Theorem 5.7.3. Given a sample xn from a normal distribution with unknown
mean ω and precision r, whose prior joint distribution satisfies

ω | r ∼ N (µ, τr), r ∼ Gam(α, β), (5.7.3)

the posterior distribution is

ω | r ∼ N

(
τµ+ nx̄

τ + n
, (τ + n)r

)
, r ∼ Gam

(
α+

n

2
, β +

1

2

n∑

i=1

(xi − x̄)2 +
τn(x̄− µ)2

2(τ + n)

)
.

(5.7.4)

Interesting properties

1. While ω | r has normal distribution, the marginal distribution of ω is
not normal. In fact, it can be shown that it has a t-distribution.

2. There is a dependence of ω on r. This is true for our posteriors, even
if ω, r are independent in our prior.

The marginal predictive distribution

For a normal distribution with mean m, precision r, we have

f(x | m, r) ∝ r1/2 exp
(
−r
2
(m− x)2

)
.

For a priorM |R = r ∼ N (µ, νr) and R ∼ Gam(α, β), we have the following joint
distribution for the mean and precision:

ξ(m, r) ∝ r1/2e−(νr/2)(m−µ)2rα−1e−βr. (5.7.5)

Now we can write the posterior marginal as

ξ(x) =

∫
f(x | m, r) dξ(m, r) (5.7.6)

∝
∫
re−

r
2 (m−x)2e−(νr/2)(m−µ)2rα−1e−βr d(m, r) (5.7.7)

=

∫
rαe−βr

∫
e−

r
2 (m−x)2−(νr/2)(m−µ)2 d(m, r) (5.7.8)

=

∫
rαe−βr

(∫ ∞

−∞
e−

r
2 [(m−x)2+ν(m−µ)2] dm

)
dr (5.7.9)

=

∫
rαe−βre−

νr
2(ν+1)

(µ−x)2
√

2π

r(1 + ν)
dr (5.7.10)

5.7.2 Conjugates for multivariate distributions

The binomial distribution can be extended to the multinomial and the nor-
mal distribution on the real line can be extended to the multivariate normal
distribution. Fortunately, multivariate extensions exist for their corresponding
conjugate priors as well.



78 CHAPTER 5. ESTIMATION

Multinomial-Dirichlet conjugates

Multinomial distribution
The multinomial distribution is the extension of the binomial distribution

to more than an arbitrary number of outcomes. Consider an outcome set
S = {1, . . . ,K}. This is a common model for independent random trials with
a finite number of possible outcomes, such as repeated dice throws, multi-class
classification problems, etc.

We now perform n trials, such that the outcome of each trial is independent
of the rest. This is the an extension of a sequence of n Bernoulli trials, but with
a larger set of possible outcomes in each trial.

The multinomial distribution gives us the probability of obtaining the i-th
outcome ni times, given that we perform a total of n trials.

ω xt

Figure 5.17: Multinomial graphical model

� Discrete distribution, outcomes xt ∈ S = {1, . . . ,K}.

� Parameter ω ∈ R+, ‖ω‖1 = 1. Due to the second constraint, given
ω1, . . . , ωK−1, the value of ωK is fully determined. However, we shall
not make use of that fact.

� This is a distribution with i.i.d outcomes: P(xt = i | ω) = ωi for all i. Note
that this is the multiple outcome extension of the Bernoulli distribution,
which only has two possible outcomes.

� Let us denote the number of times the i-th outcome was observed until
time t by nt,i ,

∑t
k=1 I {xk = i}. Then:

P(nt | ω) =
t!

∏K
i=1 nt,i!

K∏

i=1

ω
nt,i

i . (5.7.11)

Dirichlet distribution
The Dirichlet distribution is the multivariate extension of the Beta distribu-

tion.

α ω

Figure 5.18: Dirichlet graphical model

The Dirichlet distribution is a distribution on the interval [0, 1]K . It has a
vector parameter that determines the density of the observations.

� Continuous distribution, outcomes ω ∈ Ω = ∆
K , i.e. ‖ω‖1 = 1 and ωi ≥ 0.

In other words, all of the mass is on the positive K−1 dimensional simplex
in R

K .
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� Parameter vector α ∈ R
K
+ .

� Probability density function:

f(ω | α) = Γ (
∑K
i=1 αi)∏K

i=1 Γ (αi)

∏
ωαi−1
i , (5.7.12)

Γ (x) =
∫∞
0
ux−1e−u du.

Dirichlet prior for multinomial distributions

α ω xt

Figure 5.19: Dirichlet-multinomial graphical model.

� We assume ω is unknown, but fixed.

� We observe xt = (x1, . . . , xt).

� Our prior is determined by Dir (α): ξ0(ω) , f(ω | α)

� Our posterior is

ξt(ω) ∝
K∏

i=1

ω
nt,i+αi−1
i (5.7.13)

where nt,i =
∑t
k=1 I {xk = i}.

Multivariate normal conjugate families

Mutltivariate normal distribution

ω

R
xt

Figure 5.20: Multivariate normal graphical model

� Continuous distribution, outcomes: S = R
K .

� Parameters: mean ω ∈ R
K , precision R ∈ R

K×K , with x′Rx > 0 for any
x 6= 0.

� Probability density function:

f(xt | w, r) = (2π)−K/2|R|1/2 exp
(
−1

2
(xt − ω)′R(xt − ω)

)
. (5.7.14)

� Independence: f(xt | ω,R) =
∏t
k=1 f(xk | ω,R).
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Wishart distribution
The Wishart distribution is a matrix distribution on R

K×K with n degrees
of freedom and precision matrix T ∈ R

K×K .

Construction of the Wishart distribution

1. xn ∼ N (ω,T ), ω ∈ R
K , R ∈ R

K,K .

2. x̄t ,
1
n

∑n
i=1 xi.

3. S =
∑n
i=1(xi − x̄t)(xi − x̄t)

′.

Then S has a Wishart distribution with n − 1 degrees of freedom and
parameter matrix T .

Probability density function
For any V ∈ R

K×K , with V > 0.

f(V | n,T ) ∝ |T |n/2|V |(n−K−1)/2e−
1
2 trace(TV ). (5.7.15)

is the density for a Wishart distribution with n > K−1 degrees of freedom
and precision matrix T .

Definition 5.7.1. The trace of a n× n square matrix A is

trace(A) ,
n∑

i=1

aii.

Normal-Wishart conjugate prior

Theorem 5.7.4. Given a sample xn from a multivariate normal distribution in
R
K with unknown mean ω ∈ R

K and precision R ∈ R
K×K , whose prior joint

distribution satisfies:

ω | R ∼ N (µ, τR), R ∼ Wish(α,T ), (5.7.16)

with τ > 0, α > k − 1, T > 0, the posterior distribution is

ω | R ∼ N

(
τµ+ nx̄

τ + n
, (τ + n)R

)
, (5.7.17)

R ∼ Wish

(
α+ n,T + S +

τn

τ + n
(µ− x̄)(µ− x̄)′.

)
, (5.7.18)

S =
∑n
i=1(xi − x̄)(xi − x̄)′.

5.8 Summary

� Family of observation distributions: P = {Pω | ω ∈ Ω} on S.
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� Family of parameter priors Ξ on Ω.

� A statistic T is a function giving a summary of observations in S.

� A sufficient statistic T summarises all relevant information for distinguish-
ing between distributions in a family.

� Ξ is conjugate to P if ξ(· | x) ∈ Ξ for all ξ ∈ Ξ, x ∈ S.

� A credible interval/set A has a measure ξ(A | x), which represents our
belief that the true parameter ω is in A, given observations x ∈ S and our
prior belief ξ ∈ Ξ.

� A confidence interval of measure ξ(A | x) = s fails with probability 1− s
if ω ∼ ξ.

� The beta distribution is good for modelling parameters / observations in
[0, 1].

� The gamma distribution is good for modelling parameters / observations
in [0,∞).

� The Dirichlet and Wishart distributions are their multivariate extensions.

� Parametric conjugate pairs: Binomial/Beta, Normal/Normal-Gamma, Multi-
nomial/Dirichlet, Multivariate normal / Normal-Wishart, Uniform/Pareto.
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Hypothesis testing
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6.1 Decision problems

Hypothesis testing as a decision problem.

Hypothesis testing is a special type of decision problem, where the deci-
sion space D is a set of hypotheses about the distribution that generates the
observations.

Observations
Consider a problem where we obtain an observation x ∈ S. S can be a
finite product space: S = Zn, or it can be the space of all sequences of
some observations zt ∈ Z: S = Z∗ ,

⋃∞
k=1 Zk.

Models
We have a set of probability measures on S, P = {Pω | ω ∈ Ω}, indexed
by ω. We wish to choose from a set of different hypotheses about ω. The
measures Pω do not necessarily have to be within the same parametric
family. They must however define measures on CX.

Decision space D
Each decision d ∈ D corresponds to a hypothesis about which is the correct
ω. More specifically, d ∈ D corresponds to the hypothesis that ω ∈ Ωd,
with Ωd ⊂ Ω for all d.

Loss function ℓ : Ω ×D → R

If ω∗ is the true parameter, then the loss of decision d is ℓ(ω∗, d).

Decision function.

Definition 6.1.1. A decision function δ : S → D selects a decision δ(x) for
any observation x ∈ S.

The expected loss of a decision function for a given parameter
If the true parameter is ω∗, the expected loss of a decision function is

σ(ω∗, δ) , Eω∗ [ℓ(ω∗, δ)] =

∫

S
ℓ(ω, δ(x)) dPω∗(x). (6.1.1)

This is the risk of the decision function for the case when the value of
the parameter is ω∗ ∈ Ω. Since ω∗ is unknown, the risk is also unknown.
However, we can calculate the risk functional for all ω.
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The (subjective) expected loss (or risk) of a decision function
For any probability measure µ on Ω, our expected loss is:

σ(µ, δ) =

∫

Ω

σ(ω, δ) dµ(ω) =

∫

Ω

∫

S
[ℓ(ω, δ(x))] dµ(ω). (6.1.2)

This holds both when µ = ψ, the distribution from which ω is actually drawn,
or when µ = ξ, our prior belief. Thus, the meaning of the above equation
depends on what ξ is. If ω is drawn from ξ prior to our experiment, then
(6.1.2) coincides with the true risk. If ξ is our subjective belief about ω, but
ω is drawn from some other distribution ψ prior to our experiment, then
the above expression is only subjective, since generally ρ(ξ, δ) 6= ρ(ψ, δ) if
ψ 6= ξ.

Decision problems with two points
To make the above discussion more concrete, consider the following simple

problem, whereΩ = {ω1, ω2} and where we have two decisions, i.e.D = {d1, d2}.
In simple hypothesis testing problems, each decision di corresponds to selecting
ωi as the true parameter and we only suffer a loss when we have made the wrong
choice. The loss function is shown in Table 6.1.

ℓ(ω, d) d1 d2
ω1 0 c1
ω2 c2 0

Table 6.1: Cost function of a simple hypothesis testing problem

Consider that we want to decide whether ω1 or ω2 is true. We can do
so after observing x. We construct a decision function δ, such that for any
observed value, we choose d1, or d2. For any selected decision function, there
will be some probability that we make the wrong decision. Thus, the decision
function will have an expected cost associated with it. In fact, let α1(δ), α2(δ)
be the probabilities of making the wrong decision using δ for the two cases,
ω∗ = ω1 and ω∗ = ω2. Given a probability for ω, we can calculate the risk of
our decision function. More specifically:

� Let µ(ω) be some (either true or subjective) prior on ω.

� For each ω ∈ Ω, we define P(x | w).

� We observe x and then choose decision δ(x).

� Let α1(δ) be the conditional probability that we choose d2 when ω
∗ = ω1.

α1(δ) , P(δ(x) 6= d1 | ω1)

� Let α2(δ) be the conditional probability that we choose d1 when ω
∗ = ω2.

α2(δ) , P(δ(x) 6= d2 | ω2)

� Let b1 , c1µ(ω1) and b2 , c2µ(ω2).
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The risk of δ is:

ρ(µ, δ) = b1α1(δ) + b2α2(δ) (6.1.3)

Theorem 6.1.1 (Neymann-Pearson lemma). For any b1, b2 > 0, let δ∗ be a
decision function such that

δ∗(x) = d1, if b1Pω1
(x) > b2Pω2

(x) (6.1.4)

δ∗(x) = d2, if b1Pω1
(x) < b2Pω2

(x), (6.1.5)

and either of d1, d2 otherwise. Then, for any other δ:

σ(µ, δ∗) = b1α1(δ
∗) + b2α2(δ

∗) ≤ b1α(δ) + b2α2(δ) = σ(µ, δ)

Interpretation.

� When µ = ψ, the distribution from which ω∗ is drawn, ρ(µ, δ) is the
actual risk.

� When µ = ξ, our subjective prior belief about ω∗, then ρ(µ, δ) is the
subjective risk.

Bayesian decisions

Construction of the decision function
We saw in chapter 3 (Decision problems) that the optimal decision function
is the one that minimises the risk relative to the current posterior. So, we
can have the following procedure.

1. Given a family P = {Pω | ω ∈ Ω}, decision space D, loss function
ℓ : Ω ×D → R.

2. Select a prior ξ(ω).

3. Observe x, and obtain posterior ξ′(ω) , ξ(ω | x) ∝ Pω(x)ξ(ω).

4. Select d∗ = argmind σ(ξ(ω), d).

Thus, the optimal decision function is

δ∗(x) = argmin
d

σ(ξ(ω|x), d).

Open problems
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� How do we select ξ? Ideally we would like to be able to select ξ
in an objective way. However, this is usually not possible. What
is done instead, is to select a ξ with certain symmetry or invariance
properties, to select a ξ which is maximally pessimistic in some sense,
or to actually attempt to elicit a prior ξ from experts. However, strict
frequentists would say that a prior does not even exist in a single
experiment.

� What is the true risk? This is a big question. The true risk depends
on how fast the posterior distribution converges to the true value and
how far it is from it initially. However, in general the true risk is close
to the Bayes risk, also because of the convexity property of the Bayes
risk.

6.2 Unconditional and conditional errors

Error probabilities
Recall that the risk of decision rule δ under µ for the two-point problem is

σ(µ, δ) = b1α1(δ) + b2α2(δ),

where

αi(δ) , P(δ(x) 6= di | ωi), bi = ciµ(ωi). (6.2.1)

Definition 6.2.1 (Unconditional error). When c1 = c2 = 1, then ρ(µ, δ) is the
unconditional error of decision rule δ. In other words,

ρ(µ, δ) =
∑

i

µ(ωi)P(δ(x) 6= di | ωi)

is the a priori probability that the rule δ will make the wrong decision, given that
ω is drawn from µ. Once more, the above can be interpreted as a subjective
quantity, if µ = ξ, our belief about ω, or as an actual quantity, if µ = ψ, the
true distribution of ω.

Classical decisions
These types of decisions are sometimes called frequentist. However, the

decisions we shall talk about here are optimal in a worst-case sense.

Construction of the decision function

1. Given a family P = {Pω | ω ∈ Ω}, decision space D, loss function
ℓ : Ω ×D → R.

2. We have no information on ψ(ω), not even a subjective ξ(ω).
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3. Solution: minimise worst-case risk. For any µ:

σ(µ, δ) =
∑

i

µ(ωi)ci P(δ(x) 6= di | ωi). (6.2.2)

≤
∑

i

µ(ωi)max
j
cj P(δ(x) 6= dj | ωj). (6.2.3)

= max
i
ci P(δ(x) 6= di | ωi). (6.2.4)

The most powerful test for two-point problems

� Minimise bound by equating c1 P(δ(x) 6= d1 | ω1) = c2 P(δ(x) 6= d2 |
ω2).

� Find X ⊂ S such that c1Pω1
(S) = c2Pω2

(S \X).

� δ(x) = d2 if x ∈ X and d1 otherwise.

� Then P(δ(x) 6= d1 | ω1) = Pω1
(S).

Conditional error
Assume we observe x ∼ w and let µ(ω) be a prior distribution on Ω. Let us

define
µ(ω | x) = Pω(x)µ(ω)/µ(x),

to be the posterior probability of ω.

Definition 6.2.2 (Conditional error). Given the above, ρ(µ(· | x), δ) is the
conditional error of decision rule δ if we have observed x. In other words,

ρ(µ(· | x), δ(x)) =
∑

i

µ(ωi | x)P(δ(x) 6= di | ωi)

is the posterior probability that the rule δ will make the wrong decision, given
that ω is drawn from µ.

Once more, the above can be interpreted as a subjective quantity, if µ = ξ,
our belief about ω, or as an actual quantity, if µ = ψ, the true distribution of ω.

Desired properties of reported errors
Assume that we have a procedure which:

1. Given µ, δ and before seeing x, gives us an unconditional error estimate α.

2. Given µ, δ and after seeing x, gives us a conditional error estimate α(x).
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Desirable properties

α = σ(ψ, δ) (6.2.5)

α(x) = σ(ψ(· | x), δ(x)). (6.2.6)

6.3 Two-point test with Bernoulli trials

Example 6.3.1. Bernoulli trials

1. Take a sample x = x1, . . . , xn from P(xk | w).

2. Let sn =
∑n
k=1 xk.

3. From the binomial formula,

P(st = k | w) =
(
t

k

)
wk(1− w)t−k,

(
x

k

)
=

k−1∏

i=0

(x− i)/(1 + i). (6.3.1)

Recall that
(
x
k

)
=
∏k−1
i=0 (x− i)/(1 + i).

The problem

� We need to decide wether d1 : ω = ω1, or d2 : ω = ω2.

� Assume that the costs of mistakes are c1, c2 = 1 for simplicity.

� Use rule δ to select δ(x) after you observe x.

Bayesian Bernoulli trial test

� Select a prior parameter π ∈ [0, 1], so that ξ(ω1) = π = 1− ξ(ω2).

� Observe x and calculate:

ξ(ω1 | x) = π P(x | ω1)

π P(x | ω1) + (1− π)P(x | ω2)
. (6.3.2)

� Construct decision function

δ(x) =





d1, ξ(ω1 | x) > ξ(ω2 | x)
d2, ξ(ω1 | x) < ξ(ω2 | x)
d1w.p. 1/2, ξ(ω1 | x) = ξ(ω2 | x)
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In other words, this decision function contains a no-decision region of measure
0, corresponding to the case where both posterior probabilities are equal.

Properties

� The procedure has unconditional error O(e−t).

� The conditional error is maxk ξ(ωk) +O(e−t).

Classical Bernoulli trial test

� Select error rates α1, α2.

� These can depend on the sample size: e.g. α1(t) = b1t
−1/2, α2(t) =

b2t
−1/2.

� Select a subset S ⊂ S such that Pω1
(S) = α1 and Pω2

(S \ S) = α2, if
possible.

� Observe x and use decision function

δ(x) =

{
d1, x ∈ S

d2, x /∈ S.

To construct S, traditionally α1 = α2 and we choose a critical value c such that
P(s > c | ω1) = 1− P(s < c | ω2), with s =

∑
k xk being the test statistic. Note

that c ≈ t
2 (ω1 + ω2). However, any arbitrary S can be chosen.

Properties

� The unconditional error is max{α1, α2}.

� The conditional error is αδ(x). Thus, it only depends on whether x ∈
S.

Summary and additional remarks

� The decision rule is chosen a priori.

� The unconditional error/risk does not depend on the data.

� The conditional error/risk depends on the data.

� Bayesian procedures minimise expected loss.

� Classical procedures minimise worst-case expected loss.

� The Bayesian procedure should be consistent with classical ones.

� By selecting a worst-case prior we can create a Bayesian analogue of clas-
sical procedures.
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Figure 6.1: ψ(ω1) = 1/2, ω1 = 1/3, ω2 = 3/4, ξ(ω1) = 1/2.
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Figure 6.2: ψ(ω1) = 99/100, ω1 = 1/3, ω2 = 3/4, ξ(ω1) = 1/2.
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Ωǫ

Ω0
ǫ

6.4 Null hypothesis tests

The problem of null hypothesis tests

� Very frequently we wish to decide whether something is true or not.

� However, we have no specific alternative hypothesis.

� Consider for example we want to choose whether: d0 : ω∗ ∈ Ω0, or d1 :
ω∗ /∈ Ω0.

� Most of the time we can only decide d0 : ω∗ ∈ Ω0, or d1 : ω∗ /∈ Ωǫ, with
Ωǫ ⊃ Ω0.

� In the simplest case the null hypothesis is a single point: Ω0 = {ω0}.

Construction of the null hypothesis test

Consider the following problem. We have a distribution in some family
P = {Pω | ω ∈ Ω} with unknown parameter ω. We have two hypotheses:
ω = ω0 and ω 6= ω0. After obtaining a sample x = z1, . . . , zn from Pω, we need
to decide for d0 ∈ D : ω = ω0 or d1 : ω 6= ω0. The loss of a wrong decision is
1.

A simple decision rule
Let us choose some S ⊂ S, such that Pω0

(S) = α. We can now define the
following decision rule:

δ(x) =

{
d0, if x /∈ S,

d1, if x ∈ S.
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The unconditional error
This rule has unconditional error α when ω = ω0. In other words, the

probability that we will make a mistake when employing this rule, and
ω = ω0, is α. However, there is no guarantee for the error when ω 6= ω0,
without additional assumptions. In particular, we need to specify µ, and
P(x ∈ S | ω 6= ω0)

σ(µ, δ) = µ(ω = ω0)Pω0
(S) + µ(ω 6= ω0)P(x ∈ S | ω 6= ω0), (6.4.1)

where µ is either a subjective distribution ξ or the actual distribution ψ.

Bayesian approach
The Bayesian approach once more involves us having a subjective belief

about the nature of the problem. If, of course, we somehow know that ω is
selected according to some ψ, then we can set ξ = ψ, and we will be optimal in
expectation.

(Subjective) prior

π0 , ξ(ω = ω0) (6.4.2)

φ(Z) , ξ(ω ∈ Z | ω 6= ω0), Z ⊂ Ω. (6.4.3)

(Subjective) posterior

π0(x) , ξ(ω = ω0 | x) = π0Pω(x)

π0Pω(x) + (1− π)φ(x)
(6.4.4)

φ(x) =

∫

Ω

Pω(x) dφ(ω). (6.4.5)

Example 6.4.1. Consider Bernoulli trials where we want to test whether ω∗ =
ω0, or ω∗ 6= ω0. We can use a Beta density with parameters β0, β1 for the
prior distribution in the case of ω∗ 6= ω0:

φ(Z) =

∫

Z

f(ω | β),

with

f(ω | β) = Γ (β0 + β1)

Γ (β0)Γ (β1)
wβ1−1(1− w)β0−1

and posterior distribution also being a Beta density with parameters β0 + t −
st, β1 + st, with st =

∑t
k=1 xk.
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Classical approach

Since we only have one hypothesis, ω = ω0, we must construct an alternative
hypothesis against which we can measure our other error.

Constructing the alternative hypothesis

1. Select Ωǫ ⊂ Ω, to be the ǫ-enlargement of Ω0.

2. When Ω0 = {ω0}, Ωǫ = {ω ∈ Ω | ‖w − ω0‖ < ǫ}.

We select d1 : ω∗ /∈ Ωǫ when x ∈ S and d0 : ω∗ = ω0 when x /∈ S. Then the
risk is:

ρ(ω0, δ) = Pω0
(S),

and

ρ(Ω \Ωǫ, δ) ≤ max {Pω(x) | ω ∈ Ω \Ωǫ} .

Example 6.4.2. Consider Bernoulli trials where we want to test whether ω∗ =
ω0, or ω

∗ 6= ω0.

The test

� Select an error rate α1 > 0.

� Set st =
∑t
k=1 xk.

� Decision rule, with c1 < tω0 < c2 ∈ [0, t]:

δ(x) =

{
d0 if st ∈ [c1, c2],

d1 otherwise.

Let Qtω be the probability measure on N arising from the binomial distribu-
tion with parameters t, w.

Unconditional error

P(δ(x) 6= d0 | ω∗ = ω0) = 1−Qtω0
([c1, c2]) (6.4.6)

P(δ(x) 6= d1 | |ω∗ − ω0| > ǫ) ≤ max {P(st ∈ [c1, c2] | ω∗ = w) | |w − ω0| > ǫ}
(6.4.7)
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To calculate this, we look at two cases. The first case is:

P(st ∈ [c1, c2] | ω∗ < ω0 − ǫ) ≤ max
{
Qtω([c1, c2])

∣∣ ω ∈ [0, ω0 − ǫ)
}

and assuming ǫ > ω0 − c1/t

P(st ∈ [c1, c2] | ω∗ < ω0 − ǫ) ≤ Qtω0−ǫ([c1, c2]).

The second case is:

P(st ∈ [c1, c2] | ω∗ > ω0 + ǫ) ≤ max
{
Qtω([c1, c2])

∣∣ ω ∈ (ω0 + ǫ, 1]
}

= Qtω0+ǫ([c1, c2]).

where we assumed ǫ > c2/t− ω0.
Consequently, to obtain a test with good guarantees on the ǫ-enlargement

of the null hypothesis, we need c1 ≥ (ω0 − ǫ)t and c2 ≥ (ω0 + ǫ)t.

6.5 The fallacy of P -values

P -values are frequently misused in applications. In fact, P -values are a side-
effect of constructing a statistical test in order for it to have a certain error rate
α. They are a uniformly distributed random variable when the null-hypothesis
is true. Thus, by rejecting the null-hypothesis only when the P -value is smaller
than α, you guarantee that the type I error is exactly α. Let us discuss this
point further with an example.

P -values in simple two-point tests.

Example 6.5.1. � Exponential distribution with parameter ω: fω(x) =
we−wx.

� d1 : ω = 1, d2 : ω = 2.

A classical test
We observe x ∈ R+. We use the decision function

δ(x) =

{
d1, x > c

d2, x ≤ c.

These leads to the following unconditional errors

α1 , P(δ(x) 6= d1 | ω = 1) = P(x ≤ c | ω = 1) =

∫ c

u=0

e−x = 1− e−c

(6.5.1)

α2 , P(δ(x) 6= d2 | ω = 2) = P(x > c | ω = 2) =

∫ ∞

u=c

2e−2x =
1

2
e−2c.

(6.5.2)
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Figure 6.3: Unconditional errors for different critical values

Selecting c
For uniformly bounding the error, set α1 = α2:

What is a P -value?

Definition 6.5.1. Assume we want to perform a test with type I error α1. If
p : S → [0, 1] is such that:

P(p(x) ≤ α1 | ω1) = α1, (6.5.3)

then p(x) is a p-value for observations x under ω1.

The uniform property of p-values.
p(x) is uniformly distributed in [0, 1] under ω1

Consequently, p(x) gives no information about the validity of ω1. It also does
not tell you how much the observations x might match alternative hypotheses.

Summary

� A test is a decision rule.

� Unconditional / conditional errors are properties of decision rules.

� Null-hypothesis tests need an ǫ-enlargement for guarantees.

� There is always a (possibly negligible) region where no guarantees can
be made.
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� Classical (frequentist) methods are generally worst-case and uncondi-
tional.

� Bayesian (subjective) methods are generally expected-case and con-
ditional.

� P -values are only a tool to implement classical tests and carry no
information.

Further reading

� Bayesian methods can be extended to worst-case approaches.

� Classical methods can also report conditional errors.

� Distribution-free methods can be used for more general problems.

� Pre-validation



98 CHAPTER 6. HYPOTHESIS TESTING



Chapter 7

Sequential sampling

99



100 CHAPTER 7. SEQUENTIAL SAMPLING

7.1 Gains from sequential sampling

The idea of sequential sampling

We wish to buy a large number of items in bulk. However, some portion of
the items may be defective. We calculate (somehow) that if we test 100 items
and 10 or more are faulty, then we should not buy. As testing is expensive,
instead of testing all 100 items, we test sequentially. If, at any point, we have
10 faulty items or 91 good items, we can stop testing. This produces a decision
of the same quality as testing all 100 items, but at a fraction of the cost.

Sequential sampling

A sequential sample from some unknown distribution P is generated as fol-
lows. At time t, we have observed x1, . . . , xt, generated by P . These are not
necessarily independently and identically distributed samples. At any time t,
we can either stop sampling or obtain one more observation xt+1. A sample
obtained in this way is called a sequential sample. More formally,

Definition 7.1.1. A sequential sampling procedure on a probability space (X ∗,B (X ∗) , P )
involves a decision function f : X ∗ → {0, 1}, such that we stop sampling at time
t if and only if f(xt) = 1, otherwise we obtain a new sample

xt+1 | xt ∼ P (· | xt).

Sampling with costs

We once more consider problems where we have some observations x1, x2, . . .,
with xt ∈ X , which are drawn from some distribution with parameter ω ∈ Ω, or
more precisely from a family P = {Pω | ω ∈ Ω}, such that each (X ∗,B (X ∗) , Pω)
is a probability space for all ω ∈ Ω. Once more, we have a prior probability
measure ξ on B (Ω) for the unknown parameter, and we wish to take a deci-
sion d ∈ D that maximises the expected utility according to our utility function
U : Ω ×D → R.

In the classical case, we obtain a complete sample of fixed size n, xn =
(x1, . . . , xn) and calculate a posterior measure ξ(· | xn). We then take the
decision maximising the expected utility according to our posterior.

So far, we have mainly considered decision problems where the sample size
was fixed. However, frequently the sample size can also be part of the decision.
Since normally larger sample sizes give us more information, in this case the
decision problem is only meaningful when obtaining new samples has a cost.

Fixed sample size
Given xn, find d ∈ D maximising:

Eξ(U | d, xn) =
∫

Ω

U(w, d) dξ(ω | xn). (7.1.1)
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Samples with costs
Consider now the case where each sample taken incurs a cost c. Then, our
utility is

Eξ(U | d, xn) =
∫

Ω

U(w, d) dξ(ω | xn)− cn. (7.1.2)

Example 7.1.1. Consider the following decision problem.

� Parameters: Ω = {ω1, ω2}.

� Decisions: D = {d1, d2}.

� Observation distribution fi(k) = P(xt = k | ω = ωi) for all t with

f1(1) = 1− α, f1(2) = 0, f1(3) = α, (7.1.3)

f2(1) = 0, f2(2) = 1− α, f2(3) = α. (7.1.4)

� Utility: U(ωi, dj) = 0, for i = j and b < 0 otherwise.

� Prior: P(ω = ω1) = ξ = 1− P(ω = ω2).

In this problem, it is immediately possible to distinguish f1 from f2 when you
observe xt = 1 or xt = 2. However, the values xt = 3 provide no information.

� So, the expected utility of stopping if you have only observed 3s is ξb.

� Otherwise, it equals 0.

7.1.1 An example sequential problem

A procedure taking n observations

� The probability of observing xt = 3 for all t = 1, . . . , n is αn.

� The total value V (n) of the optimal procedure taking n observations
is

V (n) = ξbαn − cn. (7.1.5)

We can find the optimal value more or less easily. Since V is a nice function,
an approximate minimiser can be found by viewing n as a continuous variable.
Taking derivatives:

n∗ =

[
log

c

ξb logα

]
1

logα
(7.1.6)

V (n∗) =
c

logα

[
1 + log

c

ξb logα

]
(7.1.7)
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Figure 7.1: The value of taking exactly n observations under two different be-
liefs, for α = 0.9, b = −10, c = 10−2.

Definition 7.1.2 (The geometric series). The sum
∑n
k=0 x

k is called the geo-
metric series and has the property

n∑

k=0

xk =
xn+1 − 1

x− 1
. (7.1.8)

Taking derivatives with respect to x can result in other useful formulae.

A sequential procedure stopping after at most n∗ steps.

� If t < n∗, use the stopping rule s(xt) = 1 iff xt = 3.

� In other words, stop as soon as you observe a 3, or until you reach
t = n∗.

� Our posterior after stopping is, in this case, the same as in the stan-
dard procedure.

� However the number of observations n is random.

Since the probability of xt = 3 is always the same for both ω1 and ω2, we
have:

E(n) = E(n | ω = ω1) = E(n | ω = ω2) < n∗

We can calculate the expected number of steps as follows:

E(n) = E(n | ω = ω1) =

n∗∑

t=1

tP(n = t | ω = ω1) (7.1.9)

=

n∗−1∑

t=1

tαt−1(1− α) + n∗αn
∗−1 =

1− αn
∗

1− α
, (7.1.10)
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from the geometric series. The value of this procedure is:

V̄ = ξbαn
∗ − cE(n) (7.1.11)

and from the definition of n∗:

V̄ =
c

α− 1
+

c

logα

[
1 +

c

ξb(1− α)

]
. (7.1.12)

To simplify this, note that ex ≥ 1 + x ⇒ x ≥ log(1 + x) ⇒ α − 1 ≥ log(α) ⇒
1

α−1 ≤ 1
log(α) .

An unbounded sequential procedure

� Use stopping rule s(xt) = 1 iff xt = 3.

� In other words, stop as soon as you observe a 3.

Once we observe xt = 3, we can make a decision that has value 0. So, the
value of the unbounded sequential procedure is just

−cE(n).

E(n) =

∞∑

t=1

tP(n = t | ω = ω1) (7.1.13)

=
∞∑

t=1

tαt−1(1− α) =
1

1− α
. (7.1.14)

The value of this procedure is:

V̄ = ξbαn
∗ − cE(n) (7.1.15)

and from the definition of n∗:

V̄ =
c

α− 1
+

c

logα

[
1 +

c

ξb(1− α)

]
. (7.1.16)

To simplify this, note that ex ≥ 1 + x ⇒ x ≥ log(1 + x) ⇒ α − 1 ≥ log(α) ⇒
1

α−1 ≤ 1
log(α) .

Summary

� Bounded procedures are (in expectation) better than fixed-sampling pro-
cedures.

� Unbounded procedures are (in expectation) better than bounded proce-
dures.

� An unbounded procedure may end up costing much more than taking a
decision without observing any data.

� Essentially, with an unbounded procedure, we disregard the amount spent
to time t.
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Figure 7.2: The value of three strategies for ξ = 1/2, b = −10, c = 10−2 and
varying α. Higher values of α imply a longer time before the true ω is known.

7.2 Sequential decision procedures

Definition 7.2.1 (Sequential decision procedure). A sequential decision proce-
dure δ = (s, d) is tuple composed of

1. A stopping rule s : X ∗ → {0, 1}.

2. A decision rule d : X ∗ → D.

Stopping rule
The stopping rule s specifies whether, at any given time, we should stop
and make a decision in D or take one more sample. That is, if

s(xt) = 1,

stop, otherwise observe xt+1.

Decision rule
Once we have stopped (i.e. s(xt) = 1), we choose the decision

d(xt).

Deterministic stopping rules

If the stopping rule s is deterministic, then, for any t, there exists some
Bt ⊂ X t such that

s(xt) =

{
1, ∀xt ∈ Bt

0, ∀xt /∈ Bt.
(7.2.1)
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Cylinder sets
For r > t, Bt can be also regarded as a subset of Sr: If xr ∈ Bt, and y

r is
such that yi = xi for i = 1, . . . , t, then yr ∈ Bt.

7.3 Calculating the expected utility of a sequen-

tial decision procedure

Once more, consider a distribution family P = {Pω | ω ∈ Ω} and a prior ξ over
B (Ω). For a decision set D, a utility function U : Ω ×D → R, and a sampling
cost c, the risk of a sequential decision procedure is the expected decision utility
minus the expected sampling cost.

U(ξ, δ) = Eξ {U [ω, δ(xn)]− nc} (7.3.1)

=
∞∑

n=1

∫

Bn

Eξ[U(ω, δ(xn)) | xn] dP (xn | ξ)−
∞∑

n=1

P(Bn | ξ)nc (7.3.2)

=

∞∑

n=1

∫

Bn

{∫

Ω

U [ω, d(xn)] dξ(ω | xn)
}

dP (xn | ξ)−
∞∑

n=1

P(Bn | ξ)nc.

(7.3.3)

Although it may seem difficult to evaluate this, it can be done by a simple
dynamic programming technique called backwards induction.

Definition 7.3.1 (Bounded sequential decision procedure). A sequential deci-
sion proceduere δ is bounded if there is a positive integer H such that P(n ≤
H) = 1.

� If δ is H-bounded, then we shall take at most H samples.

� At stage H, we will have observed some sequence xH , which gives rise to
a posterior ξ(ω | xH).

� Since we must stop at H, we must choose a decision d maximising

Eξ[U(ω, d) | xH ] =

∫

Ω

U(ω, d) dξ(ω | xH)

� The respective value (expected utility) is

V0[ξ(·|xH)] , sup
d∈D

Eξ[U(ω, d) | xH ],

where V0 denotes the decision’s expected utility.

� What about the previous step?
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ξ(· | x1 = 1)

ξ(· | x1 = 0)

ξ

c

c

A simple two-stage problem
Consider X = {0, 1} and a prior ξ on the ω parameter of Bern(w). We wish

to either decide now on a parameter ω, or take one more observation, at cost c,
before deciding. Thus, the problem has two stages.

� We begin with a prior ξ at the first stage. There are two possible outcomes
for the second stage:

1. If we have observed x1 = 0: then our value is V0[ξ(· | x1 = 0)].

2. If we have observed x1 = 1: then our value is V0[ξ(· | x1 = 1)].

� At the first stage,

1. Stop with value V0(ξ).

2. Pay cost c for value:

V0[ξ(· | x1)], with Pξ(x1) =

∫

Ω

Pω(x1) dξ(w)

So the expected of continuing for one more step is

V1(ξ) ,

∫

X
V0[ξ(· | x1)] dPξ(x1).

� Thus, the overall value for this problem is:

max

{
Vo(ξ),

1∑

x1=0

Vo[ξ(· | x1)]Pξ(x1)− c.

}

The above is simply the maximum between the value of stopping immediately,
and the value of continuing for one more step. This procedure can be applied
recursively for multi-stage problems.

Multi-stage problems

V0(φ) = sup
d∈D

∫

Ω

U(ω, d) dφ(ω) (Immediate value)

ξn+1(·) = ξn(· | xn) = ξ(· | xn) (posterior)

Eξn V0[ξn+1] =

∫

X
V0[ξn(· | xn)] dξn(xn) (Next-step value)

σ1(ξn) = min {V0(ξn),Eξn V0(ξn+1)− c.} . (7.3.4)
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ξ1n+1

ξ2n+1

ξn

c
xn = 0

c
xn = 1

7.4 Backwards induction

The main idea expressed in the previous section is to start from the last stage
of our decision problem, where the utility is known, and then move backwards.
At each stage, we know the probability of reaching different points in the next
stage, as well as their values. Consequently, we can compute the value of any
point in the current stage as well. This notion is formalised below.

Theorem 7.4.1 (Backwards induction). The utility of a k-bounded optimal
procedure with prior ξ0 is Vk(ξ0) and is given by the recursion:

Vj+1(ξn) = max {V0(ξn),Eξn Vj(ξn+1)− c} . (7.4.1)

After observing xk−j, the value of the optimal continuation is Vj(ξk−j).

The above theorem essentially gives a recursive calculation of the risk of the
k-bounded optimal procedure. In fact, that procedure will have the following
property.

Theorem 7.4.2. The optimal k-bounded procedure stops at time t if

V0(ξt) ≥ Vk−t(ξt)

and chooses d maximising Eξt U(ω, d), otherwise takes one more sample.

Finally, it is always useful to look ahead one more step, as shown by the
following theorem.

Theorem 7.4.3. For any probability measure ξ on Ω,

Vn(ξ) ≤ Vn+1(ξ). (7.4.2)

7.5 Unbounded sequential decision procedures

Given the monotonicity of the value of bounded procedures (7.4.2), one may
well ask what is the value of unbounded procedures.

The value of unbounded sequential decision procedures

� Let δ be an unbounded procedure.
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� The value of the procedure is

V (ξ, δ) , Eξ {V0[ξ(· | xn)]− cn} , (7.5.1)

where n is the random number of samples taken by δ. This is random
because the observations x are random; δ itself can be deterministic.

Definition 7.5.1. Let B>k ⊂ X ∗ be the set of sequences such that δ takes more
than k samples. Then δ is regular if V (ξ, δ) ≥ V0(ξ) and if, for all xn ∈ B>n
and for all n ∈ N,

E[V (ξ, δ) | xn] > V0[ξ(· | xn)]− cn. (7.5.2)

In other words, if δ specifies that at least one observation should be taken,
then the value of δ is greater than the value of choosing a decision without any
observation. Furthermore, whenever δ specifies that another observation should
be taken, the expected value of continuing must be smaller than the value of
stopping. If the procedure is not regular, then there may be stages where the
procedure specifies that sampling should be continued, though the value would
be increased by stopping.

Theorem 7.5.1. If δ is not regular, then there exists a regular δ′ such that
V (ξ, δ′) ≥ V (ξ, δ).

Proof. First, consider the case that V (ξ, δ) ≤ V0(ξ). This is equivalent to con-
sidering δ′ to be the regular procedure which chooses d ∈ D without any obser-
vations.

Now consider the case that V (ξ, δ) < V0(ξ). Let δ′ be the procedure which
stops as soon as the observed xn does not satisfy (7.5.2).

If, for xn, δ stops, then both sides of (7.5.2) are equal. Consequently, δ′

stops before n.
Finally, let

Bk(δ) = {x ∈ X ∗ | n = k} (7.5.3)

be the set of observations such that exactly k samples are taken by rule δ and

B≤k(δ) = {x ∈ X ∗ | n ≤ k} (7.5.4)

be the set of observations such that at most k samples are taken by rule δ. Then

V (ξ, δ) =

∞∑

k=1

∫

Bk(δ′)

{V0[ξ(· | xk)− ck]}dξ(xk)

≥
∞∑

k=1

∫

Bk(δ′)

Eξ{V [ξ, δ | xk]}dξ(xk)

∞∑

k=1

Eξ{V (ξ, δ) | n(δ′) = k Pξ(δ
′ = n)} = V (ξ, δ).

7.6 The sequential probability ratio test
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A two-point sequential decision problem.
As an illustration, consider a sequential decision problem where we must
decide for one out of two possible parameters ω1, ω2.

� Observations xt ∈ X

� Distribution family: P = {Pω | ω ∈ Ω}, probability spaces
(X ∗,B (X ∗) , Pω).

� Parameter set: Ω = {ω1, ω2}.

� Decision set: D = {d1, d2}.

� Prior ξ = P(ω = ω1).

� Sampling cost c > 0.

U(ω, d) d1 d2
ω1 0 λ1
ω2 λ2 0

Table 7.1: The utility function, with λ1, λ2 < 0

The immediate value is:

V0(ξ) = max {λ1ξ, λ2(1− ξ)} . (7.6.1)

The worst-case immediate value, i.e. the minimum, is attained when both terms
are equal. Consequently, setting λ1ξ = λ2(1− ξ), which gives ξ = λ2/(λ1 +λ2).
Replacing in (7.6.1) gives:

V0(ξ) ≥
λ1λ2
λ1 + λ2

.

Let ∆′ denote the set of procedures δ which take at least one observation
and define:

V ′(ξ) = sup
δ∈∆′

V (ξ, δ). (7.6.2)

Then the ξ-expected utility V ∗(ξ) must satisfy:

V ∗(ξ) = max {V0(ξ), V ′(ξ)} . (7.6.3)

As we showed in Section ??, V ′ is a convex function of ξ. Let

ξ∗ , {ξ | σ0(ξ) ≤ σ′(ξ)} , (7.6.4)

be the set of priors where it is optimal to terminate sampling.

The sequential probability ratio test
If ξ ∈ (ξL, ξH), then it is optimal to take at least one more sample. Other-

wise, it is optimal to make an immediate decision with risk ρ0(ξ).
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Figure 7.4: The risk of the optimal continuation σ′ versus stopping σ0.
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Our posterior at time t can be written as

ξt =
ξPω1

(xt)

ξPω1
(xt) + (1− ξ)Pω2

(xt)
.

Then, for any posterior, the optimal procedure is:

� If ξL < ξt < ξH , take one more sample.

� If xL ≥ ξt, stop and decide d2.

� If xH ≤ ξt, stop and decide d1.

If we let

A =
ξ(1− ξH)

(1− ξ)ξH
, B =

ξ(1− ξL)

(1− ξ)ξL
,

then the optimal procedure can be restated as:
Take another observation as long as

A <
Pω2

(xt)

Pω1
(xt)

< B.

If the first inequality is violated, choose d1. If the second inequality is violated,
choose d2.

Practical considerations
In general, determining ξL, ξH , or A,B, is not trivial. This is because we

need to first calculate the risk of the optimal decision function that takes at
least one more observation. Nevertheless, for a given pair A,B, the following
frequentist property holds.

Frequentist property

P(d1 | ω = ω2) ≤ AP(d1 | ω = ω1) (7.6.5)

P(d2 | ω = ω2) ≥ B P(d2 | ω = ω1) (7.6.6)

Indeed, one may instead simply select A,B so as to satisfy the above property
with a certain ratio.In the worst case scenario, the above are equalities. Since

P(d1 | ω = ωi) + P(d2 | w = ωi) = 1, i = 1, 2,

we have four equations with four unknowns which we can solve to obtain

P(d1 | ω1) =
B − 1

1−A
, P(d2 | ω2) =

A(B − 1)

B −A
. (7.6.7)

Setting A = 1/K, B = K, we get

P(d2 | ω1) = P(d1 | ω2) =
1

K + 1
. (7.6.8)

Consequently, we can simply choose K so as to achieve a certain error proba-
bility. The same effect can be achieved by choosing an appropriate prior ξ, so
that the SPRT not only has easily-verifiable frequentist properties, but can also
be derived from Bayesian principles.



112 CHAPTER 7. SEQUENTIAL SAMPLING

7.6.1 Wald’s theorem

An important tool in the analysis of SPRT as well as other procedures that stop
at random times is the following theorem by Wald.

Theorem 7.6.1 (Wald’s theorem). Let z1, z2, . . . be a sequence of i.i.d. random
variables with measure G, such that E zi = m for all i. Then for any sequential
procedure with En <∞:

E

n∑

i+1

zi = mEn. (7.6.9)

Proof.

E

n∑

i=1

zi =

∞∑

k=1

∫

Bk

k∑

i=1

zi dG
k(zk)

=

∞∑

k=1

k∑

i=1

∫

Bk

zi dG
k(zk).

=

∞∑

i=1

∞∑

k=i

∫

Bk

zi dG
k(zk)

=

∞∑

i=1

∫

B≥i

zi dG
i(zi)

=
∞∑

i=1

E(zi)P(n ≥ i) = mEn.

We now consider application of this theorem to the SPRT. Let zi =

log
Pω2

(xi)

Pω1
(xi)

. Consider the equivalent formulation of the SPRT which uses

a <
n∑

i=1

zi < b

as the test. Using Wald’s theorem and the previous properties and assuming
c ≈ 0, we obtain the following approximately optimal values for a, b:

a ≈ log c− log
I1λ2(1− ξ)

ξ
b ≈ log

1

c
− log

I2λ1ξ

1− ξ
, (7.6.10)

where I1 = −E(z | ω = ω1) and I2 = E(z | ω = ω2) is the information, better
known as the KL divergence. If the cost c is very small, then the information
terms vanish and we can approximate the values by log c and log 1

c .

7.7 Martingales

Martingales are a fundamentally important concept in the analysis of stochastic
processes. The main idea of a martingale is that the expectation of a random
variable at time t+ 1 only depends on the value of another variable at time t.
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An example of a martingale sequence is when xt is the amount of money you
have at a given time, and where at each time-step t you are making a gamble
such that you lose or gain 1 currency unit with equal probability. Then, at
any step t, it holds that E(xt+1 | xt) = xt. This concept can be generalised as
follows.

1.

2. A random variable yn : Sn → R.

Definition 7.7.1. Let xn ∈ Sn be a sequence of observations xn ∈ Sn with
distribution Pn, and yn : Sn → R be a random variable. Then the sequence
{yn} is a martingale with respect to {xn} if for all n the expectation

E(yn) =

∫

Sn

yn(x
n) dPn(x

n) (7.7.1)

exists and
E(yn+1 | xn) = yn (7.7.2)

holds with probability 1. If {yn} is a martingale with respect to itself, i.e. yi(x) =
x, then we call it simply a martingale.

Definition 7.7.2. Similarly, sequence {yn} is a super-martingale if E(yn+1 |
xn) ≤ yn and a sub-martingale if E(yn+1 | xn) ≥ yn, w.p. 1.

7.7.1 Doob martingales

At a first glance, it might appear that martingales are not very frequently en-
countered, apart from some niche applications. Actually, we can always con-
struct a martingale from any sequence of random variables as follows.

Let f : Sm → R be some function that we are interested in, such that its
expectation E(f | xn) exists. Now, let yn : Sn → R with n ≤ m be :

yn(x
n) = E[f | xn].

Then E(yn+1 | xn) = yn.

7.7.2 The Azuma-Hoeffding inequality

Definition 7.7.3. A sequence {yn} is a martingale difference sequence with
respect to {xn} if

E(yn+1 | xn) = 0 with probability 1. (7.7.3)

Theorem 7.7.1. Let bk be a random variable depending on xk−1. If {yk} is
a martingale difference sequence with yk ∈ [bk, bk + ck] w.p. 1, then setting

sk =
∑k
i=1 yi it holds that

P(sn ≥ t) ≤ exp

( −2t2∑n
i=1 c

2
i

)
. (7.7.4)

Example 7.7.1 (Estimating a mean). Let we decide to stop if
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7.8 Markov processes

Definition 7.8.1 (Markov Process). Let (S,B (S)) be a measurable space and
define the random sequence {xn} such that

P(xt ∈ A | xt−1, . . . , x1) = P(xt ∈ A | xt−1). (7.8.1)

xn is called the state of the Markov process at time n.

If P(xt ∈ A | xt−1 = x) = τ(A | x) where τ : B (S) × S → [0, 1], transition
kernel. In that case, {xn} is a stationary Markov process.

Example 7.8.1 (Markov processes). The following are examples of Markov
processes. Can you think of more?

� The state of a Turing machine.

� The state in a complete game tree.

� Posterior parameters.

� The information state defined in the backwards induction tree.

A Markov chain stopping problem

� Consider a stationary process with state space S.

� The transition kernel is a matrix τ .

� At time t, we are at state xt = z and we can either:

– Terminate and receive reward b(z).

– Pay c(z) and continue to a random state xt+1.

� There maybe S0, S1 ⊂ S where we may be forced to stop or continue
sampling.

All the problems considered so far are stationary! This is true no matter whether
the next observation is generated from the posterior state ξn or the true distri-
bution Pω.

Summary

� Sequential sampling is always better than a fixed sample size.

� Unbounded procedures are better than bounded procedures.

� Bounded procedures can be calculated using backwards induction.

� Unbounded procedures can be approximated as the limit of a sequence of
bounded procedures.

� The sequential probability ratio test (SPRT) is a type of unbounded se-
quential decision procedure.
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� The error probabilities of the SPRT A < Pω2
(xt)/Pω1

(xt) < B are ap-
proximately A, 1/B. For sample cost c → 0, the near-optimal values are
A = c, B = 1/c.

� Martingales are a special type of sequence of random variables such that
E(yn+1 | xn) = yn(x

n).

� Concentration inequalities can be derived for martingales.

� All the above problems can be modelled as Markov processes.
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8.1 Introduction

This unit describes the very general formalism of Markov decision processes
(MDPs) for dealing with various problems in sequential decision making. Thus
a Markov decision process can be used to model stochastic path problems, stop-
ping problems, reinforcement learning problems, experiment design problems,
and control problems.

8.1.1 Experiment design: examples

The problem of experimental design originally arose in the statistical literature
when considering the problem of how to best allocate treatments with unknown
efficacy to patients. The problem, originally considered by Chernoff [1959, 1966],
informally can be stated as follows.

We have a number of treatments of unknown efficacy. When a new patient
arrives, we must choose one of them. There are two possible, slightly differ-
ent, goals: either maximise the number of cured patients, or discover the best
treatment. The two different problems can be formalised as follows.

Example 8.1.1 (Adaptive treatment allocation). Consider k treatments to be
administered to T volunteers. To each volunteer only a single treatment can be
assigned. At the t-th trial, we perform some experiment at ∈ {1, . . . , k} and
obtain a reward rt = 1 if the result is successful and 0 otherwise. We wish to
choose actions maximising

∑
t rt.

Example 8.1.2 (Adaptive hypothesis testing). We are given a hypothesis set
Ω = {ω1, ω2}, a prior ψ0 on Ω, a decision set D = {d1, d2} and a utility function
Ω : D ×Ω → R. One hypothesis ω ∈ Ω is true. We can choose from a set of k
possible experiments to be performed over T trials. At the t-th trial, we choose
experiment at ∈ {1, . . . , k} and observe outcome xt ∈ X , with xt ∼ Pω drawn
from the true hypothesis. Our posterior is

ξt(ω) , ξ0(ω | a1, . . . , at, x1, . . . , xt).

The reward is rt = 0 for t < T and

rT = max
d∈D

EξT (U | d).

Again, we wish to maximise
∑
t rt.

Both formalizations correspond to so-called bandit problems which we take
a closer look at in the following section.

8.2 Bandit problems

The simplest bandit problem is the stochastic n-armed bandit. We are faced
with n different one-armed bandit machines, such as those found in casinos.
In this problem, at time t, you have to choose one action (i.e. machine) at ∈
A = {1, . . . , n}. The assumption is that each time t you play a machine, you
receive a bounded reward rt, with fixed expected value ωi = E(rt | at = i).
Unfortunately, you do not know ωi. How do you then choose arms so as to
maximise the total expected reward?
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The stochastic n-armed bandit problem

� Actions A = {1, . . . , n}.

� Expected reward E(rt | at = i) = ωi.

� Select actions to maximise

T∑

t=0

γtrt,

with discount factor γ ∈ [0, 1], horizon T ≥ 0.

One idea is to apply the Bayesian decision-theoretic framework we have
developed earlier to maximise the reward in expectation. More specifically,
given the horizon T ∈ (0,∞] and the discount factor γ ∈ (0, 1], we define our
utility from time t to be:

Ut =

T−t∑

k=1

γkrt+k. (8.2.1)

Decision-theoretic approach

� Assume rt | at = a ∼ Pω,i, with ω ∈ Ω.

� Define prior ξ on Ω.

� Select actions to maximise Eξ Ut = Eξ
∑T−t
k=1 γ

krt+k.

8.2.1 Bernoulli bandits

As a simple illustration, consider the case when the reward for choosing one
of the n actions is either 0 or 1, with some fixed, yet unknown probability
depending on the chosen action. This can be modelled in the standard Bayesian
framework using the Beta-Bernoulli conjugate prior. More specifically, we can
formalise the problem as follows.

Consider n Bernoulli distributions with unknown parameters ωi (i = 1, . . . , n)
such that

rt | at = i ∼ Bern(ωi), E(rt | at = i) = ωi. (8.2.2)

Each Bernoulli distribution thus corresponds to the distribution of rewards ob-
tained from each bandit that we can play. In order to apply the statistical
decision theoretic framework, we have to quantify our uncertainty about the
parameters ω in terms of a probability distribution. We model our belief
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for each bandit’s parameter ωi as a Beta distribution Beta(αi, βi), with density
f(ω | αi, βi) so that

ξ(ω1, . . . , ωn) =
n∏

i=1

f(ωi | αi, βi).

Recall that the posterior of a Beta prior is also a Beta. Let

Nt,i ,
t∑

k=1

I {ak = i}

be the number of times we played arm i and

r̂t,i ,
1

Nt,i

t∑

k=1

rt I {ak = i}

be the empirical reward of arm i at time t. We can let this equal 0 when kt,i = 0.
Then, the posterior distribution for the parameter of arm i is

ξt = Beta(αi +Nt,ir̂t,i , βi +Nt,i(1− r̂t,i)).

Since rt ∈ {0, 1} the possible states of our belief given some prior are N
2n.

The state of the bandit problem is the state of our belief. A sufficient statistic
for our belief is the number of times we played each bandit and the total reward
from each bandit. Thus, our state at time t is entirely described by our priors
α, β (the initial state) and the vectors

Nt = (Nt,1, . . . , Nt,i) (8.2.3)

r̂t = (r̂t,1, . . . , r̂t,i). (8.2.4)

At any time t, we can calculate the probability of observing rt = 1 or rt = 0 if
we pull arm i as:

ξt(rt = 1 | at = i) =
αi +Nt,ir̂t,i
αi + βi +Nt,i

The next state is well-defined and depends only on the current state. For this
reason, the decision-theoretic n-armed bandit problem can be formalised as a
Markov decision process.

The number of states of this particular bandit problem is countable for {0, 1}
rewards, though for a finite horizon T it is of order (2n)T . In the general case,
the number of states is uncountable.

8.2.2 Decision-theoretic bandit process

The basic bandit process can be seen in Figure 8.1. The decision-theoretic
bandit process can be formalised as follows.

Definition 8.2.1. Let A be a set of actions, not necessarily finite. Let Ω be
a set of possible parameter values, indexing a family of probability measures
P = {Pω,a | ω ∈ Ω, a ∈ A}. There is some ω ∈ Ω such that, whenever we take
action at = a, we observe reward rt with probability measure:

Pω,a(R) , Pω(rt ∈ R | at = a). (8.2.5)
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Let ξ1 be a prior distribution on Ω and let the posterior distributions be defined
as:

ξt+1(B) ∝
∫

B

Pω,at(rt | st) dξt(ω). (8.2.6)

The next belief is random, since it depends on the random quantity rt. In fact,
the probability of next rewards if at = a is given by:

Pξt,a(R) ,

∫

Ω

Pω,a(R) dξt(ω) (8.2.7)

Finally, as ξt+1 deterministically depends on ξt, at, rt, the probability of ob-
taining a particular next belief is the same as the probability of obtaining the
corresponding rewards leading to the next belief. In more detail, we can write:

P(ξt+1 = ξ | ξt, at) =
∫

R
I {ξt+1(· | at, rt = r) = ξ} dPξt,a(r). (8.2.8)

In practice, although multiple reward sequences may lead to the same beliefs,
we frequently ignore that possibility for simplicity. Then the process becomes a
tree.

Since the next belief only depends on the current belief, action and reward, it
satisfies the Markov property. Consequently, a decision-theoretic bandit process
can be modelled as a Markov decision process.

at

ω

rt

Figure 8.1: The basic bandit process. The decision maker selects at, while the
parameter ω of the process is hidden. It then obtains reward rt. The process
repeats for t = 1, . . . , T .

ξt

at

rt

ξt+1

at+1

rt+1

Figure 8.2: The decision-theoretic bandit process. While ω is not known, at
each time step t we maintain a belief ξt on Ω. The reward distribution is then
defined through our belief.

8.3 Markov decision processes and reinforcement

learning

Reinforcement learning
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Bandit problems are one of the simplest instances of reinforcement learning
problems. Informally, speaking, these are problems of learning how to act in
an unknown environment, only through interaction with the environment and
limited reinforcement signals.

The reinforcement learning problem.
Learning to act in an unknown environment, by interaction and reinforce-

ment.

Generally, we assume that the environment that we are acting in has an
underlying state st, which changes with time t. At the same time, the agent
chooses actions at. We usually assume that the environment is such that its
next state st+1 only depends on its current state st and the last action taken by
the agent, at. In addition, the agent observes a reward signal rt, and its goal is
to maximise the total reward during its lifetime.

This problem is hard even in seemingly simple problems, like n-armed ban-
dits, where the underlying state never changes. However, in many real-world
applications, the state is not directly observed. Instead, we may simply have
some measurements xt, which give only partial information about the true un-
derlying state.

Reinforcement learning problems typically fall into one of the following three
groups: (1) Markov decision processes (MDPs), where the state is known; (2)
Partially observable MDPs (POMDPs), where the state is hidden; and (3) po-
tentially partially observable Markov games, where the next state also depends
on the move of other agents. While all of these problem descriptions are differ-
ent, in the Bayesian setting, they all can be reformulated as MDPs, albeit with
a very large state space.

Markov decision processes (MDP).
At each time step t:

� We observe state st ∈ S.

� We take action at ∈ A.

� We receive a reward rt ∈ R.

µ

at

st st+1

rt
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Markov property of the reward and state distribution

Pµ(st+1 | s1, a1, . . . , st, at) = Pµ(st+1 ∈ S | st, at) (8.3.1)

Pµ(rt | s1, a1, . . . , st, at) = Pµ(rt ∈ R | st, at) (8.3.2)

where S ⊂ S and R ⊂ R.

More formally, we have the following definition.

Definition 8.3.1. A Markov decision process µ is a tuple µ = 〈S,A,P,R〉,
such that P = {P (· | s, a) | s ∈ S, a ∈ A} is a collection of probability measures
on S, indexed in S × A and R = {ρ(· | s, a) | s ∈ S, a ∈ A} is a collection of
probability measures on R, such that:

P (S | s, a) = Pµ(st+1 ∈ S | st = s, at = a) (8.3.3)

ρ(R | s, a) = Pµ(rt ∈ R | st = s, at = a). (8.3.4)

For simplicity, we shall also use

rµ(s, a) = Eµ(rt+1 | st = s, at = a), (8.3.5)

for the expected reward.

Of course, the transition and reward distributions are different for differ-
ent environments µ. For that reason, we shall usually subscript the relevant
probabilities and expectations with µ.

Dependencies of rewards
Sometimes it is more convenient to have rewards that depend on the next
state as well, i.e.

rµ(s, a, s
′) = Eµ(rt+1 | st = s, at = a, st+1 = s′), (8.3.6)

though this is complicats notation considerably since now the reward is
obtained on the next time step. However, we can always replace this with
the expected reward for a given state-action pair:

rµ(s, a) = Eµ(rt+1 | st = s, at = s) (8.3.7)

=
∑

s′∈S
Pµ(s

′ | s, a)rµ(s, a, s′) (8.3.8)

In fact, it is notationally more convenient to have rewards that only depend
on the current state:

rµ(s) = Eµ(rt | st = s). (8.3.9)

Many times, for simplicity, we shall only consider the latter case.
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The agent
The environment does not exist in isolation. The actions are taken by an

agent, who is interested in obtaining high rewards. Instead of defining an al-
gorithm for choosing actions directly, we define an algorithm for computing
policies, which define distributions on actions.

The agent’s policy π

Pπ(at | st, . . . , s1, at−1, . . . , a1) (history-dependent policy)

Pπ(at | st) (Markov policy)

In some sense, the agent is defined by its policy π, which is a conditional
distribution on actions given the history. The policy π is otherwise known as a
decision function or a strategy. In general, the policy can be history-dependent.
In certain cases, however, there are optimal policies that are Markov. This is
for example the case with additive utility functions.

Definition 8.3.2 (Utility). Given a horizon T and a discount factor γ ∈ (0, 1],
the utility can be defined as

Ut ,
T−t∑

k=0

γkrt+k (8.3.10)

The agent wants to to find π maximising the expected total future reward

Eπµ Ut = Eπµ

T−t∑

k=0

γkrt+k. (expected utility)

For simplicity, we shall also use rπµ(s) = Eπµ(rt+1 | st = s) for the expected
reward at a given state, or simply r(s) when clear from context.

8.3.1 Value functions

It is frequently useful to employ the following abbreviations. These will be
employed in the development of both theory and algorithms and are simply
the expected utility for a given policy and MDP conditioned on different states
and/or actions.

State value function

V πµ,t(s) , Eπµ(Ut | st = s) (8.3.11)

State-action value function

Qπµ,t(s, a) , Eπµ(Ut | st = s, at = a) (8.3.12)
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It is also useful to define the optimal policy and optimal value functions for a
given MDP. In the following, a star indicated optimal quantities. The optimal
policy π∗

π∗(µ) : V π
∗(µ)

t,µ (s) ≥ V πt,µ(s) ∀π, t, s (8.3.13)

dominates all other policies π everywhere in S.
The optimal value function V ∗

V ∗
t,µ(s) , V

π∗(µ)
t,µ (s), Q∗

t,µ(s) , Q
π∗(µ)
t,µ (s, a). (8.3.14)

is the value function of the optimal policy π∗.

Finding the optimal policy when µ is known
When the MDP µ is known, the expected utility of any policy can be cal-

culated. Therefore, one could find the optimal policy by brute force. However,
there are faster methods which can be employed. First, there are iterative/offline
methods where an optimal policy is found for all states of the MDP. These either
try to estimate the optimal value function directly, or try to iteratively improve
a policy until it is optimal. The second type of methods tries to find an optimal
policy online. That is, the optimal actions are estimated only for states which
can be visited in the future starting from the current state. However, the same
main ideas are used in all of these algorithms.

st

s1t+1

s2t+1

s3t+1

s4t+1

a1t , r
0
t+1

a1t , r
1
t+1

a2t , r
0
t+1

a2t , r
1
t+1

8.4 Finite horizon, undiscounted problems

The conceptually simplest type of problems are finite horizon problems where
T < ∞ and γ = 1. The first thing we shall try to do is to evaluate a given
policy for a given MDP.

8.4.1 Policy evaluation

Policy evaluation

An optimal policy
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An optimal policy has the property that whatever the initial
state and initial decision are, the remaining decisions must con-
stitute an optimal policy with regard to the state resulting from
the first decision. – Bellman.

The value function of a policy π (for γ = 1, T < ∞) can be determined by

the following recursion, noting that Ut+1 =
∑T−t
k=1 rt+k:

V πµ,t(s) , Eπµ(Ut | st = s) (8.4.1)

=

T−t∑

k=0

Eπµ(rt+k | st = s) (8.4.2)

= Eπµ(rt | st = s) + Eπµ(Ut+1 | st = s) (8.4.3)

= Eπµ(rt | st = s) +
∑

i∈S
V πµ,t+1(i)P

π
µ(st+1 = i|st = s). (8.4.4)

Note that

Pπµ(st+1 = i|st = s) =
∑

a∈A
Pµ(st+1 = i|st = s, at = a)Pπ(at = a|st = s).

(8.4.5)

This derivation directly gives a number of policy evaluation algorithms.
Direct policy evaluation as given by Algorithm 2 is very simple. We calculate

the probability of reaching any state from any other state at different times, and
then add up the expected reward we would get in that state under our policy.
It is easy to see that V̂t(s) = V πµ,t(s).

Algorithm 2 Direct policy evaluation

1: for s ∈ S do
2: for t = 0, . . . , T do
3:

V̂t(s) =

T∑

k=t

∑

j∈S
Pπµ(sk = j | st = s)Eπµ(rk | sk = j).

4: end for
5: end for

8.4.2 Monte-Carlo policy evaluation

Another conceptually simple algorithm is Monte-Carlo policy evaluation shown
as Algorithm 3. The idea is that instead of summing over all possible states
to be visited, we just draw states from the Markov chain defined jointly by
the policy and the Markov decision process. Unlike direct policy evaluation
the algorithm needs a parameter K, the number of trajectories to generate.
Nevertheless, this is a very useful method, employed within a number of more
complex algorithms.
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Algorithm 3 Monte-Carlo policy evaluation

for s ∈ S do
for k = 0, . . . ,K do
Choose initial state s1.
for t = 1, . . . , T do
at ∼ π(at | st) // Take action
Observe reward rt and next state st+1.
Set rt,k = rt.

end for
Save total reward:

V̂k(s) =
T∑

t=1

rt,k.

end for
Calculate estimate:

V̂ (s) =
1

K

K∑

k=1

V̂k(s).

end for

Remark 8.4.1. The estimate V̂ of the Monte Carlo evaluation algorithm sat-
isfies

‖V − V̂ ‖∞ ≤
√

ln(2|S|/δ)
2K

with probability 1− δ

Proof. From Hoeffding’s inequality we have for any state s that

P

(
|V̂ (s)− V (s)| ≥

√
ln(2|S|/δ)

2K

)
≤ δ/|S|.

Consequently, using a union bound of the form P (A1∪A2∪. . .∪An) ≤
∑
i P (Ai)

gives the required result.

Finally, the backwards induction algorithm shown as Algorithm 4 is similar
to the backwards induction algorithm we saw for sequential sampling problems.
However, here we are only evaluating a policy rather than finding the optimal
policy. This algorithm is slightly less generally applicable than the Monte-Carlo
method because it implicitly assumes that the policy we evaluate only takes
actions depending on the current state.

Algorithm 4 Backwards induction policy evaluation

For each state s ∈ S, for t = 1, . . . , T − 1:

V̂t(s) = rπµ(s) +
∑

j∈S
Pπµ(st+1 = j | st = s)V̂t+1(j), (8.4.6)

with V̂T (s) = rπµ(s).

Theorem 8.4.1. The backwards induction algorithm gives estimates V̂t(s) sat-
isfying

V̂t(s) = V πµ,t(s) (8.4.7)
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Proof. For t = T − 1, the result is obvious. We can prove the remainder by
induction. Let (8.4.7) hold for all t ≥ n+ 1. Now we prove that it holds for n.
Note that from the recursion (8.4.6) we have:

V̂t(s) = rµ(s) +
∑

j∈S
Pµ,π(st+1 = j | st = s)V̂t+1(j)

= r(s) +
∑

j∈S
Pµ,π(st+1 = j | st = s)V πµ,t+1(j)

= r(s) + Eµ,π(Ut+1 | st = s)

= Eµ,π(Ut | st = s) = V πµ,t(s),

where the second equality is by the induction hypothesis, the third and fourth
equalities are by the definition of the utility, and the last by definition of V πµ,t.

As you can see, the proof follows the same outline as the expansion of the
policy value.The same theorem can be proven for history-dependent policies.

8.4.3 Finite horizon backwards induction

Backwards induction as given in algorithm 5 is the first non-naive algorithm for
finding an optimal policy for the case where there are T stages. It is basically
identical to the backwards induction algorithm we saw in Chapter 7.

Algorithm 5 Finite-horizon backwards induction

Input µ, set ST of states reachable within T steps.
Initialise VT (s) := maxa r(s, a), for all s ∈ ST .
for n = T − 1, T − 2, . . . , 1 do
for s ∈ Sn do
πn(s) = argmaxa r(s, a) +

∑
s′∈Sn+1

Pµ(s
′ | s, a)Vn+1(s

′)

Vn(s) = r(s, a) +
∑
s′∈Sn+1

Pµ(s
′ | s, πn(s))Vn+1(s

′)
end for

end for
Return π = (πn)

T
n=1.

Theorem 8.4.2. For T -horizon problems, backwards induction is optimal, i.e.

Vn(s) = V ∗
µ,n(s) (8.4.8)

Proof. Note that the proof below also holds for r(s, a) = r(s). First we show
that Vt ≥ V ∗

t . For n = T we evidently have VT (s) = maxa r(s, a) = V ∗
µ,T (s).

Now assume that for n ≥ t+1, (8.4.8) holds. Then it also holds for n = t, since
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for any policy π′

Vt(s) = max
a



r(s, a) +

∑

j∈S
Pµ(j | s, a)Vt+1(j)





≥ max
a



r(s, a) +

∑

j∈S
Pµ(j | s, a)V ∗

µ,t+1(j)



 (by induction assumption)

≥ max
a



r(s, a) +

∑

j∈S
Pµ(j | s, a)V π

′

µ,t+1(j)





≥ V π
′

t (s).

This holds for any policy π′, including π′ = π, the policy returned by backwards
induction. Then:

V ∗
µ,t(s) ≥ V πµ,t(s) = Vt(s) ≥ V ∗

µ,t(s).

Remark 8.4.2. A similar theorem can be proven for arbitrary S. This requires
using sup instead of max and proving the existence of a π′ that is arbitrary-close
in value to v.

8.5 Infinite-horizon

When problems have no fixed horizon, they usually can be modelled as infinite
horizon problems, sometimes with help of a terminating state, whose visit termi-
nates the problem, or discounted rewards, which indicate that we care less about
rewards further in the future. When reward discounting is exponential, these
problems can be seen as undiscounted problems with random and geometri-
cally distributed horizon. For problems with no discounting and no termination
states there are some complications in the definition of optimal policy. However,
we defer discussion of such problems to Chapter ??.

8.5.1 Examples

We begin with some examples.

Shortest-path problems

Deterministic shortest-path problems

Consider an agent moving in a maze, aiming to get to some terminating goal
state X. That is, when reaching this state, the agent cannot move anymore,
and receives a reward of 0. In general, the agent can move deterministically in
the four cardinal directions, and receives a negative reward at each time step.
Consequently, the optimal policy is to move to X as quickly as possible.
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X

Properties

� γ = 1, T → ∞.

� rt = −1 unless st = X, in which
case rt = 0.

� Pµ(st+1 = X|st = X) = 1.

� A = {North, South,East,West}

� Transitions are deterministic and
walls block.

Solving the shortest path problem can be done simply by looking at the
distance of any point to X. Then the reward obtained by the optimal policy
starting from any point, is simply the negative distance. The optimal policy
simply moves to the state with the smallest distance to X.

14 13 1211 10 9 8 7

15 13 6

16 15 14 4 3 4 5

17 2

18 19 20 2 1 2

19 21 1 0 1

20 22

21 2324 2526 27 28

Properties

� γ = 1, T → ∞.

� rt = −1 unless st = X, in which
case rt = 0.

� The length of the shortest path
from s equals the negative value of
the optimal policy.

� Also called cost-to-go.

Stochastic shortest path problem with a pit

Now assume the shortest path problem with stochastic dynamics. That is,
at each time-step there is a small probability ω that move to a random direction.
In addition, there is a pit O, that is a terminating state with a reward of −100.
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O X

Properties

� γ = 1, T → ∞.

� rt = −1, but rt = 0 at X and −100
at O and episode ends.

� Pµ(st+1 = X|st = X) = 1.

� A = {North, South,East,West}

� Moves to a random direction with
probability ω. Walls block.
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Figure 8.3: Pit maze solutions for two values of ω.

Randomness changes the solution significantly in this environment. When
ω is relatively small, it is worthwhile (in expectation) for the agent to pass past
the pit, even though there is a risk of falling in and getting a reward of −100.
In the example given, even starting from the third row, the agent prefers taking
the short-cut. For high enough ω, the optimal policy avoids approaching the pit.
Still, the agent prefers jumping in the pit, than being trapped at the bottom of
the maze forever.

Continuing problems

Finally, many problems have no natural terminating state, but are continuing
ad infinitum. Frequently, we model those problems using a utility that discounts
future rewards exponentially. As an example, consider the following inventory
management problem. There are K storage locations, and each location i can
store ni items. At each time-step there is a probability φi that a client tries
to buy an item from location i, where

∑
i φi ≤ 1. If there is an item available,
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when this happens, you gain reward 1. There are two types of actions, one for
ordering a certain number u units of stock, paying c(u). Further one may move
u units of stock from one location i to another location j, paying ψij(u).

An easy special case is when K = 1, and we assume that deliveries happen
once every m timesteps, and each time-step a client arrives with probability φ.
Then the state set S = {0, 1, . . . , n} corresponds to the number of items we
have, the action set A = {0, 1, . . . , n} to the number of items we may order.
The transition probabilities are given by P (s′|s, a) =

(
m
d

)
φd(1 − φ)m−d, where

d = s+ a− s′, for s+ a ≤ n.

8.5.2 Markov chain theory for discounted problems

We first consider MDPs with discounted rewards, and only turn later to algo-
rithms and bounds for the undiscounted case.

Discounted total reward.
Our utility in this case is:

Ut = lim
T→∞

T∑

k=t

γkrk, γ ∈ (0, 1)

For simplicity, in the following we assume that rewards only depend on the
current state instead of both state and action. It can easily be verified that
results still hold in the latter case. We use the following notation:

� vπ = (Eπ(Ut | st = s))s∈S is a vector in R
|S| representing the value of

policy π.

� Pµ,π is a transition matrix in R
|S|×|S| for policy π.

� Sometimes we will use p(j|s, a) as a shorthand for Pµ(st+1 = j | st =
s, at = a).

� r is a reward vector in R
|S|.

� The space of value functions V is a Banach space (i.e., a complete, normed
vector space) equipped with the norm

‖v‖ = sup {|v(s)| | s ∈ S}

For infinite-horizon discounted MDPs, stationary policies are sufficient. This
can be proven by induction, using arguments similar to other proofs given here.
For a detailed set of proofs, see Puterman [1994].

Definition 8.5.1. A policy π is stationary if π(at | st) = π(an | sn) for all n, t.

We now present a set of important results that link Markov decision processes
to linear algebra.
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Remark 8.5.1. We can use the Markov chain kernel P to write the expected
reward vector as

vπ =

∞∑

t=0

γtP t
µ,πr (8.5.1)

Proof.

V π(s) = E

( ∞∑

t=0

γtrt

∣∣∣∣∣ s0 = s

)

=

∞∑

t=0

γt E(rt|s0 = s)

=
∞∑

t=0

γt
∑

i∈S
P(st = i | s0 = s)E(rt | st = i).

Since for any distribution vector p over S, we have Ep rt = p⊤r, the result
follows.

Exercise 5. Show that the expected discounted total reward of any given policy is
equal to the expected undiscounted total reward with a finite, but random horizon
T . In particular, let T be distributed according to a geometric distribution on
{1, 2, . . .} with parameter 1− γ. Then show that:

E lim
T→∞

T∑

k=0

γkrk = E

(
T∑

k=0

rk

∣∣∣∣∣ T ∼ Geom(1− γ)

)
.

The value of a particular policy can be expressed as a linear equation. This
is an important result, as it has led to a number of successful algorithms that
employ linear theory.

Theorem 8.5.1. For any stationary policy π, vπ is the unique solution of

v = r + γPµ,πv. (8.5.2)

In addition, the solution is:

vπ = (I − γPµ,π)
−1r. (8.5.3)

To prove this we will need the following important theorem.

Theorem 8.5.2. For any bounded linear transformation A : S → S on a
normed linear space S (i.e., there is c < ∞ s.t. ‖Ax‖ := supi

∑
j ai,j ≤ c‖x‖

for all x ∈ S with spectral radius σ(A) limn→∞ := ‖An‖1/n < 1), A−1 exists
and is given by

A−1 = lim
T→∞

T∑

n=0

(I −A)n. (8.5.4)
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Proof of Theorem 8.5.1. First note that by manipulating the infinite sum in
Remark 8.5.1, one obtains r = (I − γPµ,π)v

π. Since ‖γPµ,π‖ < 1 · ‖Pµπ
‖ = 1,

the inverse

(I − γPµ,π)
−1 = lim

n→∞

n∑

t=0

(γPµ,π)
t

exists by Theorem 8.5.2. It follows that

v = (I − γPµ,π)
−1r =

∞∑

t=0

γtP t
µ,πr = vπ,

where the last step is by Remark 8.5.1 again.

8.5.3 Optimality equations

Let us now look at the backwards induction algorithms in terms of operators.
We introduce the operator of a policy, which is the one-step backwards induction
operation for a fixed policy, and the Bellman operator, which is the equivalent
operator for the optimal policy. If a value function is optimal, then it satisfies
the Bellman optimality equation.

Definition 8.5.2 (Policy and Bellman operator). The linear operator of a policy
π is:

Lπv , r + γPπv (8.5.5)

The (non-linear) Bellman operator in the space of value functions V is defined
as:

L v , sup
π

{r + γPπv} , v ∈ V (8.5.6)

We now show that the Bellman operator satisfies the following monotonicity
properties with respect to an arbitrary value vector v.

Theorem 8.5.3. Let v∗ := supπ v
π. Then for any bounded r, it holds that for

v ∈ V:

(1) If v ≥ L v, then v ≥ v∗.

(2) If v ≤ L v, then v ≤ v∗.

(3) If v = L v, then v is unique and v = supπ v
π. Therefore, v = L v is

called the Bellman optimality equation.

Proof. We first prove (1). A simple proof by induction over n shows that for
any π

v ≥ r + γPπv ≥
n−1∑

k=0

γkP k
π r + γnP n

π v.

Since vπ =
∑∞
t=0 γ

tP t
πr it follows that

v − vπ ≥ γnP n
π v −

∞∑

k=n

γkP k
π r.
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The first-term on the right-hand side can be bounded by arbitrary ǫ/2 for large
enough n. Also note that

∞∑

k=n

γkP k
π r ≥ − γne

1− γ
,

with e being a unit vector, so this can be bounded by ǫ/2 as well. So for any
π, ǫ > 0:

v ≥ vπ − ǫ,

so

v ≥ sup
π

vπ.

An equivalent argument shows that

v ≤ vπ + ǫ,

proving (2). Putting together (1) and (2) gives (3).

We eventually want show that repeated application of the Bellman operator
converges to the optimal value. As a preparation, we need the following theorem.

Theorem 8.5.4 (Banach Fixed-Point theorem). Suppose S is a Banach space
(i.e. a complete normed linear space) and T : S → S is a contraction mapping
(i.e. ∃γ ∈ [0, 1) s.t. ‖Tu− Tv‖ ≤ γ‖u− v‖ for all u, v ∈ S). Then

� there is a unique u∗ ∈ U s.t. Tu∗ = u∗, and

� for any u0 ∈ S the sequence {un}:

un+1 = Tun = Tn+1u0

converges to u∗.

Proof. For any m ≥ 1

‖un+m − un‖ ≤
m−1∑

k=0

‖un+k+1 − un+k‖ =
m−1∑

k=0

‖Tn+ku1 − Tn+ku0‖

≤
m−1∑

k=0

γn+k‖u1 − u0‖ =
γn(1− γm)

1− γ
‖u1 − u0‖.

Theorem 8.5.5. For γ ∈ [0, 1) the Bellman operator L is a contraction map-
ping in V.

Proof. Let v,v′ ∈ V. Consider s ∈ S such that L v(s) ≥ L v′(s), and let

a∗s ∈ argmax
a∈A



r(s) +

∑

j∈S
γpµ(j | s, a)v(j)



 .
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Then

0 ≤ L v(s)− L v′(s) ≤
∑

j∈S
γp(j | s, a∗s)v(j)−

∑

j∈S
γp(j | s, a∗s)v′(j)

= γ
∑

j∈S
p(j | s, a∗s)[v(j)− v′(j)]

≤ γ
∑

j∈S
p(j | s, a∗s)‖v − v′‖ = γ‖v − v′‖.

Repeating the argument for s such that L v(s) ≤ L v′(s), we obtain

|L r(s)− L r′(s)| ≤ γ‖r − r′‖.

Taking the supremum, we the required result follows.

Theorem 8.5.6. For discrete S, bounded r, and γ ∈ [0, 1)

(i) there is a unique v∗ ∈ V such that L v∗ = v∗ and such that v∗ = V ∗
µ ,

(ii) for any stationary policy π, there is a unique v ∈ V such that Lπv = v

and v = V πµ .

Proof. As the Bellman operator L is a contraction by Theorem 8.5.5, appli-
cation of the fixed-point Theorem 8.5.4 shows that there is a unique v∗ ∈ V
such that L v∗ = v∗. This is also the optimal value function due to The-
orem 8.5.5.The second part of the theorem follows from the first part when
considering only a single policy π (which then is optimal).

8.5.4 MDP Algorithms

Let us now look at three basic algorithms for solving a known Markov deci-
sion proces. The first, value iteration, is a simple extension of the backwards
induction algorithm to the infinite horizon case.

Value iteration

In this version of the algorithm, we assume that rewards are depepndent only
on the state. An algorithm for the case where reward only depends on the state
can be obtained by replacing r(s, a) with r(s).

Algorithm 6 Value iteration

Input µ, S.
Initialise v0 ∈ V.
for n = 1, 2, . . . do
for s ∈ Sn do
πn(s) = argmaxa∈A

{
r(s, a) + γ

∑
s′∈S Pµ(s

′ | s, a)vn−1(s
′)
}

vn(s) = r(s, πn(s)) + γ
∑
s′∈S Pµ(s

′ | s, πn(s))vn−1(s
′)

end for
break if termination-condition is met

end for
Return πn, Vn.
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Theorem 8.5.7. The value iteration algorithm satisfies

� limn→∞ ‖vn − V ∗‖ = 0.

� For each ǫ > 0 there exists Nǫ <∞ such that for all n ≥ Nǫ

‖vn+1 − vn‖ ≤ ǫ(1− γ)/2γ. (8.5.7)

� For n ≥ Nǫ the policy πǫ that takes action argmaxa r(s, a)+γ
∑
j p(j|s, a)vn(s′)

is ǫ-optimal.

� ‖vn+1 − V ∗
µ ‖ < ǫ/2 for n > Nǫ.

Proof. The first two statements follow from the fixed-point Theorem 8.5.4. Now
note that

‖V πǫ
µ − V ∗

µ ‖ ≤ ‖V πǫ
µ − vn‖+ ‖vn − V ∗

µ ‖
We can bound these two terms easily:

∥∥V πǫ
µ − vn+1

∥∥ =
∥∥Lπǫ

V πǫ
µ − vn+1

∥∥
≤
∥∥Lπǫ

V πǫ
µ − L vn+1

∥∥+ ‖vn+1 − vn+1‖
=
∥∥Lπǫ

V πǫ
µ − Lπǫ

vn+1

∥∥+ ‖L vn+1 − L vn‖
≤ γ

∥∥V πǫ
µ − vn+1

∥∥+ ‖vn+1 − vn‖ .

An analogous argument gives the same bound for the second term ‖vn − V ∗
µ ‖.

Then, rearranging we obtain

‖V πǫ − vn+1‖ ≤ γ

1− γ
‖vn+1 − vn‖, ‖vn+1 − V ∗

µ ‖ ≤ γ

1− γ
‖vn+1 − vn‖,

and the third and fourth statements follow from the second statement.

Theorem 8.5.8 (Value iteration monotonicity). Let V be a value function space
with Bellman operator L . Then:

1. Let v,v′ ∈ V with v′ ≥ v. Then L v′ ≥ L v.

2. Let vn+1 = L vn. If there is an N s.t. L vN ≤ vN , then L vN+k ≤ vN+k

for all k ≥ 0 and similarly for ≥.

Proof. Let π ∈ argmaxπ r + γPµ,πv. Then

L v = r + γPµ,πv ≤ r + γPµ,πv
′ ≤ max

π′
r + γPµ,π′v′,

where the first inequality is due to the fact that Pv ≥ Pv′ for any P .
For the second part,

L vN+k = vN+k+1 = L
k
L vN ≤ L

kvN = vN+k.

since L vN ≤ vN by assumption and consequently L kL vN ≤ L kvN by part
one of the theorem.

Thus, value iteration converges monotonically to V ∗
µ if r0 satisfies condition

1 of the theorem. If r ≥ 0, it is sufficient to set r0 = 0. Then v is always a
lower bound on the optimal value function.
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Theorem 8.5.9. Value iteration converges linearly at rate γ and O(γn). In
addition, for r ∈ [0, 1] and r0 = 0

‖vn − V ∗
µ ‖ ≤ γn

1− γ
,

‖V πn
µ − V ∗

µ ‖ ≤ 2γn

1− γ
.

Proof. The first part follows from the contraction property (Theorem 8.5.5):

‖vn+1 − v∗‖ = ‖L vn − L v∗‖ ≤ γ‖vn − v∗‖. (8.5.8)

Now divide by γn to obtain the O(γn) property.

Policy iteration

Unlike value iteration, policy iteration attempts to iteratively improve a given
policy. At each iteration, it calculates the value of the current policy. At the next
step, it tries to obtain an improvement by calculating a policy that is greedy
with respect to the previous value function. The algorithm described below
can be extended to the case when the reward also depends on the action, by
replacing r with the policy-dependent reward vector rπ. The following theorem
can also be easily extended to this case.

Algorithm 7 Policy iteration

Input µ, S.
Initialise v0.
for n = 1, 2, . . . do
πn+1 = argmaxπ {r + γPπvn} // policy improvement

vn+1 = V
πn+1
µ // policy evaluation

break if πn+1 = πn.
end for
Return πn,vn.

Theorem 8.5.10. Let vn,vn+1 be the value vectors generated by policy itera-
tion. Then vn ≤ vn+1.

Proof. From the policy improvement step

r + γPπn+1
vn ≥ r + γPπn

vn,= vn

where the equality is due to the policy evaluation step for πn. Rearranging, we
get r ≥ (I − γPπn+1

)vn and hence

(I − γPπn+1
)−1r ≥ vn,

noting that the inverse is positive. Since the left side equals vn+1 by the policy
evaluation step for πn+1, the theorem follows.

Corollary 8.5.1. If S,A are finite, then policy iteration terminates after a
finite number of iterations and returns an optimal policy.
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Proof. There is only a finite number of policies, and since policies in policy
iteration are monotonically improving, the algorithm must stop after finitely
many iterations. Finally, the last iteration satisfies

vn = max
π

r + γPπvn. (8.5.9)

Thus vn solves the optimality equation.

Modified policy iteration
The astute reader will have noticed that it may be not necessary to fully

evaluate the improved policy. In fact, we can take advantage of that to speed
up policy iteration. Thus, a simple variant of policy iteration involves doing
only a k-step update for the policy evaluation step. For k = 1, the algorithm
becomes identical to value iteration.

Algorithm 8 Modified policy iteration

Input µ, S.
Initialise v0.
for n = 1, 2, . . . do
πn = argmaxπ r + γPπvn−1 // policy improvement

vn = L k
πn

vn−1 // partial policy evaluation

break if πn = πn+1.
end for
Return πn,vn.

Geometric view

Definition 8.5.3. Difference operator The difference operator is defined as

Bv , max
π

{r + (γPπ − I)v} = L v − v. (8.5.10)

Thus the optimality equation can be rewritten as

Bv = 0. (8.5.11)

For any v ∈ V, define:

Πv , argmax
π∈Π

{r + (γPπ − I)v}

to be the set of v-improving policies.

Theorem 8.5.11. For any v,v′ ∈ V and π ∈ Πv

Bv ≥ Bv + (γPπ − I)(v′ − v). (8.5.12)

Proof. By definition, Bv′ ≥ r + (γPπ − I)v′, while Bv = r + (γPπ − I)v.
Subtracting the latter from the former gives the result.

Equation (8.5.12) is similar to the convexity equation. In fact, we can have
a nice geometric view of this.
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Theorem 8.5.12. Let {vn} be the sequence of value vextors obtained from
policy iteration. Then for any π ∈ Πvn

,

vn+1 = vn − (γPπ − I)−1
Bvn. (8.5.13)

Proof. By definition, we have for π ∈ Πvn

vn+1 = (I − γPπ)
−1r − vn + vn

= (I − γPπ)
−1[r − (I − γPπ)vn] + vn.

Since r − (I − γPπ)vn = Bvn the claim follows.

Temporal-Difference Policy Iteration

Temporal-difference policy iteration replaces the next-step value with an ap-
proximation vn. First, policy improvement is used to obtain the next policy
given our approximation:

Lπn+1
vn = L vn. (8.5.14)

The method uses the temporal difference error, defined as:

dn(i, j) = vn(i)− [r(i) + γvn(j)]. (temporal difference error)

This can be seen as the difference in the estimate when we move from state
i to state j. Note the similarity to the difference operator in modified policy
iteration. The idea of the temporal-difference policy iteration is to use dn as
the one-stage reward for a λ-discounted problem. Then one can write the value
vector and update for this problem as

τn(i) =

∞∑

t=0

Eπn,µ [(γλ)
mdn(st, st+1) | s0 = i] , (8.5.15)

vn+1 = vn + τn. (8.5.16)

Summarizing, we obtain the following algorithm:

Algorithm 9 Temporal-Difference Policy Iteration

Input µ, S, λ.
Initialise v0.
for n = 1, 2, . . . do
πn = argmaxπ r + γPπvn−1 // policy improvement

vn = vn−1 + τk // temporal difference update.
break if πn = πn=1.

end for
Return πn,vn.

In fact, vn+1 is the unique fixed point of the following equation:

Dnv , (1− λ)Lπn+1
vn + λLπn+1

v. (fixed point)

In other words, the new value vector is moved only partially towards the di-
rection of the Bellman update. In fact, for λ = 1, this becomes identical to
standard policy iteration. For λ = 0, one obtains standard value iteration.
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Linear programming

We shall now formulate the problem of finding an optimal value function for a
given Markov decision process in terms of a linear program. Recall that if

v ≥ L v

then v ≥ V ∗
µ . In order to transform this into a linear program, we must first

define a scalar function to minimise. We can do this by selecting some arbitrary
distribution on the states y ∈ ∆

|S|. Then we can write the following linear
program.

Primal linear program

min
v

y⊤v,

such that
v(s)− γp⊤

s,av ≥ r(s, a), ∀a ∈ A, s ∈ S.

Note that the inequality condition is equivalent to v ≥ L v. Consequently,
the problem is to find the smallest v that satisfies this inequality. When A,S
are finite, it is easy to see that this will be the optimal value function and the
Bellman equation is satisfied.

It also pays to look at the dual linear program, which is in terms of a
maximisation. This time, instead of finding the minimal upper bound on the
value function, we find the maximal cumulative discounted state-action visits
x(s, a) that are consistent with the transition kernel of the process.

Dual linear program

max
x

∑

s∈S

∑

a∈A
r(s, a)x(s, a)

such that x ∈ R
|S×A|
+ and

∑

a∈A
x(j, a)−

∑

s∈S

∑

a∈A
γp(j | s, a)x(s, a) = y(j) ∀j ∈ S.

with y ∈ ∆
|S|.

In this case, x can be interpreted as the discounted sum of state-action visits,
as proved by the following theorem.

Theorem 8.5.13.

xπ(s, a) = Eπ,µ

{∑
γn I {st = s, at = a | s0 ∼ y}

}

is a feasible solution to the dual problem. On the other hand, if x is a feasible
solution to the dual problem then

∑
a x(s, a) > 0. Finally, if we define the
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strategy

π(a | s) = x(s, a)∑
a′∈A x(s, a

′)

then xπ = x is a feasible solution.

The equality condition ensures that x is consistent with the transition kernel
of the Markov decision process. Consequently, the program can be seen as search
among all possible cumulative state-action distributions to find the one giving
the highest total reward.

Summary

Markov decision processes
can represent : Shortest path problems, stopping problems, experiment de-
sign problems, multi-armed bandit problems, reinforcement learning prob-
lems.

Backwards induction (aka value iteration)

� In the class of dynamic programming algorithms.

� Tractable when either the state space S or the horizon T are small
(finite).

Optimal decisions and Bayesian reinforcement learning

� A known environment is represented as an MDP.

� Bandit problems can be solved by representing them as infinite-state
MDPs.

� In general, an unknown environment can be represented as a distri-
bution over MDPs.

� The decision problem can again be formulated as an infinite-state
MDP.

8.6 Further reading

See the last chapter of [DeGroot, 1970] for further information on the MDP
formulation of bandit problems in the decision theoretic setting. This was ex-
plored in more detail in Duff’s PhD thesis [Duff, 2002]. When the number of
(information) states in the bandit problem is finite, Gittins [1989] has proven
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that it is possible to formulate simple index policies. However, this is not gener-
ally applicable. Easily computable, near-optimal heuristic strategies for bandit
problems will be given in Chapter 12. The decision-theoretic solution to the
unknown MDP problem will be given in Chapter 11.

Further theoretical background on Markov decision processes, including many
of the theorems in Section 8.5, can be found in [Puterman, 1994]. Chapter 2
of Bertsekas and Tsitsiklis [1996] gives a quick overview of MDP theory from the
operator perspective. The introductory reinforcement learning book of Sutton
and Barto [1998] also explains the basic Markov decision process framework.
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9.1 Introduction

In this chapter, we consider the actual problem of reinforcement learning. Up
to now, we have only examined a solution method for bandit problems, which
are a special case of the general reinforcement learning problem. The Bayesian
decision-theoretic solution is to reduce the bandit problem to a Markov decision
process which can then be solved with backwards induction.

We also have seen that Markov decision processes can be used to describe en-
vironments in more general reinforcement learning problems. When our knowl-
edge of the MDP describing these problems is perfect, then we can employ a
number of standard algorithms to find the optimal policy. However, in the ac-
tual reinforcement learning problem, the model of the environment is unknown.
However, as we shall see later, ideas from both cases can be used to solve the
general reinforcement learning problem.

The main idea we explore in this chapter is that we can perform approximate
dynamic programming algorithms, by replacing the actual unknown dynamics of
the Markov decision process with estimates. The estimates can be improved by
drawing samples from the actual environment, either by actually acting within
the environment or using a simulator. In both cases we end up with a number
of algorithms that can be used for reinforcement learning. Although may not
be performing as well as the Bayes-optimal solution, these have a low enough
computational complexity that they are worth investigating in practice.

9.1.1 Bandit problems

The stochastic n-armed bandit problem
Let us return to the example of bandit problems. As before, we have n

actions corresponding to probability distributions Pi on the real numbers.

P = {Pi | i = 1, . . . , n} .

At each time-step t we select an action at, obtaining a random reward distributed
according to:

rt | at = i ∼ Pi.

Our objective is to find a policy π maximising the expected total reward.

Eπ Ut = Eπ

T∑

k=t

rk, a∗t , max {E(rt | at = i) | i = 1, . . . , n} .

Had we known the distribution, we could simply always the maximising action,
as the expected reward of the i-th action can be easily calculated from Pi and
the reward only depends on our current action. The situation is similar when
P is a parametric family unknown parameter ω∗, outlined below.

P = {Pi(· | ω) | ω ∈ Ω} , rt | at = i, ω∗ = ω ∼ Pi(r | ω∗). (9.1.1)

If in addition we have a subjective belief ξ over Ω, we could (as explained in
Sec. 8.2) in principle calculate the policy maximising the ξ-expected utility:

Eπξ Ut = Eπξ

T∑

k=t

rk. (9.1.2)
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This of course will now have to be a history-dependent policy. In the remainder
of this section, we shall examine algorithms algorithms which eventually conver-
gence to the optimal action, but for which we cannot always guarantee a good
initial behaviour.

9.1.2 Estimation and Robbins-Monro approximation

The basic idea of the Robbins-Monro stochastic approximation algorithm [Rob-
bins and Monro, 1951] is to maintain a set of point estimates of a parameter we
want to approximate and perform random steps that on average move towards
the solution, in a way to be made more precise later. It can in fact be seen as
a generalisation of stochastic gradient descent.

Algorithm 10 Robbins-Monro bandit algorithm

1: input Step-sizes (αt)t, initial estimates (µi,0)i, policy π.
2: for t = 1, . . . , T do
3: Take action at = i with probability π(i | a1, . . . , at−1, r1, . . . , rt−1).
4: Observe reward rt.
5: µt,i = αi,trt + (1− αi,t)µi,t−1 // estimation step

6: µt,i = µj,t−1 for j 6= i.
7: end for
8: return µT

A simple Robbins-Monro algorithm for the n-armed bandit problem is given
in Algorithm 10. The input is a particular policy π, that gives us a probability
over the next actions given the observed history, a set of initial estates µi,0 for
the bandit means, and a sequence of step sizes α.

If you examine the updates carefully, you will be able to find what the cost
function you are trying to minimise is. This simple update rule can be seen as
trying to minimise the expected squared error between your estimated reward,
and the random reward obtained by each bandit. Consequently, the variance of
the reward of each bandit plays an important role.

The step-sizes α must obey certain constraints in order for the algorithm to
work, in particular it must decay neither too slowly, nor too fast. There is one
particular choice, for which our estimates are in fact the mean estimate of the
expected value of the reward for each action i, which is a natural choice if the
bandits are stationary.

The other question is what policy to use to take actions. We must take all
actions often enough, so that we have good estimates for the expected reward of
every bandit. One simple way to do it is to play the apparently best bandit most
of the time, but to sometimes select bandits randomly. This is called ǫ-greedy
action selection. This ensures that all actions are tried a sufficient number of
times.

Definition 9.1.1. ǫ-greedy action selection

π̂∗
ǫ , (1− ǫt)π̂

∗
t + ǫtUnif (A), (9.1.3)

π̂∗
t (i) = I

{
i ∈ Â∗

t

}
/|Â∗

t |, Â∗
t = argmax

i∈A
µt,i (9.1.4)
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Figure 9.1: ǫt = 0.1, α ∈ {0.01, 0.1, 0.5}.
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Figure 9.2: ǫt = ǫ, α = 0.1.

The main two parameters of the algorithm are randomness ǫ-greedy action
selection and the step-size. Figures 9.1 and 9.2 show the average reward ob-
tained, if we keep the step size α or the randomness ǫ fixed, respectively. We
see that there the choice of values really affects convergence.

For a fixed ǫ, we find that larger values of α tend to give a better result
eventually, while smaller values have a better initial performance. This is a
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natural trade-off, since large α appears to “learn” fast, but it also “forgets”
quickly. That is, for a large α, our estimates mostly depend upon the last few
rewards observed.

Things are not so clear-cut for the choice of ǫ. We see that the choice of
ǫ = 0, is significantly worse than ǫ = 0.1. So, that appears to suggest that there
is an optimal level of exploration. How should that be determined? Ideally, we
should be able to to use the decision-theoretic solution seen earlier, but perhaps
a good heuristic way of choosing ǫ may be good enough.

9.1.3 The theory of the approximation

Here we quickly review some basic results of stochastic approximation theory.
Complete proofs can be found in Bertsekas and Tsitsiklis [1996]. The main
question here is Consider the algorithm

µt+1 = µt + αtzt+1. (9.1.5)

Here µt is our estimate, αt is a step-size and zt is an observation. Let ht =
{µt, zt, αt, . . .} be the history of the algorithm.

There are two types of convergence conditions. The first focuses on conti-
nuity and smoothness properties, and the second on contraction properties of
operators. Here, we concentrate on the first case, which also has applications in
other areas.

Assumption 9.1.1. Assume a function f : Rn → R such that:

(i) f(x) ≥ 0 for all x ∈ R
n.

(ii) (Lipschitz derivative) f is continuously differentiable (i.e. the derivative
∇f exists and is continuous) and ∃L > 0 such that:

‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ , ∀ x, y ∈ R
n

(iii) (Pseudo-gradient) ∃c > 0 such that:

c ‖∇f(µt)‖2 ≤ −∇f(µt)⊤ E(zt+1 | ht), ∀ t.

(iv) ∃K1,K2 > 0 such that

E(‖zt+1‖2 | ht) ≤ K1 +K2 ‖∇f(µt)‖2

Condition (ii) is a very basic condition for convergence. It basically ensures
that the function is well-behaved, so that gradient-following methods can easily
find the minimum. Condition (iii) combines two assumptions in one. Firstly,
that expected direction of update always decreases cost, and secondly that the
squared norm of the gradient is not too large relative to the size of the update.
Finally, condition (iv) ensures that update is bounded in expectation relative
to the gradient.

One can see how putting together the last two conditions ensures that the
expected direction of our update is correct, and that its norm is bounded.
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Theorem 9.1.1. For the algorithm

µt+1 = µt + αtzt+1,

where αt ≥ 0 satisfy
∞∑

t=0

αt = ∞,
∞∑

t=0

α2
t <∞, (9.1.6)

and under Assumption 9.1.1, with probability 1:

1. The sequence {f(µt)} converges.

2. limt→∞ ∇f(µt) = 0.

3. Every limit point µ∗ of µt satisfies ∇f(µ∗) = 0.

A demonstration

Figure 9.3 demonstrates the convergence, or lack thereof, of our estimates
µt to the expected value of a random variable with mean 0.5, for three different
step-size schedules, with update direction:

zt+1 = xt+1 − µt.

The first one, αt = 1/t, satisfies both assumptions. The second one, αt = 1/
√
t,

reduces too slowly, and the third one, αt = t−3/2, approaches zero too fast.
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Figure 9.3: Estimation of the expectation of xt ∼ N (0.5, 1) using use three
step-size schedules.

9.2 Dynamic problems

The dynamic setting presents one essential difference. Our policy now affects
which sequences of states we observe. Otherwise, the algorithmic structure
remains the same and is described below.
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Algorithm 11 Generic reinforcement learning algorithm

1: input Update-rule f : Θ × S2 × A × R → Θ, initial parameters θ0 ∈ Θ,
policy π : S ×Θ → D (A).

2: for t = 1, . . . , T do
3: at ∼ π(· | θt, st) // take action

4: Observe reward rt+1, state st+1.
5: θt+1 = f(θt, st, at, rt+1, st+1) // update estimate

6: end for

Questions

� What should we estimate? For example, θt could be describing a
posterior distribution over MDPs, or a distribution over parameters.

� What policy should we use? For example, we could try and use the
Bayes-optimal policy with respect to θ, or some heuristic policy.

Example 9.2.1 (The chain task). The chain task has two actions and five
states, as shown in Fig. 9.4. The reward in the leftmost state is 0.2 and 1.0 in
the rightmost state, and zero otherwise. The first action (dashed, blue) takes
you to the right, while the second action (solid, red) takes you to the first state.
However, there is a probability 0.2 with which the actions have the opposite
effects. The value function of the chain task for a discount factor γ = 0.95 is
shown in Table 9.1.

The chain task is a very simple, but well-known task, used to test the effi-
cacy of reinforcement learning algorithms. A variant of this task, with action-
dependent rewards was used by [Dearden et al., 1998].

0.2 0 0 0 1

Figure 9.4: The chain task

s s1 s2 s3 s4 s5
V ∗(s) 7.6324 7.8714 8.4490 9.2090 10.209
Q∗(s, 1) 7.4962 7.4060 7.5504 7.7404 8.7404
Q∗(s, 2) 7.6324 7.8714 8.4490 9.2090 10.2090

Table 9.1: The chain task’s value function for γ = 0.95
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9.2.1 Monte-Carlo policy evaluation and iteration

The simplest algorithm is Monte-Carlo policy evaluation. In the standard set-
ting, we can the value function for every state by approximating the expectation
with the sum of rewards obtained over multiple trajectories starting from each
state. The k-th trajectory starts from some initial state s0 = s and the next
states are sampled as follows

a
(k)
t ∼ π(at | ht).r(k)t ∼ Pµ(rt | s(k)t , a

(k)
t )s

(k)
t+1 ∼ Pµ(st+1 | s(k)t , a

(k)
t ). (9.2.1)

Then the value function satisfies

V πµ (s) , Eπµ(U | s1 = s) ≈ 1

K

K∑

k=1

T∑

t=1

r
(k)
t ,

where r
(k)
t is the sequence of rewards obtained from the k-th trajectory.

Algorithm 12 Stochastic policy evaluation

1: input Initial parameters v0, Markov policy π.
2: for s ∈ S do
3: s1 = s.
4: for k = 1, . . . ,K do
5: Run policy π for T steps.
6: Observe utility Uk =

∑
t rt.

7: Update estimate vk+1(s) = vk(s) + αk(Uk − vk(s))
8: end for
9: end for

10: return vK

For αk = 1/k and iterating over all S, this is the same as Monte-Carlo policy
evaluation.

A well-known algorithm for getting an optimal policy is policy iteration,
Algorithm 7 in Section 8.5.4. This consists of estimating the value of a particular
policy, and then trying to get an improved policy using this value. We can
still apply the same principle for the case where we cannot exactly evaluate a
policy. This is called approximate policy iteration. Unfortunately, approximate
policy iteration does not necessarily converge without strong conditions on each
approximation step.

Algorithm 13 Approximate policy iteration

1: input Initial parameters v0, inital Markov policy π0, stochastic estimator
f .

2: for i = 1, . . . , N do
3: Get estimate vi = f(vi−1, πi−1).
4: Calculate new policy πi = argmaxπ L vi.
5: end for

Monte Carlo update
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Note that s1, . . . , sT contains sk, . . . , sT . This suggests that we could update
the value of all encountered states, as we also have the utility starting from each
state. We call this algorithm every-visit Monte-Carlo.

Algorithm 14 Every-visit Monte-Carlo update

1: input Initial parameters vk, trajectory s1, . . . , sT , rewards r1, . . . , rT visit
counts n.

2: for t = 1, . . . , T do
3: Ut =

∑T
t=1 rt.

4: nt(st) = nt−1(st) + 1
5: vt+1(st) = vt(s) + αnt(st)(st)(Ut − vt(st))
6: nt(s) = nt−1(s), vt(s) = vt−1(s) ∀s 6= st.
7: end for
8: return vK

For a proper Monte-Carlo estimate, when the environment is stationary
αnt(st)(st) = 1/nt(st). Nevertheless, this type of estimate can be biased, as can
be seen by the following example.

Example 9.2.2. Consider a two-state chain with P(st+1 = 1 | st = 0) = δ and
P(st+1 = 1 | st = 1) = 1, and reward r(1) = 1, r(0) = 0. Then the every-visit
estimate is biased.

Let us consider the discounted setting. Then value of the second state is
1/(1 − γ) and the value of the first state is

∑
k(δγ)

k = 1/(1 − δγ). Consider
the every-visit Monte-Carlo update. The update is going to be proportional
to the number of steps you spend in that state. In order to avoid the bias,
we must instead look at only the first visit to every state. This eliminates the
dependence between states.

Unbiased Monte-Carlo update

Algorithm 15 First-visit Monte-Carlo update

1: input Initial parameters v1, trajectory s1, . . . , sT , rewards r1, . . . , rT , visit
counts n.

2: for t = 1, . . . , T do
3: Ut =

∑T
t=1 rt.

4: nt(st) = nt−1(st) + 1
5: vt+1(st) = vt(s) + αnt(st)(st)(Ut − vt(st)) if nt(st) = 1.
6: nt(s) = nt−1(s), vt(s) = vt−1(s) otherwise
7: end for
8: return vT+1
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Figure 9.5: Error as the number of iterations n increases, for first and every
visit Monte Carlo estimation.

9.2.2 Temporal difference methods

The main idea of temporal differences is to use partial samples of the utility
and replace the remaining sample from time t with an estimate of the expected
utility after time t. Since there maybe no particular reason to choose a specific
t, frequently an exponential distribution t’s is used. Let us first look at the
usual update when we have the complete utility sample Uk. The full stochastic
update is of the form:

vk+1(s) = vk(s) + α(Uk − vk(s)),

Using the temporal difference error d(st, st+1) = v(st) − [r(st) + γv(st+1)], we
obtain the update:

vk+1(s) = vk(s) + α
∑

t

γtdt, dt , d(st, st+1) (9.2.2)

Stochastic, incremental, update:

vt+1(s) = vt(s) + αγtdt. (9.2.3)

We have now converted the full stochastic update into an incremental update
that is nevertheless equivalent to the old update. Let us see how we can gener-
alise this to the case where we have a mixture of temporal differences.

Temporal difference algorithm with eligibility traces.

TD(λ).
Recall the temporal difference update when the MDP is given in analytic
form.

vn+1(i) = vni+ τni, τn(i) ,
∞∑

t=0

Eπn,µ [(γλ)
mdn(st, st+1) | s0 = i] .
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We can convert this to a stochastic update, which results in the well-known
TD(λ) algorithm for policy evaluation.

vn+1(st) = vn(st) + α

∞∑

k=t

(γλ)k−tdk. (9.2.4)

Unfortunately, this algorithm is only possible to implement offline due to the
fact that we are looking at future values.

This problem can be fixed by the backwards-looking Online TD(λ) algo-
rithm. The main idea is to backpropagate changes in future states to previously
encountered states. However, we wish to modify older states less than more
recent states.

Algorithm 16 Online TD(λ)

1: input Initial parameters vk, trajectories (st, at, rt)
2: e0 = 0.
3: for t = 1, . . . , T do
4: dt , d(st, st+1) // temporal difference

5: et(st) = et−1(st) + 1 // eligibility increase

6: for s ∈ S do
7: vt+1(st) = vt(s) + αtet(s)dt. // update all eligible states

8: end for
9: et+1 = λet

10: end for
11: return vT

Figure 9.6: Eligibility traces

9.2.3 Stochastic value iteration methods

The main problem we had seen so far with Monte-Carlo based simulation is that
we normally require a complete sequence of rewards before updating values.
However, in value iteration, we can simply perform a backwards step from all
the following states in order to obtain a utility estimate. This idea is explored
in stochastic value iteration methods.

The standard value iteration algorithm performs a sweep over the complete
state space at each iteration. However, could perform value iteration over an
arbitrary sequence of states. For example, we can follow a sequence of states
generated from a particular policy. This lends to the idea of simulation-based
value iteration.

Such state sequences must satisfy various technical requirements. In partic-
ular, the policies that generate those state sequences must be proper for episodic
problems. That is, that all policies should reach a terminating state with prob-
ability 1. For discounted non-episodic problems, this is easily achieved by using
a geometric distribution for termination time. This ensures that all policies will
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be proper. Alternatively, of course, we could simply select starting states with
an arbitrary schedule, as long as all states are visited infinitely often in the limit.

However, value iteration also requires the Markov decision process model.
The question is whether it is possible to replace the MDP model with some
arbitrary estimate. This estimate can itself be obtained via simulation. This
leads to a whole new family of stochastic value iteration algorithms. The most
important and well-known of these is Q-learning, which uses a trivial empirical
MDP model.

Simulation-based value iteration

First, however, we shall discuss the extension of value iteration to the case
where we obtain state data from simulation. This allows us to concentrate our
estimates to the most useful states.

Algorithm 17 shows a generic simulation-based value iteration algorithm,
with a uniform restart distribution Unif (S) and termination probability ǫ.

Algorithm 17 Simulation-based value iteration

1: Input µ, S.
2: Initialise st ∈ S,v0 ∈ V.
3: for t = 1, 2, . . . do
4: s = st.
5: πt(s) = argmaxa r(s, a) + γ

∑
s′∈S Pµ(s

′|s, a)vt−1(s
′)

6: vt(s) = r(s, a) + γ
∑
s′∈S Pµ(s

′|s, πt(s))vt−1(s
′)

7: st+1 ∼ (1− ǫ) · P(st+1 | st = a, πt, µ) + ǫ · Unif (S).
8: end for
9: Return πn, Vn.

In the following figures, we can see the error in value function estimation
in the chain task when using simulation-based value iteration. It is always a
better idea to use an initial value v0 that is an upper bound on the optimal value
function, if such a value is known. This is due to the fact that in that case,
convergence is always guaranteed when using simulation-based value iteration,
as long as the policy that we are using is proper.1

1In the case of discounted non-episodic problems, this amounts to a geometric stopping
time distribution, after which the state is drawn from the initial state distribution.
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Figure 9.7: Simulation-based value iteration with pessimistic initial estimates
(v0 = 0) and optimistic initial estimates (v0 = 20 = 1/(1 − γ)), for varying ǫ.
Errors indicate ‖vt − V ∗‖1.

As can be seen in Figure 9.7, the value function estimation error of simulation-
based value iteration is highly dependent upon the initial value function esti-
mate v0 and the exploration parameter ǫ. It is interesting to see uniform sweeps
(ǫ = 1) result in the lowest estimation error in terms of the value function L1

norm.

Q-learning

Simulation-based value iteration can be suitably modified for the actual rein-
forcement learning problem. Instead of relying on a model of the environment,
we replace arbitrary random sweeps of the state-space with the actual state se-
quence observed in the real environment. We also use this sequence as a simple
way to estimate the transition probabilities.

Algorithm 18 Q-learning

1: Input µ, S, ǫt, αt.
2: Initialise st ∈ S, q0 ∈ V.
3: for t = 1, 2, . . . do
4: s = st.
5: at ∼ π̂∗

ǫt(a | st, qt)
6: st+1 ∼ P(st+1 | st = a, πt, µ).
7: qt+1(st, at) = (1 − αt)qt(st, at) + αt[r(st) + vt(st+1)], where vt(s) =

maxa∈A qt(s, a).
8: end for
9: Return πn, Vn.

The result is Q-learning, one of the most well-known and simplest algorithms
in reinforcement learning. In light of the previous theory, it can be seen as a
stochastic value iteration algorithm, where at every step t, given the partial
observation (st, at, st+1) you have an approximate transition model for the MDP
which is as follows:

P (s′|st, at) =
{
1, if st+1 = s′

0, if st+1 6= s′.
(9.2.5)
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Even though this model is very simplistic, it still seems to work relatively well in
practice, and the algorithm is simple to implement. In addition, since we cannot
arbitrarily select states in the real environment, we replace the state-exploring
parameter ǫ with a time-dependent exploration parameter ǫt for the policy we
employ on the real environment.
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Figure 9.8: Q-learning with v0 = 1/(1− γ), ǫt = 1/nst , αt ∈ αn
−2/3
st .

Figure 9.8 shows the performance of the basic Q-learning algorithm for the
Chain task, in terms of value function error and regret. In this particular
implementation, we used a polynomially decreasing exploration parameter and
step size. Both of these depend on the number of visits to a particular state.

Of course, one could get any algorithm in between pure Q-learning and pure
stochastic value iteration. In fact, variants ofthe Q-learning algorithm using
eligibility traces (see Section 201) can be formulated in this way.
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Generalised stochastic value iteration

Finally, we can generalise the above ideas to the following algorithm. This is
an online algorithm, which can be applied directly to a reinforcement learning
problem and it includes simulation-based value iteration and Q-learning as spe-
cial cases. There are three parameters associated with this algorithm. The first
is ǫt, the exploration amount performed by the policy we follow. The second is
αt, the step size parameter. The third one is σt, the state-action distribution.
The final parameter is the MDP estimator µ̂t. This includes both an estimate
of the transition probabilities Pµ̂t

(s′ | s, a) and of the expected reward rµ̂t
(s, a).

Algorithm 19 Generalised stochastic value iteration

1: Input µ̂0, S, ǫt, αt.
2: Initialise s1 ∈ S, q1 ∈ Q,v0 ∈ V.
3: for t = 1, 2, . . . do
4: at ∼ f(π̂∗

ǫt(a | st, qt))
5: Observe st+1, rt+1.
6: µ̂t = µ̂t−1 | st, at, st+1, rt+1. // update MDP estimate.
7: for s ∈ S, a ∈ A do
8: With probability σt(s, a) do:

qt+1(s, a) = (1−αt)qt(s, a)+αt
[
rµ̂t

(s, a) + γ
∑

s′∈S
Pµ̂t

(s′ | s, a)vt(s′)
]
.

9: otherwise qt+1(s, a) = qt(s, a).
10: vt+1(s) = maxa∈A qt+1(s, a),
11: end for
12: end for
13: Return πn, Vn.

It is instructive to examine special cases for these parameters. For the case
when σt = 1, αt = 1, and when µ̂t = µ, we obtain standard value iteration.

For the case when σt(s, a) = I {st = s ∧ at = a} and

Pµ̂t
(st+1 = s′ | st = s, at = a) = I {st+1 = s′ | st = s, at = a} ,

it is easy to see that we obtain Q-learning.
Finally, if we set σt(s, a) = et(s, a), then we obtain a stochastic eligibility-

trace Q-learning algorithm similar to Q(λ).

Examples

The following examples use a Dirichlet-based estimate for the transition proba-
bilities. If nt(s, a, s

′) is the number of times we have visited state s′ after taking
action a in state s, then the marginal proability of the next step, with a prior
Dir (α) is

nt(s, a, s
′) + α

nt(s, a) + α|S| .

Now we can combine this with the simple Q-learning update, where we only
modify the value of the current state-action pair. The error and regret are
shown in figures 9.9(a) and 9.9(b)
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Figure 9.9: Mode-based Q-learning, i.e. GSVI with Dirichlet model and single-

step updates: v0 = 1/(1− γ), ǫt = 1/nst , αt ∈ αn
−2/3
st .

In the following example, we again use a Dirichlet estimate but we perform
a uniform sweep over the state space, i.e. σt = 1. 9.10(b) and 9.10(a)



9.2. DYNAMIC PROBLEMS 161

0

10

20

30

40

50

60

70

0 200 400 600 800 1000

er
ro
r

t x 10

1.0
0.5
0.1

0.05
0.01

(a) Error

-500

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000

re
gr
et

t x 10

1.0
0.5
0.1
0.05
0.01

(b) Regret

Figure 9.10: GSVI with Dirichlet model estimation and a uniform sweep over

the state-space with v0 = 1/(1− γ), ǫt = 1/nst , αt ∈ αn
−2/3
st .
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10.1 Introduction

In this chapter, we consider approximate dynamic programming. This includes
all methods with approximations in the maximisation step, methods where the
value function used is approximate, or methods where the policy used is some
approximation to the optimal policy.

We first consider the case where we have an approximate value function. Let
u ∈ V be an approximate optimal value function obtained via some arbitrary
method. Then we can define the greedy policy with respect to it as follows:

Definition 10.1.1 (u-greedy policy and value function).

π∗
u ∈ argmax

π
Lπu, v∗

u = Lu, (10.1.1)

where π : S → D (A) maps from states to action distributions.

Although previously policies did not need to be stochastic, here we are ex-
plicitly considering stochastic policies to facilitate the approximations. Never-
theless, frequently, we cannot actually perform this maximisation if the state or
action space are very large. So we define φ, a distribution on S, and parametrised
sets of value functions VΘ and policies ΠΘ.

Parameteric value function estimation

VΘ = {vθ | θ ∈ Θ} , θ∗ ∈ argmin
θ∈Θ

‖vθ − u‖φ (10.1.2)

where ‖ · ‖φ ,
∫
S | · | dφ.

In other words, we find the value function best matching the approximate
value function u. If u = V ∗ then we end up getting the best possible approxi-
mation with respect to the distribution φ.

Parameteric policy estimation

ΠΘ = {πθ | θ ∈ Θ} , θ∗ ∈ argmin
θ∈Θ

‖πθ − π∗
u‖φ (10.1.3)

where π∗
u = argmaxπ∈Π Lπu

Example 10.1.1. A simple case is when φ does not support S, that is it only
takes positive values for some states s ∈ S.

10.1.1 Error bounds

If the approximate value function u is close to V ∗ then the greedy policy with
respect to u is close to optimal. For a finite state and action space, the following
holds.
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Theorem 10.1.1. Consider a finite MDP µ with discount factor γ < 1 and a
vector u ∈ V such that

∥∥u− V ∗
µ

∥∥
∞ = ǫ. If π is the u-greedy policy then

∥∥V πµ − V ∗
µ

∥∥
∞ ≤ 2γǫ

1− γ
.

In addition, ∃ǫ0 > 0 s.t. if ǫ < ǫ0, then π is optimal.

Proof. Recall that L is the one-step Bellman operator and Lπ is the one-step
policy operator on the value function. Then

‖V π − V ∗‖∞ = ‖LπV
π − V ∗‖∞

≤ ‖LπV
π − Lπu‖∞ + ‖Lπu− V ∗‖∞

≤ γ ‖V π − u‖∞ + ‖Lu− V ∗‖∞
≤ γ ‖V π − V ∗‖∞ + γ ‖V ∗ − u‖∞ + γ ‖u− V ∗‖∞
≤ γ ‖V π − V ∗‖∞ + 2γǫ.

This proves the first part.
For the second part, note that the state and action sets are finite. Conse-

quently, the set of policies is finite. Thus, there is some ǫ0 > 0 such that the
best sub-optimal policy is ǫ0-close to the optimal policy in value. So, if ǫ < ǫ0,
the obtained policy must be optimal.

10.1.2 Features

Frequently, when dealing with large, or complicated spaces, it pays to project
the state and action observations onto a feature space X . In that way, we can
make problems much more manageable. Generally speaking, a feature mapping
is defined as follows.

Feature mapping f : S ×A → X .
For X ⊂ R

n, the feature mapping can be written in vector form:

f(s, a) =



f1(s, a)
. . .

fn(s, a)


 (10.1.4)

What sort of functions should we use? A common idea is to use a set of
smooth functions, that are focused around a single point. One of the most
usual examples are radial basis functions.

Example 10.1.2 (Radial Basis Functions). Let d be a metric on S × A and
{(si, ai) | i = 1, . . . , n}. Then we define each element of f as:

fi(s, a) , exp {−d[(s, a), (si, ai)]} . (10.1.5)

These function are sometimes called kernels.

Another common type of functions are binary functions. These effectively
discretise a continuous space through either a cover or a partition.
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Definition 10.1.2. The collection of sets G is a cover of X iff
⋃
S∈G

S ⊃ X.

Definition 10.1.3. The collection of sets G is a partition of X iff

1. G is a cover of X

2. If S 6= R ∈ G then S ∩R = ∅.

3.
⋃
S∈G

S = X.

In reinforcement learning, these types of feature functions corresponding to
partitions are usually referred to as tilings.

Example 10.1.3 (Tilings). Let G = {X1, . . . , Xn} be a partition of S × A of
size n. Then:

fi(s, a) , I {(s, a) ∈ Xi} . (10.1.6)

Multiple tilings create a cover. These can be used without many difficulties
with most discrete reinforcement learning algorithms.

10.2 Approximate policy iteration

Approximate policy ieration
The main idea of approximate policy iteration is to replace the exact Bellman

operator L with an approximate version L̂ and the exact value of the policy
with an approximate version. In fact, in the policy improvement step, we simply
try to get as close as possible to the best possible improvement, in a restricted
set of policies, using an approximate operator. Similarly, in the policy evaluation
step, we try to get as close as possible to the actual value of the improved policy.

Algorithm 20 Generic approximate policy iteration algorithm

input Initial value function v0, approximate Bellman operator L̂ , approxi-
mate value estimator V̂ .
for k = 1, . . . do

πk = argminπ∈Π̂

∥∥∥L̂πvk−1 − L vk−1

∥∥∥ // policy improvement

vk = argmin
v∈V̂ ‖v − V πk

µ ‖ // policy evaluation

end for

Theoretical gurantees

Assumption 10.2.1. Consider a discounted problem with discount factor γ
and iterates vk, πk such that:

‖vk − V πk‖∞ ≤ ǫ, ∀k (10.2.1)∥∥Lπk+1
vk − L vk

∥∥
∞ ≤ δ, ∀k (10.2.2)

Theorem 10.2.1 (Bertsekas and Tsitsiklis [1996], proposition 6.2). Under As-
sumption 10.2.1

lim sup
k→∞

‖V πk − V ∗‖∞ ≤ δ + 2γǫ

(1− γ)2
. (10.2.3)
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10.2.1 Estimation building blocks

Lookahead policies
Given an approximate value function u, the transition model of the MDP

Pµ and expected rewards rµ we can always find the improving policy given in
Def. 10.1.1 via the following single-step lookahead.

Single-step lookahead

πq(a | i) > 0 iff a ∈ argmax
a′∈A

q(i, a′) (10.2.4)

q(i, a) , rµ(i, a) + γ
∑

j∈S
Pµ(j | i, a)u(j). (10.2.5)

We are however not necessarily limited to the first-step. By looking T steps
forward into the future we can improve both our value function and policy
estimates.

T -step lookahead

π(i; qT ) = argmax
a∈A

qT (i, a), (10.2.6)

where uk is recursively defined as:

qk(i, a) = rµ(i, a) + γ
∑

j∈S
Pµ(j | i, a)uk−1(j) (10.2.7)

uk(i) = max {qk(i, a) | a ∈ A} (10.2.8)

and u0 = u.

In fact, taking u = 0, this recursion is identical to solving the k-horizon
problem and at the limit we obtain solution to the original problem. In the
general case, our value function estimation error is bounded by γk ‖u− V ∗‖.

Rollout policies
As we have seen in Section 8.4.2 one way to obtain an the approximate value

function of an arbitrary policy π is to use Monte Carlo estimation That is, to
simulate K sequences of state-action-reward tuples by running the policy on the
MPD. More specifically, we have the following rollout estimate.

Rollout estimate of the q-factor

q(i, a) =
1

Ki

Ki∑

k=1

Tk−1∑

t=0

r(st,k, at,k),
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where st,k, at,k ∼ Pπµ(· | s0 = i, a0 = a), and Tk ∼ Geom(1− γ).

This results in a set of samples of q-factors. We now find a parametric policy
that approximates the optimal policy with respect to our samples, π∗

q. For a
finite number of actions, this fitting can be seen as a classification problem.
Once more, we define a distirbution φ on the states, over which we wish to
perform the minimisation.

Rollout policy estimation.
Given a set of samples q(i, a) for i ∈ Ŝ, we estimate

min
θ

∥∥πθ − π∗
q

∥∥
φ
,

for some φ on Ŝ.

10.2.2 The value estimation step

We can now attempt to fit a parametric approximation to a given value function
v or q. The simplest way to do so is via a generalised linear model. A natural
parametrisation for the value function is to use a generalised linear model on a
set of features. Then the value function is a linear function of the features with
parameters θ. More precisely, we can define the following model.

Generalised linear model using features (or kernel)
Feature mapping f : S → R

n, parameters θ ∈ R
n.

vθ(s) =

n∑

i=1

θifi(s) (10.2.9)

In order to fit a value function, we first pick a set of representative states Ŝ
to fit our value function vθ to v. We can then estimate the optimal parameters
via gradient descent.

Fitting a value function.

c(θ) =
∑

s∈Ŝ

cs(θ), cs(θ) = φ(s) ‖vθ(s)− v(s)‖κp . (10.2.10)

Example 10.2.1. The case p = 2, κ = 2 In this case the square root and κ
cancel out and we obtain

∇θcs = φ(s)
∑

a∈A
∇θ[vθ(s)− v(s)]2 = 2[vθ(s)− v(s)]∇θvθ,
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where ∇θvθ(s) = f(s). Taking partial derivatives ∂/∂θj, leads to the update
rule:

θ′j = θj − 2αφ(s)[vθ(s)− v(s)]fj(s). (10.2.11)

10.2.3 Policy estimation

A natural parametrisation for the policy is to use a generalised linear model on
a set of features. Then the policy can be described (up to scaling) as a linear
function of the features with parameters θ. More precisely, we can define the
following model.

Generalised linear model using features (or kernel).
Feature mapping f : S → R

n, parameters θ ∈ R
n.

πθ(a | s) = g(s, a)

h(s)
, g(s, a) =

n∑

i=1

θifi(s, a), h(s) =
∑

b∈A
g(s, b)

(10.2.12)

We are performing the intermediate step of estimating g first, because we
need to make sure that the policy is a distribution over actions. An alterna-
tive method would be to directly constrain the policy parameters so the result
is always a distribution, but that would require a more complex optimisation
method.

In order to fit a policy, we first pick a set of representative states Ŝ and
then we find a πθ that approximates π. In order to do so, we can define an
appropriate cost function and then estimate the optimal parameters via some
arbitrary optimisation method.

Fitting a policy through a cost function.

c(θ) =
∑

s∈Ŝ

cs(θ), cs(θ) = φ(s) ‖πθ(· | s)− π(· | s)‖κp . (10.2.13)

The function φ : S → R+ is a weighting on the state space, such that we
put more weight in more “important” states. Choosing the weights and the
set of representative states Ŝ is an interesting problem. A good choice is to
relate those to the state distribution under different policies. One method to
minimise the cost function is to use gradient descent. The gradient of this cost
function is

∇θc =
∑

s∈Ŝ

∇θcs.

We obtain different results for different norms. Mainly three cases are of interest:
p = 1, p = 2, p→ ∞. Here, we only consider the first one.
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The case p = 1, κ = 1.
The derivative can be written as:

∇θcs = φ(s)
∑

a∈A
∇θ|πθ(a | s)− π(a | s)|,

∇θ|πθ(a | s)− π(a | s)| = ∇θπθ(a | s) sgn[πθ(a | s)− π(a | s)]

The policy derivative in turn is

πθ(a | s) = h(s)∇θg(s, a)−∇θh(s)g(s, a)

h(s)2
,

with ∇θh(s) =
(∑

b∈A fi(s, b)
)
i
and ∇θg(s, a) = f(s, a). Taking partial

derivatives ∂/∂θj , leads to the update rule:

θ′j = θj − αφ(s)

(
πθ(a | s)

∑

b∈A
fj(s, b)− fj(s, a)

)
. (10.2.14)

Iterating over (s, a) pairs with a decreasing step-size α according to the
stochastic approximation assumptions, should ensure convergence.

Exercise 6. Find the derivative for the two other cases, specifically:

1. p = 2, κ = 2.

2. p→ ∞, κ = 1.

Alternative cost functions. It is frequently a good idea to add a penalty
term to the cost function. The purpose of this is to prevent overfitting of
the parameters to a small number of observations. Frequently, this is done by
constraining the parameters to be small, via a penalty term of the form ‖θ‖q.

10.2.4 Rollout-based policy iteration methods

One idea for estimating the value function is to simply perform rollouts, while
the policy itself is estimated in parametric form, as suggested in Bertsekas and
Tsitsiklis [1996]. The first practical algorithm in this direction was Rollout
Sampling Approximate Policy iteration Dimitrakakis and Lagoudakis [2008].
The main idea is to concentrate rollouts in interesting parts of the state space.
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Algorithm 21 Rollout Sampling Approximate Policy Iteration.

for k = 1, . . . do
Select a set of representative states Ŝk
for n = 1, . . . do
Select a state sn ∈ Ŝk maximising Un(s) and perform a rollout.
If â∗(sn) is optimal w.p. 1− δ, put sn in Ŝk(δ) and remove it from Ŝk.

end for
Calculate qk ≈ Qπk from the rollouts.
Train a classifier πθk+1

on the set of states Ŝk(δ) with actions â∗(s).
end for

The main idea is to concentrate rollouts on promising states. We can use
the empirical state distribution to select starting states. We always choose the
state s with the highest upper bound Un(s). More specifically, we employ a
Hoeffding bound to select the state with the largest gap between actions. We
stop rolling out states where we are certain to have found the best action. This
is done by applying the Hoeffding bound to gaps between actions.

10.2.5 Least Squares Methods

The main idea is to formulate the problem in linear form, using a feature space.

Least square value estimation

Recall that the solution of

v = r + γPµ,πv (10.2.15)

is the value function of π and can be obtained via

v = (I − γPµ,π)
−1r. (10.2.16)

However, in this setting, we do not have access to the transition matrix. In
addition, when the state space is continuous (e.g. S ⊂ R

n), the transition
matrix becomes a general transition kernel. In addition, while up to now the
set of value functions V was a Euclidean subset, now V becomes a Hilbert space.

In general, we deal with this case via projections. We project down from
teh infinite-dimensional Hilbert space to one with finite-dimensions. We assume
that there is a projection that is complex enough for us to be able to recover
the original value function.

Projection.
Setting v = Φθ where Φ is a feature matrix and θ is a parameter vector we
have

Φθ = r + γPµ,πΦθ (10.2.17)

θ = [(I − γPµ,π)Φ]
−1

r (10.2.18)
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Replacing the inverse with the pseudo-inverse, with A = (I − γPµ,π)Φ

Ã−1 , A⊤ (AA⊤)−1
,

gives us an estimate for the parameters. If the inverse exists, then it is equal to
the pseudoinverse. The main idea that makes this work is to calculate everything
on the empirical transition matrix, the empirical rewards and the empirical
feature vectors.

Empirical constructions.
Given a set of data points {(si, ai, ri, s′i) | i = 1, . . . , n}, which may not be
consecutive, we define:

1. r = (ri)i.

2. Φi = f(si, ai), Φ = (Φi)i.

3. Pµ,π = PµPπ, Pµ,π(i, j) = I {j = i+ 1}

We are now ready to define some algorithms. We begin with an algorithm
that estimates an approximate value function for some policy π given some data
D and a feature mapping f .

Algorithm 22 LSTDQ - Least Squares Temporal Differences on q-factors

input data D = {(si, ai, ri, s′i) | i = 1, . . . , n}, feature mapping f , policy π

θ = ˜(Φ(I − γPµ,π))
−1

r

This algorithm is sufficient for performing approximate policy iteration by
plugging it into the generic API algorithm to estimate a value function. Since
LSTDQ returns q-factors, our next policy can simply be greedy with respect to
the value estimatees.

Algorithm 23 LSPI - Least Squares Policy Iteration

input data D = {(si, ai, ri, s′i) | i = 1, . . . , n}, feature mapping f
Set π0 arbitrarily.
for k = 1, . . . do
θk = LSTDQ(D, f, πk−1).
πk = π∗

Φθk
.

end for

10.3 Approximate Value Iteration

Approximate algorithms can also be defined for backwards induction. The gen-
eral algorithmic structure remains the same. We only need to replace the exact
steps with approximations. Usually this is necessary when the value function
cannot be updated everywhere exactly, possibly because our value function rep-
resentations are not complex enough to capture the true value function.
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10.3.1 Approximate backwards induction

The first algorithm is approximate backwards induction. Let us start with the
basic backwards induction algorithm:

V ∗
t (s) = max

a∈A

{
r(s, a) + γ Eµ

(
V ∗
t+1 | st = s, at = a

)}
(10.3.1)

This essentially the same both for finite and infinite-horizon problems. Now
assume that the set of functions V that you can use to approximate the value
functions is not rich enough, so none of its members will correspond to the left
side of (10.3.1). Consider then the following value function approximation.

Let our estimate at time t be vt ∈ V, with V being a set of parametrised
functions. Let V̂t be our one-step update given the value function approximation
at the next step, vt+1. Then vt will be the closest approximation in that set.

Iterative approximation

V̂t(s) = max
a∈A

{
r(s, a) + γ

∑

s′

Pµ(s
′ | s, a)vt+1(s

′)

}
(10.3.2)

vt = argmin
{∥∥∥v − V̂t

∥∥∥
∣∣∣ v ∈ V

}
(10.3.3)

Any algorithm can be used to perform the above minimisation, including
gradient descent. Now consider the case where v is a parametrised function
with parameters θ. Then it is sufficient for us to maintain the parameter θt
at time t. These can be updated with a gradient scheme at every step. In the
online case, our next-step estimates can be given by gradient descent:

Online gradient estimation

θt+1 = θt − αt∇θ

∥∥∥vt − V̂t

∥∥∥ (10.3.4)

This gradient descent algorithm can also be made stochastic, if we sample
from the probability distribution given in the iterative approximation. The enxt
sections give some examples.

10.3.2 State aggregation

Partitions, or tiling of the state space, inevitably lead to what is called state
aggregation. That is, multiple different states are seen as identical by the al-
gorithm. Unfortunately, it is very rarely the case that aggregated states really
are identical. Nevertheless, as we can see in the example below, aggregation
significantly simplifies the estimation problems.
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Aggregated estimate.
Let G = {S0, S1, . . . , Sn} be a partition of S, with S0 = ∅ and θ ∈ R

n and
let fk(st) = I {st ∈ Sk}. Then the approximate value function is

v(s) = θ(k), if s ∈ Sk, k 6= 0. (10.3.5)

That is, the value of every state corresponds to the value of the k-th set in
the partition. Of course, this is only a very rough approximation if the sets Sk
are very large. However, this is a very nice approach to use for gradient descent
updates, as only one parameter needs to be updated at every step.

Online gradient estimate.
Consider the case ‖·‖ = ‖·‖22. For st ∈ Sk:

θt+1(k) = (1− α)θt(k) + αmax
a∈A

r(st, a) + γ
∑

j

P (j | st, a)vt(s) (10.3.6)

For st /∈ Sk:

θt+1(k) = θ(k). (10.3.7)

Of course, whenever we perform the estimation online, we are limited to
estimation on the sequence of states st that we visit. Consequently, estimation
on other states may not be very good. It is indeed possible that we will suffer
from oscillation problems.

10.3.3 Representative states

A rather different idea is to choose only some representative states on which
to perform the approximation. The main assumption is that the value of all
other states can be represented as a convex combination of the value of the
representative states.

Representative states approximation.
Let Ŝ be a set of n representative states and θ ∈ R

n and a feature mapping
f :

n∑

i=1

fi(s) = 1, ∀s ∈ S.

The feature mapping is used to perform the convex combination. For any
given state s, it has higher value for representative states i which are “closer”
to it. In general, the feature mapping is fixed, and we just want to find a set of
parameters for the values of the representative states.

We focus here on the online estimate. At time t, for each representative
state i, we obtain a new estimate of its value function and plug it back in.
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Representative state update.
For i ∈ Ŝ:

θt+1(i) = max
a∈A

{
r(i, a) + γ

∫
vt(s) dP (s | i, a)

}
(10.3.8)

with

vt(s) =
n∑

i=1

fi(s)θt(i). (10.3.9)

When the summation is not possible, we may instead approximate the expec-
tation with a Monte-Carlo method. One particular problem with this method
arises when the transition kernel is very sparse. Then we are basing our esti-
mates on approximate values of other states, which may be very far from any
other representative state.

Bellman error methods

The problems with the representative state update can be alleviated through
Bellman error minimisation. The idea here is to obtain as a consistent value
function as possible. The basic Bellman error minimisation is as follows:

min
θ

‖vθ − L vθ‖ (10.3.10)

This is different from the approximate backwards induction algorithm we saw
previously, since the same parameter θ appears in both sides of the equality.
Furthermore, if the norm has support in all of the state space and the approx-
imate value function space contains the actual set of value functions then the
minimum is 0 and we obtain the optimal value function.

Gradient update.
When the norm is

‖vθ − L vθ‖ =
∑

s∈Ŝ

Dθ(s)
2, Dθ(s) = vθ(s)−max

a∈A

∫

S
vθ(j) dP (j | s, a).

(10.3.11)

then the gradient update becomes

θt+1 = θt − αDθt
(st)∇θDθt

(st) (10.3.12)

∇θDθt
(st) = ∇θvθt

(st)−
∫

S
∇θvθt

(j) dP (j | st, a∗t ) (10.3.13)

a∗t = argmax
a∈A

{
r(st, a) + γ

∫

S
vθ(j) dP (j | st, a)

}
(10.3.14)
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We can also construct a Q-factor approximation for the case where no model
is available. This is going to be simply done by replacing P with the empirical
transition observed at time t.

A litany of approximation algorithms

� Fitted Q-iteration Antos et al. [2008b].

� Fitted value iteration Munos and Szepesvári [2008].

� Rollout sampling policy iteration Dimitrakakis and Lagoudakis [2008]

� State aggregation Singh et al. [1995], Bernstein [2007]

� Bellman error minimisation Antos et al. [2008a], Dimitrakakis [2013], Ghavamzadeh
and Engel [2006]

� Least-squares methods Bradtke and Barto [1996], Boyan [2002], Lagoudakis
and Parr [2003].
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11.1 Introduction

Bayesian reinforcement learning connects all elements previously seen in the
course. Firstly, how to express uncertainty and preferences via probabilities
and utilities. Secondly, how to make decisions under uncertainty, including how
to make decisions maximising the utility in different conditions. Thirdly, how
to adjust our subjective belief in the face of new evidence. Fourthly, optimal
experiment design: how to make decisions in problems where our decisions can
affect the evidence we obtain. These problems can be modelled as Markov
decision processes. We also consider the problem of finding optimal policies for
Markov decision processes.

In the previous two chapters, we have considered stochastic algorithms for
acting within Markov decision processes. These stochastic analogues of deter-
ministic MDP algorithms can also be used in the context of “learning” the
optimal policy while acting in the MDP itself, even if the MDP parameters
are not known. In the case where the MDP is very large, or the state/action
spaces are continuous, it is necessary to approximate it. These can be used in
conjunction with stochastic approximations.

Now, however, we come full circle to the setting of subjective probability
and utility. We shall try and solve the reinforcement learning problem directly.
Here, we are acting in an MDP which is not known, but we have a subjective
belief about what the MDP is.

11.2 Bayesian reinforcement learning

The reinforcement learning problem can be formulated as the problem of learn-
ing to act in an unknown environment, only by interaction and reinforcement.
All of those elements of the definition are important. Firstly and foremostly it is
a learning problem. Consequently, we have only partial prior knowledge about
the environment we are acting in. This knowledge is arrived at via interaction
with the environment. We do not have a fixed set of data to work with, but
we must actively explore the environment to understand how it works. Finally,
there is an intrinsic reinforcement that punishes some behaviours and rewards
others. We can formulate some of these problems as Markov decision processes.

Markov decision processes (MDP) as an environment.
We are in some environment µ, where at each time, we: step t:

� Observe state st ∈ S.

� Take action at ∈ A.

� Receive reward rt ∈ R.

In these types of problems, the environment state and our action fully de-
termines the distribution of the immediate reward, as well as that of the next
state, as described in Definition 8.3.1. When µ is unknown, the probability
of the immediate reward is given by Pµ(rt | st, at) and that of next state by
Pµ(st+1 | st, at).
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However, we now assume that we do not known µ. The structure of the
unknown MDP process is shown in Figure 11.1 below,

µµ

ξ

at

st st+1

rt

Figure 11.1: The unknown Markov decision process

The optimal policy for a given µ
When µ is known, we wish to find a policy π : S → A maximising
the utility in expectation. This requires us to solve the maximisation
problem maxπ E

π
µ U , where the utility is an additive function of rewards,

U =
∑T
t=1 rt. When µ is known, we can use standard algorithms, such as

value or policy iteration. However, knowing µ is contrary to the problem
definition.

In Chapter 9 we have seen a number of stochastic approximation algorithms
which allow us to learn the optimal policy for a given MDP eventually. How-
ever, these generally give few guarantees on the performance of the policy while
learning. How can we create an algorithm for optimal learning MDPs? This
should trades off exploring the environment to obtain further knowledge, and
simultaneously exploiting its knowledge.

The solution is rather simple, conceptually. Within the subjective proba-
bilistic framework, we only need to define a prior belief ξ on the set of MDPs
M, and then find the policy that maximises the expected utility with respect
to the prior. The value of information is automatically taken into account in
this model.

This should not be too surprising, as we have previously seen it in two Bayes-
optimal construction. The first was the simple optimal stopping procedure in
Section 7.4, which introduced the backwards induction algorithm. The sec-
ond was the optimal experiment design problem, which resulted in the bandit
Markov decision process of Section 8.2. Let us now formulate the reinforcement
learning problem as a Bayesian maximisation problem.

Let ξ be a prior over M and Π be a set of policies. Then the expected utility
of the optimal policy is:

U∗
ξ , max

π∈Π
E(U | π, ξ) = max

π∈Π

∫

M
E(U | π, µ) dξ(µ) (11.2.1)

Finding the optimal policy is not easy as in general the optimal policy π must
now map from complete histories to actions: Planning must take into account
future learning.
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Policy types
We use Π to denote the set of all policies. We use Πk to denote the set of
k-order Markov policies. Important special cases are the set of blind policies
Π0 and the set of memoryless policies Π1. A policy in π ∈ Π̄k ⊂ Πk is
stationary, when π(A | stt−k+1, a

t−1
t−k+1) = π(A | sk, ak−1) for all t.

Generally speaking, the Bayes-optimal policies are history-dependent, as
shown by the following counterexample.

Example 11.2.1. Consider two MDPs, µ1, µ2 with states S = {1} and actions
A = {1, 2}. In the i-th MDP, whenever you take action at = i, you obtain re-
ward rt = 1, otherwise you obtain reward 0.The expected utility of a memoryless
policy taking action i with probability π(i) would be

Eπξ U = T
∑

i

ξ(µi)π(i),

for horizon T . Consequently, if your prior is not uniform, you select the action
corresponding to the MDP with the highest prior probability. Then, the maximal
expected utility is:

max
π∈Π1

Eπξ U = T max
i
ξ(µi).

In this case, we are certain which one is the right MDP as soon as we take one
action. We can then follow the policy which selects the apparently best action
at first, and then switches to the best action for the MDP we have seen. Then,
our utility is simply maxi ξ(µi) + (T − 1).

Given the above general remarks, let us now discuss how the optimal policies
can be constructed. Firstly, we must examine how to update the belief. Given
that, we shall examine methods for obtaining near-optimal policies.

11.2.1 Updating the belief

Strictly speaking, in order to update our belief, we must condition the prior
distribution on all the information. This includes the sequence of observations
up to this at point in time, including the states st, actions at−1, and rewards
rt−1, as well the policy π that we followed. Let Dt =

〈
st, at−1, rt−1

〉
be the

observed data to time t. Then

ξ(B | Dt, π) =

∫
B
Pπµ(Dt) dξ(µ)∫

M Pπµ(Dt) dξ(µ)
. (11.2.2)

However, as we shall see in the following remark, we can usually ignore the
policy in the calculations.

Remark 11.2.1. The dependence on the policy can be removed, since the pos-
terior is the same for all policies that put non-zero mass on the observed data:

Let Dt ∼ Pπµ. Then it is easy to see that ∀π′ 6= π such that Pπ
′

µ (Dt) > 0,

ξ(B | Dt, π) = ξ(B | Dt, π
′).
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Finally, since we are dealing with MDPs, the posterior calculation is easy
to perform incrementally. This also more clearly demonstrates why there is no
dependence on the policy. Let ξt be the (random) posterior at time t. Then,
the next-step belief is going to be:

ξt+1(B) , ξ(B | Dt+1) =

∫
B
Pπµ(Dt) dξ(µ)∫

M Pπµ(Dt) dξ(µ)
(11.2.3)

=

∫
B
Pµ(st+1, rt | st, at)π(at | st, at−1, rt−1) dξ(µ | Dt)∫

M Pµ(st+1, rt | st, at)π(at | st, at−1, rt−1) dξ(µ | Dt)
(11.2.4)

=

∫
B
Pµ(st+1, rt | st, at) dξt(µ)∫

M Pµ(st+1, rt | st, at) dξt(µ)
(11.2.5)

The above calculation is easy to perform for arbitrarily complex MDPs when the
set M is finite. The posterior calculation is also simple under certain conjugate
priors.

Exercise 7. A practical case is when we have an independent belief over the
transition probabilities of each state-action pair. Consider the case where we
have n states and k actions. Similar to the product-prior in the bandit case
in Section 8.2, we assign a probability (density) ξs,a to the probability vector
θ(s,a) ∈ ∆

n. We can then define our joint belief on the (nk)× n matrix Θ to be

ξ(Θ) =
∏

s∈S,a∈A
ξs,a(θ(s,a)).

(i) Derive the updates for a product-Dirichlet prior on transitions.

(ii) Derive the updates for and a product-Normal-Gamma prior on rewards.

(iii) What would be the meaning of using a Normal-Wishart prior on rewards?

11.3 Finding Bayes-optimal policies

The problem of policy optimisation in the Bayesian case is much harder than
in the known-MDP case. This is simply because of the history dependence,
which has two effects. Firstly, it makes the policy space much larger, as we
need to consider history dependent policies. However, even we consider only
memoryless policies, it does not make dynamic programming easier.

In this section, we first consider two simple heuristics for finding optimal
policies. Then we examine policies which try and construct upper and lower
bounds on the expected utility. Finally, we consider finite-lookahead backwards
induction, that uses the same upper and lower bounds to perform efficient tree
search.

11.3.1 The expected MDP heuristic

One simple heuristic is to simply calculate the expected MDP for a given belief
ξ:

µ̄ξ , Eξ µ.



182 CHAPTER 11. BAYESIAN REINFORCEMENT LEARNING

Then, we simply calculate the optimal memoryless policy for µ̄ξ:

π∗(µ̄ξ) ∈ argmax
π∈Π1

V πµ̄ξ
,

whereΠ1 =
{
π ∈ Π

∣∣ Pπ(at | st, at−1) = Pπ(at | st)
}
. Finally, we execute π∗(µ̄ξ)

on the real MDP. The algorithm can be written as follows. Unfortunately, this

Algorithm 24 The expected MDP heuristic

for k = 1, . . . do
µk , Eξtk µ.
πk ≈ argmaxπ E

π
µk
U .

for t = 1 + Tk−1, . . . , Tk do
Observe st.
Update belief ξt(·) = ξt−1(· | st, at−1, rt−1, st−1).
Take action at ∼ πk(at | st).
Observe reward rt.

end for
end for

approach may be far from the optimal policy in Π1, as shown by the following
counterexample.

0

ǫ0 0

1

(a) µ1

0

ǫ0 0

1

(b) µ2

0

ǫ0 0

1

(c) µ̄ξ

Figure 11.2: The two MDPs and the expected MDP from example ??
.

Example 11.3.1 (Counterexample1). In this example, illustrated in Figure 11.2,
M = {µ1, µ2} is the set of MDPs, and the belief is ξ(µ1) = θ, ξ(µ2) = 1 − θ.
All transitions are deterministic, and there are two actions, the blue and the red
action. When we calculate the expected MDP, we see that now the state with
reward 1 is reachable.

Consequently, when T → ∞, the µ̄ξ-optimal policy is not optimal in Π1 if:

ǫ <
γθ(1− θ)

1− γ

(
1

1− γθ
+

1

1− γ(1− θ)

)

In this example, µ̄ξ /∈ M.

1Based on one by Remi Munos
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a = 0

a = 1

a = i

a = n

ǫ

0

1

0

Figure 11.3: The MDP µi from example 11.3.2

11.3.2 The maximum MDP heuristic

An alternative idea is to simply pick the maximum-probability MDP, as shown
in Algorithm 25. This at least guarantees that the MDP that you are acting
optimally for is actually within the set of MDPs. However, it may still be
the case that the resulting policy is sub-optimal, as shown by the following
counterexample.

Algorithm 25 The maximum MDP heuristic

for k = 1, . . . do
µk , argmaxµ ξtk(µ).
πk ≈ argmaxπ E

π
µk
U .

for t = 1 + Tk−1, . . . , Tk do
Observe st.
Update belief ξt(·) = ξt−1(· | st, at−1, rt−1, st−1).
Take action at ∼ πk(at | st).
Observe reward rt.

end for
end for

Example 11.3.2 (Counterexample for µ̂∗
ξ , argmaxµ ξ(µ)). Let the MDP set

be M = {µi | i = 1, . . . , n} with A = {0, . . . , n}. In all MDPs, a0 gives a reward
of ǫ and the MDP terminates. In the i-th MDP, all other actions give you a
reward of 0 apart from the i-th action which gives you a reward of 1. Then the
MDP terminates. The MDP is visualised in Figure 11.3.

For this problem, the ξ-optimal policy takes action i iff ξ(µi) ≥ ǫ, oth-
erwise takes action 0. On the other hand, the µ̂∗

ξ-optimal policy takes a =
argmaxi ξ(µi). Thus, this policy is sub-optimal if maxi ξ(µi) < ǫ.

For smooth beliefs, µ̄ξ is close to µ̂
∗
ξ , and in this case, those heuristics might

be reasonable. However, they can be shown to be sub-optimal even for very
simple stopping problems.
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11.3.3 Bounds on the expected utility

Given that these heuristics are incorrect, what can we actually do? The first
thing to try is to calculate the expected utility of some arbitrary policy. As it
turns out, this operation is relatively simple in the Bayesian case, even when
the set of MDPs is infinite.

Policy evaluation is particularly simple in Bayesian MDP problems. We
simply apply the basic utility theory definitions. We first define the Bayes-value
function of a policy π to be the expected utility under that policy and our belief
ξ.

Expected utility of a policy π for a belief ξ

V πξ (s) , Eπξ (U | st = s) (11.3.1)

=

∫

M
Eπµ(U | st = s) dξ(µ) (11.3.2)

=

∫

M
V πµ (s) dξ(µ) (11.3.3)

Algorithm 26 Bayesian Monte-Carlo policy evaluation

input policy π, belief ξ
for k = 1, . . . ,K do
µk ∼ ξ.
vk = V πµk

end for
u = 1

K

∑K
k=1 vk.

return u.

The value of any policy gives us a natural lower bound on the Bayes-optimal
value function.

We can also get the following upper bounds:

V ∗
ξ , sup

π
Eπξ (U) = sup

π

∫

M
Eπµ(U) dξ(µ) (11.3.4)

≤
∫

M
sup
π
V πµ dξ(µ) =

∫

M
V ∗
µ dξ(µ) , V +

ξ (11.3.5)

Bounds on V ∗
ξ , maxπ E(U | π, ξ)

Given the previous development, it is easy to see that the following inequal-
ities always hold:

V πξ ≤ V ∗
ξ ≤ V +

ξ , ∀π. (11.3.6)

These bounds are geometrically demonstrated in Fig. 11.4. They are entirely
analogous to the Bayes risk bounds of Sec. ??.
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Algorithm 27 Bayesian Monte-Carlo upper bound

input policy π, belief ξ
for k = 1, . . . ,K do
µk ∼ ξ.
vk = V ∗

µk

end for
u∗ = 1

K

∑K
k=1 vk.

return u∗.

V ∗
µ1

V ∗
µ2

E(V ∗
µ | ξ)

∑
i wiV

∗
ξi

π2

π1
V ∗
ξ

π∗(ξ1)

V

ξξ1

Figure 11.4: A geometric view of the bounds

11.3.4 Tighter lower bounds

One idea to get a better lower bound is to simply find better policies. This idea
was explored in Dimitrakakis [2011].
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The main idea was to maximise try and find the best memoryless policies. This
can be done approximately by assuming that the belief is nearly constant over
time, and performing backwards induction on n MDPs simultaneously. While
this greedy procedure might not find the optimal memoryless policy, it still
improves the lower bounds considerably.
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The multi-MDP backwards induction procedure simply involves calculating
the expected utility of a particular policy over all MDPs.

Qπξ,t(s, a) ,

∫

M

{
R̄µ(s, a) + γ

∫

S
V πµ,t+1(s

′) dT s,a
µ (s′)

}
dξ(µ) (11.3.7)

The algorithm greedily performs backwards induction as shown in Algorithm 28.
However, this is not an optimal procedure, since the belief at any time-step t
is not constant. Indeed, as the policy is memoryless, ξ(µ | st, π) 6= ξ(µ |
st, π

′). This is because the probability of being at a particular state is different
under different policies and at different time-steps (e.g. if you consider periodic
MDPs). For the same reason, this type of backwards induction may not converge
in the manner of value iteration.

Algorithm 28 Multi-MDP backwards induction

1: MMBIM, ξ, γ, T
2: Set Vµ,T+1(s) = 0 for all s ∈ S.
3: for t = T, T − 1, . . . , 0 do
4: for s ∈ S, a ∈ A do
5: Calculate Qξ,t(s, a) from (11.3.7) using {Vµ,t+1} .
6: end for
7: for s ∈ S do
8: a∗ξ,t(s) ∈ argmaxa∈AQξ,t(s, a).
9: for µ ∈ M do

10: Vµ,t(s) = Qµ,t(s, a
∗
ξ,t(s)).

11: end for
12: end for
13: end for

250

300

350

400

450

500

550

2 4 6 8 10 12 14 16

n

re
gr
et

MCBRL

Exploit



11.3. FINDING BAYES-OPTIMAL POLICIES 187

MCBRL: Application to Bayesian RL

1. For i = 1, . . .

2. At time ti, sample n MDPs from ξti .

3. Calculate best memoryless policy πi wrt the sample.

4. Execute πi until t = ti+1.

Relation to other work

� For n = 1, this is equivalent to the Thompson sampling used by
Strens Strens [2000].

� Unlike BOSS Asmuth et al. [2009] it does not become more optimistic
as n increases. BOSS takes multiple samples and constructs the most
optimistic MDP possible in this set.

� BEETLEPoupart et al. [2006], Poupart and Vlassis [2008] is a belief-
sampling approach.It examines a set of possible future beliefs and
approximates the value of each belief with a lower bound. In essence,
it then creates the set of policies which are optimal with respect to
these bounds.

� Furmston and Barber Furmston and Barber [2010] use approxi-
mate inference to estimate policies. These use the expectation-
maximisation view Toussaint et al. [2006] of reinforcement learning.

Generalisations

� Policy search for improving lower bounds.

� Search enlarged class of policies

� Examine all history-based policies.

The augmented MDP
We are given an inital belief ξ0 on a set of MDPs M. Each µ ∈ M is a
tuple (S,A, Pµ, r), with state space S, action space A, transition kernel Pµ
and reward vector r. We now construct the following augmented Markov
decision process: (S × Ξ,A, P, r), with factorised transition probabilities:
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st

ξt

at

st+1

ξt+1

ψt ψt+1

(a) The complete MDP
model

ψt

at

ψt+1

(b) Compact form
of the model

Figure 11.5: Belief-augmented MDP

The optimal policy for the augmented MDP is the ξ-optimal for the original
problem.

P (st+1 ∈ S | ξt, st, at) ,
∫

S

Pµ(st+1 ∈ S | st, at) dξt(µ) (11.3.8)

ξt+1(·) = ξt(· | st+1, st, at) (11.3.9)

and reward rt = ρ(st, at). In the above,

� ξt our belief over MDPs µ ∈ M at time t.

� st is the observed state of the unknown MDP at time t.

� Pµ is the transition kernel of the MDP µ.

� at is our action at time t.

� For simplicity, we assume that rt be known.

One of the first treatments of this idea was due to Bellman Bellman [1957].
Although the idea was well-known in the statistical community DeGroot [1970],
the popularisation of the idea in reinforcement learning was achieved with Duff’s
thesis Duff [2002].

Belief-augmented MDP tree structure

Given a belief over MDPs, we can create an augmented MDP with state
space Ψ = S × Ξ. This has a pseudo-tree structure (since belief states might
repeat). Consider an MDP family M with A =

{
a1, a2

}
, S =

{
s1, s2

}
.

ψt = (st, ξt)
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11.3.5 Stochastic branch and bound

Branch and bound
Branch and bound is a general technique for solving large problems. It can

be applied in all cases where upper and lower bounds on the value of solution
sets can be found

Value bounds
Let upper and lower bounds q+ and q− such that:

q+(ψ, a) ≥ Q∗(ψ, a) ≥ q−(ψ, a) (11.3.10)

v+(ψ) = max
a∈A

Q+(ψ, a), v−(ψ) = max
a∈A

Q−(ψ, a). (11.3.11)

q+(ψ, a) =
∑

ψ′

p(ψ′ | ψ, a)
[
r(ψ, a, ψ′) + V +(ψ′)

]
(11.3.12)

q−(ψ, a) =
∑

ψ′

p(ψ′ | ψ, a)
[
r(ψ, a, ψ′) + V −(ψ′)

]
(11.3.13)

Remark 11.3.1. If q−(ψ, a) ≥ q+(ψ, b) then b is sub-optimal at ψ.

Stochastic branch and bound for belief tree search Dimi-
trakakis [2010, 2008]

� (Stochastic) Upper and lower bounds on the values of nodes (via
Monte-Carlo sampling)

� Use upper bounds to expand tree, lower bounds to select final policy.

� Sub-optimal branches are quickly discarded.

11.4 Partially observable Markov decision pro-

cesses

In most real applications, the state of the system is not observed.

Partially observable Markov decision processes (POMDP)
When acting in µ, each time step t:

� The system state st ∈ S is not observed.

� We receive an observation xt ∈ X and a reward rt ∈ R.

� We take action at ∈ A.
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� The system transits to state st+1.

µ

at

st st+1

xt xt+1

rt rt+1

ξ

Definition 11.4.1. Partially observable Markov decision process (POMDP) A
POMDP µ ∈ MP is a tuple (X ,S,A, P ) where X is an observation space, S
is a state space, A is an action space, and P is a conditional distribution on
observations, states and rewards. The following Markov property holds:

Pµ(st+1, rt, xt | st, at, . . .) = P (st+1 | st, at)P (xt | st)P (rt | st) (11.4.1)

Belief state in POMDPs when µ is known
In POMDPs, we can similarly define a belief state summarising our know-

eldge. This takes the form of a probability distribution on the hidden state
variable st. If µ defines starting state probabilities, then the belief is not subjec-
tive

Belief ξ
For any distribution ξ on S, we define:

ξ(st+1 | at, µ) ,
∫

S
Pµ(st+1 | stat) dξ(st) (11.4.2)

When there is no ambiguity, we shall use ξ to denote arbitrary marginal
distributions on states and state sequence givne the belief ξ.

Belief update

ξt(st+1 | xt+1, rt+1, at, µ) =
Pµ(xt+1, rt+1 | st+1)ξt(st+1 | at, µ)

ξt(xt+1 | at, µ)
(11.4.3)

ξt(st+1 | at, µ) =
∫

S
Pµ(st+1 | st, at, µ) dξt(st) (11.4.4)

ξt(xt+1 | at, µ) =
∫

S
Pµ(xt+1 | st+1) dξt(st+1 | at, µ) (11.4.5)
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Example 11.4.1. If S,A,X are finite, and then we can define

� ∂t(j) = P (xt | st = j)

� At(i, j) = P (st+1 = j | st = i, at).

� bt(i) = ξt(st = i)

We can then use Bayes theorem:

bt+1 =
diag(pt+1)Atbt

p⊤
t+1Atbt

, (11.4.6)

When the POMDP µ is unknown

ξ(µ, st | xt, at) ∝ Pµ(x
t | st, at)Pµ(st | at)ξ(µ) (11.4.7)

Cases

� Finite M.

� Finite S

� General case

Strategies for POMDPs

� Bayesian RL on POMDPs? EXP inference and planning

� Approximations and stochastic methods.

� Policy search methods.
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12.1 Introduction

The Bayesian framework requires specifying a prior distribution ξ0. For many
reasons, we may frequently be unable to specify such a prior distribution. In
addition, as we have seen, the Bayes-optimal solution is frequently intractable.
Here we shall take a look at a number of heuristic algorithms that do not require
specifying a prior distribution. Instead, they employ the heuristic of “optimism
under uncertainty” to select policies. This idea is very similar to heuristic search
algorithms, such as A∗. All these algorithms select the policy with the highest
optimistic value, i.e. with the highest upper bound in its value. The upper
bound can be interpreted as the maximum utility we could obtain by playing
this policy now, even if we have to switch policies later. In general we want the
upper bound to

1. Be as tight as possible

2. Hold with high probability.

We begin with an introduction to these ideas in bandit problems, when the
objective is to maximise total reward. We then expand this discussion to struc-
tured bandit problems, which have many applications in optimisation. Finally,
we look at the case of maximising total reward in unknown MDPs. The same
main ideas can be used, but the very definition of an optimal MDP policy is
not trivial when we wish to maximise total reward. For this reason, we shall
go over the various optimality criteria we can use. We then briefly discuss a
nearly-optimal reinforcement learning algorithm.

12.2 Bandit problems

First of all, let us remind the reader of the stochastic bandit problem. We
have a choice between a set of K bandits, corresponding to an action set A =
{1, . . . ,K}. The expected reward we get when we play the i-th bandit is µi ,
E(rt | at = i) What we wish to do is to maximise the total reward during

our life-time
∑T
t=1 rt, where T is may be random. What is a good heuristic

strategy?

Let πt define a probability distribution over the arms at time t. Let µ∗ ,
maxi µi be the highest average reward we can achieve and let π∗ be the policy
that always plays the arm with the highest average reward. It is important to
recognise that maximising total reward is equivalent to minimising total regret
with respect to that policy

Definition 12.2.1 (Total regret). The (total) regret of a policy π relative to
the optimal fixed policy π∗ is:

LT (π) ,
T∑

t=1

r∗t − rπt . (12.2.1)

where r∗t , rπ
∗

t is the reward obtained by π∗ and rπt are the rewards generated
by the policy π
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Here we are comparing with the best fixed policy. This can be seen as the
policy that would be played by oracle that knows which is the best bandit on
average. We could also compare with the oracle that knows exactly how much
reward each bandit would give at different times, but it is hard to prove any-
thing meaningful about that, as the rewards at each time-step are by definition
unpredictable. Taking expectations, we have that the expected (total) regret is

ELT (π) , Tµ∗ − Eπ

T∑

t=1

rt. (12.2.2)

Now we consider a simple algorithm that uses the empirical average rewards
obtained by each bandit.

Empirical average

µ̂t,i ,
1

nt,i

t∑

k=1

rk,i I {ak = i} , nt,i ,
t∑

k=1

I {ak = i} .

Using the empirical averages directly is not a very good idea, because you
might get stuck with a sub-optimal bandit. A better idea is to play bandits
optimistically. That is, as long as a particular bandit has a significant chance of
being the best, you play it. One way to implement this is through the following
algorithm, which assumes that the rewards are bounded, i.e. that rt ∈ R ⊂ R.

Algorithm 29 Optimistic initial values

Input A, R
rmax , maxR
for t = 1, . . . do
ut,i =

nt−1,iµ̂t−1,i+rmax

nt−1,i+1
at = argmaxi∈A ut,i

end for

If you analyse this decision rule carefully, you can see that the algorithm
chooses the arm with maximal µ̂i + O(1/ni). That is, it adds a small bonus
value to each arm, depending on how many times the arm has been played.

A simple analysis in the deterministic case

When there is no randomness, the algorithm is easy to analyse. Firstly, it must
hold that rt,i = µt,i for all bandits. Secondly, note that ut,i ≥ µi for all t, i. At
time t, we will play arm i only if ut,i ≥ ut,j for all j. However, ut,j ≥ µj and
so a necessary condition for us to play arm i is that it ut,i > µj for all arms,
including the optimal arm. From this, we obtain that we play i at most

nt,i ≤
rmax

∆i
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times, where ∆i , µ∗ − µi. This is easy to see since, for us to play i it must
hold that

nt,iµ̂t,i + rmax

nt,i + 1
≥ µ∗

nt,iµ̂t,i + rmax ≥ µ∗(nt,i + 1)

rmax − µ∗ ≥ ∆int,i

Since every time we play i we lose ∆i, the regret is

LT ≤
∑

i6=j
∆i
rmax − µ∗

∆i
= (K − 1)(rmax − µ∗).

Unfortunately this algorithm does not have very good properties in the stochas-
tic case. However, an other algorithm, with a choice of actions based upon
concentration inequalities, does.

12.2.1 UCB

The idea of UCB is to

Algorithm 30 UCB1

Input A, R
µ̂0,i = rmax, ∀i.
for t = 1, . . . do

ut,i = µ̂t−1,i +
√
2 ln t
nt−1,i

.
at = argmaxi∈A ut,i

end for

Note that the decision rule in this case uses the heuristic bound of the form
µ̂i +O(

√
ln t/ni) to select the action.

Theorem 12.2.1 (Auer et al Auer et al. [2002]). The expected regret of UCB1
after T rounds is at most

c1
∑

i:µi<µ∗

(
lnT

∆i

)
+ c2

K∑

j=1

∆j

Proof. First we prove that

Ent,i ≤ O

(
lnT

∆2
i

)

Then we note that the expected regret can be written as

∑

i:µi<µ∗

∆i Ent,i

due to Wald’s identity.
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Let Bt,s =
√
(2 ln t)/s. Then we can prove ∀c ∈ Z:

nT,i = 1 +

T∑

t=K+1

I {at = i}

≤ c+

T∑

t=K+1

I {at = i ∧ nt−1,i ≥ c}

≤ c+
T∑

t=K+1

I
{
µ̂∗
n∗
t−1

+Bt−1,n∗
t−1

≤ max µ̂ni(t−1),i +Bt−1,ni(t−1)

}

≤ c+

T∑

t=K+1

I

{
min
0<s<t

µ̂∗
s +Bt−1,s ≤ max

c≤si<t
µ̂si,i +Bt−1,si

}

≤ c+

∞∑

t=1

t−1∑

s=1

t−1∑

si=c

I {µ̂∗
s +Bt−1,s ≤ µ̂si,i +Bt−1,si}

When the indicator function is true one of the following holds:

µ̂∗
s ≤ µ∗ −Bt,s (12.2.3)

µ̂si,i ≥ µi +Bt,si (12.2.4)

µ∗ < µi + 2Bt,si (12.2.5)

Proof idea

� Bound the probability of the first two events.

� Choose c to bound the last term.

From Hoeffding bound:

P(µ̂∗
s ≤ µ∗ −Bt,s) ≤ e−4 ln t = t−4 (12.2.6)

P(µ̂si,i ≥ µi +Bt,si) ≤ e−4 ln t = t−4 (12.2.7)

Setting c =
⌈
(8 lnn)/∆2

i

⌉
makes the last event false as si ≥ c.

µ∗ − µi − 2Bt,si = µ∗ − µi − 2
√
(2 ln t)/si ≥ µ∗ − µi −∆i = 0.

Summing up all the terms completes the proof.

12.3 Structured bandit problems

Bandits and optimisation

� Continuous stochastic functionsKocsis and Szepesvári [2006], Auer et al.
[2007], Bubeck et al. [2011]

� Constrained deterministic distributed functionsOttens et al. [2012]



198CHAPTER 12. DISTRIBUTION-FREE REINFORCEMENT LEARNING

First ideaAuer et al. [2007]

Solve a sequence of discrete bandit problems.
At epoch i, we have some interval Ai

� Split the interval Ai in k regions Ai,j

� Run UCB on the k-armed bandit problem.

� When a region is sub-optimal with high probability, remove it!

Tree bandits Bubeck et al. [2011]

Create a tree of coverings, with (h, i) being the i-th node at depth h. D are
the descendants and C the children of a node.

At time t we pick node Ht, It. Each node is picked at most once.

nh,i(T ) ,
T∑

t=1

I {(Ht, It) ∈ D(h, i)} (visits of (h, i))

µ̂h,i(T ) ,
1

nh,i(T )

T∑

t=1

rt I {(Ht, It) ∈ C(h, i)} (reward from (h, i))

Ch,i(T ) , µ̂h,i(T ) +

√
2 lnT

nh,i(T )
+ nu1ρ

h (confidence bound)

Bh,i(T ) , min

{
Ch,i(T ), max

(h+1,j)∈C(h,i)
Bh+1,j

}
(child bound)

12.4 Reinforcement learning problems

12.4.1 Optimality Criteria

In all previous cases, we assumed a specific discount rate, or horizon for our
problem. Now we shall examine different choices and how they affect the exis-
tence of an optimal policy. As mentioned previously, the following two views of
discounted reward processes are equivalent.

Infinite horizon, discounted
Discount factor γ such that

Ut =

∞∑

k=0

γkrt+k ⇒ EUt =

∞∑

k=0

γk E rt+k (12.4.1)
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Geometric horizon, undiscounted
At each step t, the process terminates with probability 1− γ:

UTt =

T−t∑

k=0

rt+k, T ∼ Geom(1− γ) ⇒ EUt =

∞∑

k=0

γk E rt+k (12.4.2)

V πγ (s) , E(Ut | st = s)

The expected total reward criterion

V π,Tt , Eπ U
T
t , V π , lim

T→∞
V π,T (12.4.3)

Dealing with the limit

� Consider µ s.t. the limit exists ∀π.

V π+ (s) , Eπ

( ∞∑

t=1

r+t

∣∣∣∣∣ st = s

)
, V π− (s) , Eπ

( ∞∑

t=1

r−t

∣∣∣∣∣ st = s

)

(12.4.4)

r+t , max{−r, 0}, r−t , max{r, 0}. (12.4.5)

� Consider µ s.t. ∃π∗ for which V π
∗

exists and

lim
T→∞

V π
∗,T = V π

∗ ≥ lim sup
T→∞

V π,T .

� Use optimality criteria sensitive to the divergence rate.

The average reward (gain) criterion

The gain g

gπ(s) , lim
T→∞

1

T
V π,T (s) (12.4.6)

gπ+(s) , lim sup
T→∞

1

T
V π,T (s), gπ−(s) , lim inf

T→∞

1

T
V π,T (s) (12.4.7)
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If limT→∞ E(rT | s0 = s) exists then it equals gπ(s).
Let Π be the set of all history-dependent, randomised policies.
Using our overloaded symbols, we have that π∗ is total reward optimal if

V π
∗

(s) ≥ V π(s) ∀s ∈ S, π ∈ Π.

π∗ is discount optimal for γ ∈ [0, 1) if

V π
∗

γ (s) ≥ V πγ (s) ∀s ∈ S, π ∈ Π.

π∗ is gain optimal if

gπ
∗

(s) ≥ gπ(s) ∀s ∈ S, π ∈ Π.

Overtaking optimality
π∗ is overtaking optimal if

lim inf
T→∞

[
V π

∗,T (s)− V π,T (s)
]
≥ 0 ∀s ∈ S, π ∈ Π.

However, no overtaking optimal policy may exist.
π∗ is average-overtaking optimal if

lim inf
T→∞

1

T

[
V π

∗,T (s)− V π+ (s)
]
≥ 0 ∀s ∈ S, π ∈ Π.

Sensitive discount optimality
π∗ is n-discount optimal for n ∈ {−1, 0, 1, . . .} if

lim inf
γ↑1

(1− γ)−n
[
V π

∗

γ (s)− V πγ (s)
]
≥ 0 ∀s ∈ S, π ∈ Π.

A policy is Blackwell optimal if ∀s, ∃γ∗(s) such that

V π
∗

γ (s)− V πγ (s) ≥ 0, ∀π ∈ Π, γ∗(s)γγ < 1.

Lemma 12.4.1. If a policy is m-discount optimal then it is n-discount optimal
for all n ≤ m.

Lemma 12.4.2. Gain optimality is equivalent to −1-discount optimality.

12.4.2 UCRL

An upper-confidence bound algorithm
Confidence region Mt such that

P(µ /∈Mt) < δ (12.4.8)

Optimistic value for policy π:

V π+ (Mt) , max
{
V πµ

∣∣ µ ∈Mt

}
(12.4.9)
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UCRL Jacksh et al. [2010] outline

� At round k, start time tk, calculate Mtk .

� Choose πk ∈ argmaxπ V
π
+ (Mtk).

� Execute πk, observe rewards and update model until tk+1.

The confidence region

Let Mt be a set of plausible MDPs for time t with transitions τ s.t.:

∥∥∥P (· | s, a)− P̂t(· | s, a)
∥∥∥
1
≤
√

n lnT

Nt(s, a)
, ∀s ∈ S, a ∈ A, (12.4.10)

where P̂t(· | s, a) is the empirical transition probability.
Then P(µ ∈ Mt) > 1 − nkT−2, via a bound due to Weissman Weissman

et al. [2003].

Changing set of plausible MDPs

� This implies that we may have to switch policies.

� We do so when Nt(s, a) doubles for some s, a .

Calculating the upper bound

In effect, create an augmented MDP

Qt(s, a) = r(s, a) + max

{∑

s′∈S
P (s′ | s, a)Vt+1(s

′)

∣∣∣∣∣ ‖P − P̂ ‖1 ≤ ǫ

}
(12.4.11)

Vt(s) = max
a∈A

Qt(s, a) (12.4.12)

Comparison with Bayesian upper bound

High-probability value function bound

V ∗
+ = max

{
V ∗
µ

∣∣ µ ∈Mt

}
, P(µ∗ ∈Mt) ≥ 1− δ.
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Highly credible value function bound

V ∗
+ = max

{
V ∗
µ

∣∣ µ ∈Mt

}
, ξt(Mt) ≥ 1− δ.

Bayesian value function bound (e.g. Dimitrakakis [2011])

V ∗
+ =

∫

M
V ∗
µ dξt(µ) ξt = ξ0(· | st, rt, . . .)

12.4.3 Bibliographical remarks

Different optimality criteria are treated in detail in Puterman [1994] Chapter
5.
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.1 Symbols
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.2 Index



Index

Bayes’ theorem, 34

concave function, 40
convex function, 40

gamma function, 64

Jensen inequality, 40

likelihood
conditional, 33
relative, 30

linear programming, 141

Markov decision process, 118, 120, 121,
123, 126, 143

martingale, 113

policy iteration
modified, 139
temporal-difference, 140

preference, 36
probability

subjective, 30

reward, 35

utility, 37
Utility theory, 35

value iteration, 136

Wald’s theorem, 112
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R. Munos and C. Szepesvári. Finite-time bounds for fitted value iteration. The
Journal of Machine Learning Research, 9:815–857, 2008.

Brammert Ottens, Christos Dimitrakakis, and Boi Faltings. DUCT: An upper
confidence bound approach to distributed constraint optimization problems.
In AAAI 2012, 2012.

P. Poupart, N. Vlassis, J. Hoey, and K. Regan. An analytic solution to discrete
Bayesian reinforcement learning. In ICML 2006, pages 697–704. ACM Press
New York, NY, USA, 2006.

Pascal Poupart and Nikos Vlassis. Model-based Bayesian reinforcement learning
in partially observable domains. In International Symposium on Artificial
Intelligence and Mathematics (ISAIM), 2008.

Marting L. Puterman. Markov Decision Processes : Discrete Stochastic Dy-
namic Programming. John Wiley & Sons, New Jersey, US, 1994.

H. Robbins and S. Monro. A stochastic approximation method. The Annals of
Mathematical Statistics, pages 400–407, 1951.

Leonard J. Savage. The Foundations of Statistics. Dover Publications, 1972.

S. Singh, T. Jaakkola, and M.I. Jordan. Reinforcement learning with soft state
aggregation. Advances in neural information processing systems, pages 361–
368, 1995.

Malcolm Strens. A Bayesian framework for reinforcement learning. In ICML
2000, pages 943–950, 2000.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-
duction. MIT Press, 1998.

Marc Toussaint, Stefan Harmelign, and Amos Storkey. Probabilistic inference
for solving (PO)MDPs, 2006.

T. Weissman, E. Ordentlich, G. Seroussi, S. Verdu, and M.J. Weinberger. In-
equalities for the L1 deviation of the empirical distribution. Hewlett-Packard
Labs, Tech. Rep, 2003.


