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Decisions d ∈ D
Experiments with outcomes in Ω.

Reward r ∈ R depending on experiment and outcome.

Utility U : R → R.

Example 1 (Taking the umbrella)

There is some probability of rain.

We don’t like carrying an umbrella.

We really don’t like getting wet.
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Random outcome ω ∼ P.

Decision d ∈ D

Definition 2 (Reward function)

When we take decision d , then ω is randomly chosen, and we obtain a reward:

r = ρ(ω, d). (2.1)

For every d ∈ D, the function ρ : Ω ×D → R induces a probability distribution
Pd on R.

Pd(B) ≜ P({ω | ρ(ω, d) ∈ B}). (2.2)

Thus, instead of directly choosing some distribution of rewards, we choose a
decision d , which corresponds to a particular distribution Pd .
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(b) The separated deci-
sion problem

Expected utility

EPd (U) =
∑
r∈R

U(r)Pd(r) =
∑
ω∈Ω

U[ρ(ω, d)]P(ω). (2.3)



. . . . . .

Example 3

You are going to work, and it might rain. The forecast said that the probability
of rain (ω1) was 20%. What do you do?

d1: Take the umbrella.

d2: Risk it!

ρ(ω, d) d1 d2
ω1 dry, carrying umbrella wet
ω2 dry, carrying umbrella dry

U[ρ(ω, d)] d1 d2
ω1 0 -10
ω2 0 1

EP(U | d) 0 -1.2

Table: Rewards, utilities, expected utility for 20% probability of rain.

.



. . . . . .

Application to statistical estimation

Example 4 (Voting)

Let us say for example that you wish to estimate the number of votes for
different candidates in an election. The unknown parameters of the problem
mainly include: the percentage of likely voters in the population, the probability
that a likely voter is going to vote for each candidate. One simple way to
estimate this is by polling.

The unknown outcome of the experiment ω is called a parameter.

The set of outcomes Ω is called the parameter space.
We wish to guess a particular value d ∈ D = Ω for the parameter.
ρ(ω, d) measures how close our guess is to the parameter.

Definition 5 (Simplified expected utility of a given decision)

U(P, d) ≜
∑
ω∈Ω

U[ρ(ω, d)]P(ω). (2.4)

Definition 6 (Bayes-optimal utility)

U∗(P) ≜ max
d

U(P, d) (2.5)
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Voting example

Consider a nation with k political parties.

Let ω = (ω1, . . . , ωk) ∈ [0, 1]k be the voting percentages for each party.

We wish to make a guess d ∈ [0, 1]k .

How should we guess, given a distribution P(ω)?

How should we select U and ρ?

Squared error

We can set ρ(ω, d) = (ω1 − d1, . . . , ωk − dk), our error vector r ∈ [0, 1]k . Then
we set U(r) ≜ −∥r∥2, where ∥r∥2 =

∑
i |xi |

2.

Predicting the winner

In that case ρ(ω, d) = 1 if argmaxi ωi = argmaxi di and 0 otherwise, and
U(r) = r .

Definition 6 (The set of maximising arguments)

The set of all maximising values of a function f is denoted by argmaxx f (x).
More formally,

argmax
x

f (x) = {x | f (x) ≥ g(y)∀y} .

If there is no maximising value, then the set is empty.
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Example 7 (Squared error)

Consider the case Ω = D = R. Our problem is:

max
d

U(P, d), U(P, d) ≜ −
∑
ω

|ω − d |2P(ω).

By taking the differential inside the sum, we have

∂

∂d

∑
ω

|ω − d |2P(ω) =
∑
ω

∂

∂d
|ω − d |2P(ω)

(2.6)

= 2
∑
ω

(d − ω)P(ω) (2.7)

= 2
∑
ω

dP(ω)− 2
∑
ω

ωP(ω) (2.8)

= 2d − 2EP(ω),

(2.9)

so the optimal decision is d = E(ω).
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The utility for quadratic loss
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Figure: Fixed distribution, varying decision. The decision utility under three different
distributions.
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Only prior information
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Figure: Statistical decision problem without observations. The green circles are
unknown quantities. Squares indicate decisions. Diamonds indicate utilities.

1 There is an unknown parameter ω ∈ Ω with ω ∼ P.

2 Our utility is U : Ω × D → R.

3 We want to choose d ∈ D, taking into account P:

max
d

U(P, d) = max
d

∑
ω∈Ω

U(ω, d)P(ω).



. . . . . .

Only prior information

.. U.

ω

.d.

P

Figure: Statistical decision problem without observations. The green circles are
unknown quantities. Squares indicate decisions. Diamonds indicate utilities.

1 There is an unknown parameter ω ∈ Ω with ω ∼ P.

2 Our utility is U : Ω × D → R.

3 We want to choose d ∈ D, taking into account P:

max
d

U(P, d) = max
d

∑
ω∈Ω

U(ω, d)P(ω).



. . . . . .

Only prior information

.. U.

ω

.d.

P

Figure: Statistical decision problem without observations. The green circles are
unknown quantities. Squares indicate decisions. Diamonds indicate utilities.

1 There is an unknown parameter ω ∈ Ω with ω ∼ P.

2 Our utility is U : Ω × D → R.

3 We want to choose d ∈ D, taking into account P:

max
d

U(P, d) = max
d

∑
ω∈Ω

U(ω, d)P(ω).



. . . . . .

Obtaining information
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Figure: Statistical decision problem with observations

1 There is an unknown parameter ω ∈ Ω with ω ∼ P.

2 Now consider a family of conditional probabilities on the observation set S:

F = {P(· | ω) | ω ∈ Ω} ,

such that P(x | ω) is the probability of observing x ∈ S under parameter
ω.

3 Let x ∈ S be a random variable with distribution P(x | ω) for some
(unknown) ω.

4 Our utility is U : Ω × D → R.

5 We want to choose d ∈ D, taking into account both P and the evidence x .

6 We want to find a decision function δ : S → D maximising expected utility
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Maximising expected utility a posteriori

Prior probability P(ω)

Observation x .

Posterior probability

P(ω | x) = P(x | ω)P(ω)∑
ω′ P(x | ω′)P(ω′)

Expected utility of decision d under the posterior

EP(U | d , x) =
∑
ω∈Ω

U(ω, d)P(ω | x)

Bayes decision rule:

δ∗(x) ∈ argmax
d∈D

EP(U | d , x).
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Exercise

Abdul Alhazred claims that he is psychic and can always predict a coin toss.
Let P(A) = 2−16 be your prior belief that AA is a psychic.

Abdul bets you 100 CU that he can predict the next four coin tosses. How
much are you willing to bet against that (assuming that you are using a
fair coin).

You throw the coin 4 times, and AA guesses correctly all four times.
Abdul now bets you another 100 CU that he can predict the next four coin
tosses. Up to how much would you bet now?

Assumption 1

You use a fair coin, such that the probability of it coming heads is 1/2.

Your utility for money is linear, i.e. U(x) = x for any amount of money x.
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Quick summary

We want to make a decision against an unknown parameter ω.

Our knowledge is represented by a distribution P(ω).

The Bayes utility is the maximum expected utility under the distribution of
ω.

Our decisions can depend on observations, via a decision function.

We can construct a complete decision function by computing the optimal
decision for every possible observation.

We can instead wait until we observe x and then:
1 Compute the posterior distribution P(ω | x).
2 Compute the expected utility under the distribution P(ω | x) of ω, for all

decisions d .
3 Choose the decision with the highest expected utility a posteriori.

Thus, decision making under prior and posterior distributions can be
handled in the same exact framework.
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