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Playing against a fixed strategy
m Varying probabilities for nature

Playing against a rational opponent
m The minimax case: Zero-sum games
m Solving zero-sum games
m General-sum games

Sequential games
The main solution concept: Information states

Unknown utility games



Deciding whether to take the bike to work

Example 1 (Rain)

(2 = {rain,sun}, D = {bike, tram}
What we play depends on our own utility function, and the
probability P of different outcomes.

U(w, d) dl d2
w1 0 -10
w2 -1 1

d | o

U(P,d) | -0.8 | -1.2

Table : Utility and expected utility for 20% probability of rain.
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What if we P is different, i.e. our belief is incorrect?
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Consider two probability measures P, Q on (£2,50).

Zy=aP+(1-0)Q a € [0,1].

Remark 1 (Linearity of the expected utility)
For any fixed d € D:

U(Za, d) = aU(P,d) + (1 — a)U(Q, d).

Theorem 2 (The Bayes-optimal utility is convex)

U*[Za] < aU*(P) + (1 — a)UX(Q).

(1.1)

(1.3)



Guarding against the worst-case

What if our belief P is wrong? What would happen then?

Minimax decisions

Solve:

max min U(w, d)

U(w, d) di | d»

wy 0 | -10

wo -1 1
min,, U(w, d)

Table : The worst-case utility



Guarding against the worst-case

What if our belief P is wrong? What would happen then?

Minimax decisions

Solve:
max min U(w, d)

U(w, d) di | d»
wy 0 |-10

wo -1 1
miny, U(w,d) | -1 | -10

Table : The worst-case utility
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Mixed decisions

Randomised decisions: Select decisions with probability Q(d)

Expected utility of a randomised decision

U(P,Q) =Y U(P,d)Q(d)

deD

=> ) Pw)U(w,d)Q(d).

deD wes?

Maximin randomised decision

max min U(P, Q)
QeA(D) PEn($2)
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m If we know P, then we can play a single optimal decision
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m If we know P, then we can play a single optimal decision
d*(P).

m There is a unique worst choice P* for the opponent. Can you
guess what it is?

m Under P*, any of our decisions has the same expected utility.



If we know P, then we can play a single optimal decision
d*(P).

There is a unique worst choice P* for the opponent. Can you
guess what it is?

Under P*, any of our decisions has the same expected utility.

Is there a way to select Q* that is robust against Thor?
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Zero-sum one-shot game

A zero-sum game is a tuple (2, D, U, P, Q) where
m (2 are the pure strategies of the first player.
m D are the pure strategies of the second player.
m P is the mixed strategy set of the first player.
m Q is the mixed strategy set of the second player.
m U: (2 xD— R is a utility function.

Player Q wants to maximise U, and P to minimise it (or vice-versa)

Game structure

The players choose P, @ and don’t reveal it.
The players randomly select w, d from P, Q.
w, d is revealed and the players get U(w, d) and —U(w, d).



Properties of zero-sum games

U, £ max min U(w, Q) < min max U(P, d) & U*.
QEQuWEN PeP deD

Recall that we don't need to randomise if we know P !

Theorem 3
If P, Q include all probability distributions over pure strategies then

U*:U*

and is the value of the game. In fact, if P* and Q* are the
corresponding optimal strategies, then:

U, = U(P*, Q%) = U*.
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Linear programming

m We have seen that we can always find the best mixed strategy
P* and Q* for either player.

m This entails solving a set of linear inequalities.

m Consequently, the problem can be solved with linear
programming.

This means the complexity of zero-sum games is polynomial.

However, there are conceptually simpler ways, which can give
incremental solutions, with polynomial complexity.
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The weighted majority algorithm

m n pure strategies for player Q, utility U € [0, 1].
m A learning rate 7.

m A set of weights, w; = (wg)7_;.
m The sum of the weights W = >, wy ;.
For each round t:
Q@ normalises the weights to get a distribution q; = w;/W;.
Q plays d; ~ g; from the distribution.
P plays the best response: w; € argmin,, U(w, g)

Q gets a reward r; = U(wy, d¢) and calculates ry g = U(wy, d)
for all pure strategies d.

Q calculates the next set of weights for all d

Wit1,d = We,d(1+nreq).

[@ A near-optimal strategy for @ is the empirical frequency of d;!
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General-sum two-player games
Definition 4

A zero-sum game is a tuple (D, U, P) where
m D =D; x D5 are the pure strategies of the two players.
m P = P; x P, are the mixed strategy set of the two players.

m U:D — R?is a utility function with components U;. The
i-th player wants to maximise U;.

Properties of general-sum games

m If P is the set of all mixed strategies, then a solution
p* = (pi, p5) exists such that

Ua(pi, p3) = Ua(pi, p2),  Ui(pi,p3) > Uipr, p3), (21)

for any p1, po. This is called a Nash equilibrium.
m Finding a Nash equilibrium is in NP (in fact PPAD).



Nash as a solution concept

The prisoner’s dilemma
Ui, U ‘ Co-operate Defect
Co-operate 1,1 -1, 2
Defect 2, -1 0,0

In this case, both player defecting is a dominant strategy, even
though both players co-operating would be better for both!



Sequential games

m We already hinted at the fact that players may take turns.

Definition 5

The value of a state s; in a zero-sum Markov game for a policy p,
against a minimising player with policy g is

V*(s) = maxmin E}(U | s; = s)
P q
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Sequential games

We already hinted at the fact that players may take turns.

In fact, players may make a series of moves in a game (e.g. in
chess)

m Then strategies are defined as functions from an observation
history to a next move.

m A specifically interesting case is that of Markov games, where
the strategy only depends on the game state.

m These can be solved with backwards induction.

Definition 5

The value of a state s; in a zero-sum Markov game for a policy p,
against a minimising player with policy g is

V*(s) = maxmin E}(U | s; = s)
P q



Backwards induction for Markov games
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Backwards induction for Markov games

’Ut(St) = maX { min Vi+1 SH']-)}

at€D1 | bi€D2

o
@D
-10

St dt bt St+1

Extension to stochastic Markov games is easy!
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Properties of Markov games

Generally the same as a Markov decision process:

Easy to solve as long as the number of states is finite and the
utility function is additive.

m If moves are simultaneous at every round, then they can still
be solved if they are zero-sum.

m Otherwise, they are PPAD by reduction to non-zero-sum
games.



Information states

What we know about a game, and the state of the game, comprises
our information state. These pieces of knowledge may include:

m A prior distribution P on w.

m The utility function of the game for all players.
m Any random variables defined on the space of P.
m The moves played by the players so far.

m The utility obtained by the players so far.

In general, the more information, the better we can do, and the
simpler the algorithms we can use.
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Unknown utility games

m What if we do not know the utility of anybody else in the
game?
m One idea is to take a worst-case approach:

m This results in the standard minimax framework and a
zero-sum two-player game.

m But what if we have some idea about what they want?

m We could use a subjective probability distribution to model

our uncertainty. This is the topic of Bayesian games (not
covered here).



Multi-player games

Definition 6
A general n-player game is a tuple (D, U, P) where
m D =[], D; are the pure strategies of the n players.

A game is co-operative if U; = U; for all players. These games are
slightly easier (exponential in the number of players).
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Multi-player games

Definition 6
A general n-player game is a tuple (D, U, P) where
m D =[], D; are the pure strategies of the n players.
m P =], P; are the mixed strategy sets of the players.

m U:D — R"is a utility function. The i-th player wants to
maximise U;.

A game is co-operative if U; = U; for all players. These games are
slightly easier (exponential in the number of players).


https://www.youtube.com/watch?v=BXQOcfyOPB8

Categories of games

Move structure

m One-shot; Repeated; Sequential.

m All moves observed; Only some moves known.
Utility

m Zero-sum; Collaborative; Additive; Arbitray.

m Fully known; Only for the player; Only individual rewards;
Stochasticity

m World: Deterministic, stochastic.

m Players: Deterministic, stochastic.
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