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1 Playing against a fixed strategy
Varying probabilities for nature

2 Playing against a rational opponent
The minimax case: Zero-sum games
Solving zero-sum games
General-sum games

3 Sequential games

4 The main solution concept: Information states

5 Unknown utility games



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

Deciding whether to take the bike to work

Example 1 (Rain)

Ω = {rain, sun}, D = {bike, tram}
What we play depends on our own utility function, and the
probability P of different outcomes.

U(ω, d) d1 d2
ω1 0 -10
ω2 -1 1

d1 d2
U(P , d) -0.8 -1.2

Table : Utility and expected utility for 20% probability of rain.

What if we P is different, i.e. our belief is incorrect?
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Convexity of the Bayes utility
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The expected utility of d1, d2 and maxd U(P , d) – the optimal
choice given P.



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

Consider two probability measures P ,Q on (Ω,FΩ).

Zα ≜ αP + (1− α)Q α ∈ [0, 1]. (1.1)

Remark 1 (Linearity of the expected utility)

For any fixed d ∈ D:

U(Zα, d) = αU(P , d) + (1− α)U(Q, d). (1.2)

Theorem 2 (The Bayes-optimal utility is convex)

U∗[Zα] ≤ αU∗(P) + (1− α)U∗(Q). (1.3)
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Guarding against the worst-case

What if our belief P is wrong? What would happen then?

Minimax decisions

Solve:
max
d

min
ω

U(ω, d)

U(ω, d) d1 d2
ω1 0 -10
ω2 -1 1

minω U(ω, d)

-1 -10

Table : The worst-case utility
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Mixed decisions

Randomised decisions: Select decisions with probability Q(d)

Expected utility of a randomised decision

U(P,Q) =
∑
d∈D

U(P, d)Q(d)

=
∑
d∈D

∑
ω∈Ω

P(ω)U(ω, d)Q(d).

Maximin randomised decision

max
Q∈∆(D)

min
P∈∆(Ω)

U(P,Q)
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The expected utility of d1, d2 and mixed decision taking d1 with
probability 1/2.



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

Convexity of the Bayes utility

..

-10

.

-8

.

-6

.

-4

.

-2

.

0

.

0

.

0.2

.

0.4

.

0.6

.

0.8

.

1

.

U

. P.

1

.

0

.

1/2

.

1/4

.

3/4

The expected utility of 5 different distributions Q over D.



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

Convexity of the Bayes utility

..

-10

.

-8

.

-6

.

-4

.

-2

.

0

.

0

.

0.2

.

0.4

.

0.6

.

0.8

.

1

.

U

. P.

1

.

0

.

1/2

.

1/4

.

3/4

.

U∗(P)

The expected utility of 5 different distributions Q over D and the
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If we know P , then we can play a single optimal decision
d∗(P).

There is a unique worst choice P∗ for the opponent. Can you
guess what it is?
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If we know P , then we can play a single optimal decision
d∗(P).

There is a unique worst choice P∗ for the opponent. Can you
guess what it is?
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If we know P , then we can play a single optimal decision
d∗(P).

There is a unique worst choice P∗ for the opponent. Can you
guess what it is?

Under P∗, any of our decisions has the same expected utility.

Is there a way to select Q∗ that is robust against Thor?
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If we know P , then we can play a single optimal decision
d∗(P).

There is a unique worst choice P∗ for the opponent. Can you
guess what it is?

Under P∗, any of our decisions has the same expected utility.

Is there a way to select Q∗ that is robust against Thor?
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The game from the point of view of Thor: UThor = −U
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Zero-sum one-shot game

A zero-sum game is a tuple ⟨Ω,D,U,P,Q⟩ where
Ω are the pure strategies of the first player.

D are the pure strategies of the second player.

P is the mixed strategy set of the first player.

Q is the mixed strategy set of the second player.

U : Ω ×D → R is a utility function.

Player Q wants to maximise U, and P to minimise it (or vice-versa)

Game structure

1 The players choose P,Q and don’t reveal it.

2 The players randomly select ω, d from P ,Q.

3 ω, d is revealed and the players get U(ω, d) and −U(ω, d).
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Properties of zero-sum games

U∗ ≜ max
Q∈Q

min
ω∈Ω

U(ω,Q) ≤ min
P∈P

max
d∈D

U(P, d) ≜ U∗.

Recall that we don’t need to randomise if we know P !

Theorem 3

If P,Q include all probability distributions over pure strategies then

U∗ = U∗

and is the value of the game. In fact, if P∗ and Q∗ are the
corresponding optimal strategies, then:

U∗ = U(P∗,Q∗) = U∗.
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Linear programming

We have seen that we can always find the best mixed strategy
P∗ and Q∗ for either player.

This entails solving a set of linear inequalities.

Consequently, the problem can be solved with linear
programming.

This means the complexity of zero-sum games is polynomial.

However, there are conceptually simpler ways, which can give
incremental solutions, with polynomial complexity.
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The weighted majority algorithm

n pure strategies for player Q, utility U ∈ [0, 1].

A learning rate η.

A set of weights, wt = (wt,i )
n
i=1.

The sum of the weights Wt =
∑

i wt,i .

For each round t:

1 Q normalises the weights to get a distribution qt = wt/Wt .

2 Q plays dt ∼ qt from the distribution.

3 P plays the best response: ωt ∈ argminω U(ω, qt)

4 Q gets a reward rt = U(ωt , dt) and calculates rt,d = U(ωt , d)
for all pure strategies d .

5 Q calculates the next set of weights for all d

wt+1,d = wt,d(1 + ηrt,d).

6 A near-optimal strategy for Q is the empirical frequency of dt !
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General-sum two-player games

Definition 4

A zero-sum game is a tuple ⟨D,U,P⟩ where
D = D1 ×D2 are the pure strategies of the two players.

P = P1 × P2 are the mixed strategy set of the two players.

U : D → R2 is a utility function with components Ui . The
i-th player wants to maximise Ui .

Properties of general-sum games

If P is the set of all mixed strategies, then a solution
p∗ = (p∗1 , p

∗
2) exists such that

U2(p
∗
1 , p

∗
2) ≥ U2(p

∗
1 , p2), U1(p

∗
1 , p

∗
2) ≥ U1(p1, p

∗
2), (2.1)

for any p1, p2. This is called a Nash equilibrium.

Finding a Nash equilibrium is in NP (in fact PPAD).
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Nash as a solution concept

The prisoner’s dilemma

U1,U2 Co-operate Defect

Co-operate 1, 1 -1, 2
Defect 2, -1 0,0

In this case, both player defecting is a dominant strategy, even
though both players co-operating would be better for both!
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Sequential games

We already hinted at the fact that players may take turns.

In fact, players may make a series of moves in a game (e.g. in
chess)

Then strategies are defined as functions from an observation
history to a next move.

A specifically interesting case is that of Markov games, where
the strategy only depends on the game state.

These can be solved with backwards induction.

Definition 5

The value of a state st in a zero-sum Markov game for a policy p,
against a minimising player with policy q is

V ∗(s) = max
p

min
q

Eq
p(U | st = s)
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Backwards induction for Markov games

vt(st) = max
at∈D1

{
min
bt∈D2

vt+1(st+1)

}

..

st

.

at

.

bt

.

st+1

.?.

?

.

?

.

1

.

-10

.
-1

.

0

Extension to stochastic Markov games is easy!
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Properties of Markov games

Generally the same as a Markov decision process:

Easy to solve as long as the number of states is finite and the
utility function is additive.

If moves are simultaneous at every round, then they can still
be solved if they are zero-sum.

Otherwise, they are PPAD by reduction to non-zero-sum
games.
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Information states

What we know about a game, and the state of the game, comprises
our information state. These pieces of knowledge may include:

A prior distribution P on ω.

The utility function of the game for all players.

Any random variables defined on the space of P .

The moves played by the players so far.

The utility obtained by the players so far.

In general, the more information, the better we can do, and the
simpler the algorithms we can use.
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Unknown utility games

What if we do not know the utility of anybody else in the
game?

One idea is to take a worst-case approach:

This results in the standard minimax framework and a
zero-sum two-player game.

But what if we have some idea about what they want?

We could use a subjective probability distribution to model
our uncertainty. This is the topic of Bayesian games (not
covered here).
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Multi-player games

Definition 6

A general n-player game is a tuple ⟨D,U,P⟩ where
D =

∏n
i=1Di are the pure strategies of the n players.

P =
∏n

i=1 Pi are the mixed strategy sets of the players.

U : D → Rn is a utility function. The i-th player wants to
maximise Ui .

A game is co-operative if Ui = Uj for all players. These games are
slightly easier (exponential in the number of players).
.. ROBOTS

https://www.youtube.com/watch?v=BXQOcfyOPB8
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Categories of games

Move structure

One-shot; Repeated; Sequential.

All moves observed; Only some moves known.

Utility

Zero-sum; Collaborative; Additive; Arbitray.

Fully known; Only for the player; Only individual rewards;

Stochasticity

World: Deterministic, stochastic.

Players: Deterministic, stochastic.
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