Experimental design and Markov decision processes

The following problems
m Shortest path problems.
m Optimal stopping problems.
m Reinforcement learning problems.

m Experiment design (clinical trial) problems

Advertising.

can be all formalised as Markov decision processes.

Applications

m Robotics.
m Economics.
m Automatic control.

m Resource allocation
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The n meteorologists problem

Setting

m n meteorologists.
m At time t, you observe the

m The i-th meteorologist gives a prediction x:,; € {dry,wet} for today's
weather, y;

®m You must decide whether or not to commute by bike that day
a: € {bike, tram}

® You obtain a reward r = 1 if it's dry and you bike, rr = —1 if it's wet and
you bike, and r: = 0 otherwise.

m You then store the information y: about the weather and the
meteorologists’ predictions.

Utility

U:er



The n meteorologists problem is simple, as:

m You always see their predictions, as well as the weather, no matter
whether you bike or take the tram (full information)

m Your actions do not influence their predictions (independence events)

In the remainder, we'll see two settings where decisions are made with either
partial information or in a dynamical system. Both of these settings can be
formalised with Markov decision processes.
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Applications

m Efficient optimisation.
m Online advertising.

m Clinical trials.

m ROBOT SCIENTIST.




The stochastic n-armed bandit problem

Actions and rewards

m A set of actions A ={1,...,n}.
m Each action gives you a random reward with distribution P(r; | a; = i).

m The expected reward of the i-th arm is p; £ E(r; | a: = i).

Interaction at time t

You choose an action a; € A.
You observe a random reward r;: drawn from the j-th arm.

The utility is the sum of the rewards obtained
U é Z re.
t

We must maximise the expected utility, without knowing the values p;.



Policy

Definition 1 (Policies)

A policy 7 is an algorithm for taking actions given the observed history
htéal,rl,...7at7rt
P (acs1 | he)

is the probability of the next action a;y1.

Exercise 1
Why should our action depend on the complete history?
A The next reward depends on all the actions we have taken.
B We don’t know which arm gives the highest reward.
C The next reward depends on all the previous rewards.
D The next reward depends on the complete history.
E No idea.
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Definition 1 (Policies)

A policy 7 is an algorithm for taking actions given the observed history
hféal,rl,...,at,rt
IPﬂr(atﬁ—l | he)

is the probability of the next action a:y1.

Example 2 (The expected utility of a uniformly random policy)
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Policy

Definition 1 (Policies)

A policy 7 is an algorithm for taking actions given the observed history
htéal,rl,...,at,rt

Pﬂ(atﬂ | ht)
is the probability of the next action a:y1.

The expected utility of a general policy

E™U=FE" (Z rt> => E"(r) (1.1)

=> " E(re|a) > P(ar | heo1) P (he)

t=1 a;€ A he_1
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Bernoulli bandits

Example 2 (Bernoulli bandits)

Consider n Bernoulli distributions with parameters w; (i = 1,..., n) such that
re | @ = i ~ Bern(w;). Then,
Plr=1|a:=1i)=w; P(r=0]a=i)=1-w (1.2)

Then the expected reward for the i-th bandit is p; 2 E(r; | ar = i) = ?.
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Bernoulli bandits

Example 2 (Bernoulli bandits)

Consider n Bernoulli distributions with parameters w; (i = 1,..., n) such that
re | @ = i ~ Bern(w;). Then,
P(rt=1|at:i):w,- P(rt=0|at=i)=1—w; (12)

Then the expected reward for the i-th bandit is p; = E(r; | ar = i) = wi.

Exercise 1 (The optimal policy under perfect knowledge)

If we know wj for all i, what is the best policy?
A At every step, play the bandit i with the greatest w;.
B Prefer bandits i with larger w;, but play them all.
C It depends on the horizon T.
D Prefer bandits i which you have played the least so far, but play them all.
E It is too complicated.



The unknown reward case

Say you keep a running average of the reward obtained by each arm
ﬁt,i = Rt,i/nt,i

where n; ; is the number of times you played arm i and Ry the total reward
received from i so that whenever you play a; = i:

RH—Li = Rt,i + re, Ney1,i = Nt + 1.



The unknown reward case

Say you keep a running average of the reward obtained by each arm
ﬁt,i = Rt,i/nt,i

where n; ; is the number of times you played arm i and R;,; the total reward
received from i so that whenever you play a; = i:

Riv1,i = Rei+ e, Nep1,i = e+ 1.

Exercise 2 (The optimal policy under imperfect knowledge)

If we just keep travek of the averages p:,i, for all i, what is the best policy?
A At every step, play the bandit i with the greatest py,;.
B Prefer bandits i with larger p:,i, but play them all.
C It depends on the horizon T.
D Prefer bandits i with smaller n;;, but play them all.
E It is too complicated.



The unknown reward case

Say you keep a running average of the reward obtained by each arm
ﬁt,i = Rt,i/nt,i

where n; ; is the number of times you played arm i and R the total reward
received from i so that whenever you play a; = i:

Riv1i = Rei+ e, Ney1i = e+ 1.
You could choose to play the strategy

ar = argmax p ;.
i

where we use non-zero initial values ng,;, Ro,;!
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The greedy policy
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Summary

Bandit problems are the simplest type of partial information problems.

Learning policies for such problems must remember the complete history.

If we know the problem parameters, simple stationary policies are optimal.

m If we don't, then our policies must carefuly balance:

m Exploration: Learning more about the problem.
m Exploitation: Using what is already known.

From now on, we focus on the case where the problem is perfectly known.
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A gentle introduction to Markov processes
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Markov process
AN\ AT\ AN\
St— ( S; )
o@D

Definition 3 (Markov Process — or Markov Chain)

The sequence {s; | t =1,...} of random variables s; : £2 — S is a Markov
process if
]P(St+1 ‘ Sigooo ,51) = P(St+1 | St). (21)

m s; is state of the Markov process at time t.

m P(si41 | s¢) is the transition kernel of the process.



Markov process

A\ A AN
(St—1}—{ St —{St+1)
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Definition 3 (Markov Process — or Markov Chain)

The sequence {s; | t =1,...} of random variables s; : {2 — S is a Markov
process if
]P(St+1 ‘ Sigooo ,51) = P(St+1 | St). (21)

m s; is state of the Markov process at time t.

m P(s¢41 | s¢) is the transition kernel of the process.

Exercise 2 (Finite state machine with random input)

Let w = ws,...,w: be an infinitely long random string of bits, 2 =S = {0, 1}
and:
St+1 = St D we.

Is st a Markov process?
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Reinforcement learning

The reinforcement learning problem.

Learning to act in an unknown environment, by interaction and reinforcement.

m The environment has a changing state s;.
m The agents observes the state s;.
m The agent takes action a;.

m It receives rewards r;.

The goal (informally)

Maximise total reward ., r;

Types of environments

m Markov decision processes (MDPs).
m Partially observable MDPs (POMDPs).

m (Partially observable) Markov games.



Markov decision processes

Markov decision processes (MDP)
i ®»
At each time step t: /

m We observe state s; € S. e @

m We take action a; € A.

m We receive a reward r: € R.

Markov property of the reward and state distribution

P.(st+1 | s, @) (Transition distribution)
Pu(re | st,ar) (Reward distribution)



The agent

The agent's policy 7

P™(a¢ | sty ..., 51,8i-1,...,a1) (history-dependent policy)
P™(a: | st) (Markov policy)

Definition 4 (Utility)

Given a horizon T, the utility can be defined as

T—t
U 2 Z Itk (3.1)
k=0

The agent wants to to find m maximising the expected total future reward

T—t
E, Ui =E} Z Fegk- (expected utility)
k=0
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State value function
Vii(s) £ E;(Ue | st =s)

The optimal policy 7*
7 (1) 1 VI (s) > VIL(s) Vs

dominates all other policies 7 everywhere in S.
The optimal value function V*

Viu(s) 2 Vi, W(s),

t,p

is the value function of the optimal policy 7*.

(3.2)

(3.3)

(3.4)
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Deterministic shortest-path problems

Properties

m T — .

m rr — —1 unless s; = X, in which case
rr = 0.

m Pu(ser1 = Xlse = X) = 1.

m A = {North, South, East, West}

m Transitions are deterministic and walls
block.




Properties

my=1 T — occ.

m rr = —1 unless sy = X, in which case
rr = 0.

m The length of the shortest path from s
equals the negative value of the optimal
policy.

m Also called cost-to-go.



Stochastic shortest path problem with a pit

Properties

m T — .

mrr=—1, but r =0 at X and —100 at O
and the problem ends.

n ]P);L(St-l—l = X|$t = X) = 1.
m A = {North, South, East, West}

m Moves to a random direction with
probability w. Walls block.




(c) value

Figure : Pit maze solutions for two values of w.

Exercise 3

m Why should we only take the shortcut in (a)?

m Why does the agent commit suicide at the bottom?
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How to evaluate a policy

Vie(s) 2 ER(Ue | st =) (4.1)
(4.2)

This derivation directly gives a number of policy evaluation algorithms.
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VIis) 2 EL(Ue | se =s) (4.1)
= iEﬂ(er | st =s) (4.2)
(4.3)

This derivation directly gives a number of policy evaluation algorithms.



How to evaluate a policy

(s) £E[ (U | st = s)
T—t
Bi(res | se =)

Il
N
2 1

E.(re|se=5)+EL (U1 | se =)

This derivation directly gives a number of policy evaluation algorithms.

(4.1)
(4.2)

(4.3)
(4.4)



How to evaluate a policy

Vids) £ EL (U | st =)

T—t
= ZEz(er | St = 5)
k=0
= Eﬂ(rt | St = 5) +]E7T(Ut+1 | St = S)

=E; (rt|st—s)—|—z e (D) P (seq1 = ilse = s).
ieS

This derivation directly gives a number of policy evaluation algorithms.

(4.1)
(4.2)

(4.3)
(4.4)



Monte-Carlo Policy evaluation

for s € S do

end for



Monte-Carlo Policy evaluation

for s € S do
for k=1,...,K do
Execute policy 7 and record total reward K times:

T
:‘A?k(s) = Z re k-
t=1

end for

end for



Monte-Carlo Policy evaluation

for s € S do
for k=1,...,K do
Execute policy 7 and record total reward K times:

T
:‘A?k(s) = Z re k-
t=1

end for
Calculate estimate:

e = % S Rils).
k=1

end for



Backwards induction policy evaluation

for States € S, t=T,...,1do
Update values of states:

Ut(st) = Z Pﬂ(at | St) E,u(rt | St,at) T E ]P)p(swl ‘ 5t7at)vt+1(5t+l)

at€EA St41E€ES

end for

Exercise 4

What is the value vi(s;) of the
first state?

A 14
B 1.05
C 10
D o7
E O

St ar I St
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Backwards induction policy evaluation

for States € S, t=T,...,1do
Update values of states:

Ut(st) = Z Pﬂ(at | St) E,u(rt | St,at) T E Pp(5t+l ‘ 5t7at)vt+1(5t+l)

at€EA St41E€ES

end for

Exercise 4

What is the value vi(s;) of the
first state?

A 14
B 1.05
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D o7
E O
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St

Backwards induction policy optimization

for States € S, t=T,...,1do
Update values

’Ut(St) = ?363.)2 ]Ep,(rt | St, at) aF Z P;L(5t+1 | St, at)Ut+1(5t+1)

St+1€S

end for

Exercise 5

What is the value vi(s;) of the
first state?
A 1.4

B 1.05
C 10
D 0.7
E 0

at rt St+1



Backwards induction policy optimization

for States € S, t=T,...,1do
Update values

’Ut(St) = ?363.)2 ]Ep,(rt | St, at) aF Z P;L(5t+1 | St, at)Ut+1(5t+1)

St+1€S

end for

Exercise 5

What is the value vi(s;) of the
first state?
A 1.4

B 1.05
C 10
D 0.7
E 0

St at rt St+1
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Discounted total reward.

U: = lim Zykrk, v € (0,1)

Definition 5

A policy 7 is stationary if w(a; | s¢) does not depend on t.

Remark 1

We can use the Markov chain kernel P, to write the expected reward vector
as

v = Z'ytpﬁﬂﬂ‘ (5.1)
t=0



Theorem 6

For any stationary policy 7, v™ is the unique solution of
v=r+7P, v. < fized point
In addition, the solution is:

0" =T —yP, ) "r.

(5.2)

(5.3)
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Value iteration

forn=1,2,...and s € S do
vn(s) = max, r(s,a) + 7D o cs Pu(s' |'s,a)vn-1(s")
end for



Policy Iteration

Input p, S.

Initialise vo.

forn=1,2,... do
Tnp1 = argmax, {r + yPrv,} // policy improvement
V1 = Vi // policy evaluation
break if m,11 = 7.

end for

Return 7, v,.
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