EECS 343: Midterm Exam Sample

From introductory concepts to virtual memory.

Fall 2014

Name (netid): John Yossarian (jyo022)

Some words of advice:

e Read all questions first.
e Start from the easiest one and leave the harder ones for later.
e Approximate results are almost always a valid answer; for sure | do not need 5-decimal precision answers!

e Write clearly; if | can’t read it, | can’t grade it.

Question Total Credited
10

15

20

10

15

10

20

extra 15
extra 15
Total 100 (130)

© 00 3O Ut i W N+~

Good luck!

EECS 343 Fall '14 - Midterm Name (netid): John Yossarian (jyo022)

Problems

1. (10 points) Why is the process table needed in a timesharing system? Is it also needed in a computer
systems in which only one process exists (taking over the entire machine until it is finished)?

Answer: The process table is used to keep, for every process in the system, all information that must be
saved when the process is switched from running to ready or blocked state, so that it can be re-started later
as if nothing had happend. Now, if there were only one process that is never context-switched out, then a
process table would not be that useful.

2. (15 points) When an interrupt or a system call transfers control to the operating system, a kernel stack
area separate from the stack of the interrupted process is generally used. Why?

Answer: There are several reasons for using a separate stack for the kernel. Two of them are as follows.
First, you do not want the operating system to crash because a poorly written user program does not allow
for enough stack space. Second, if the kernel leaves stack data in a user program’s memory space upon
return from a system call, a malicious user might be able to use this data to find out information about
other processes.

3. (20 points) Consider the following preemptive priority-scheduling algorithm based on dynamically changing
priorities. Larger priority numbers imply higher priority. When a process is waiting for the CPU (in the
ready queue, but not running), its priority changes at a rate «; when it is running, its priority changes at a
rate 5. All processes are given a priority of 0 when they enter the ready queue. The parameters « and 3
can be set to give many different scheduling algorithms.

(a) What is the algorithm that result from g > a > 07?
(b) What is the algorithm that result from a < 8 < 07

Answer: Given that processes start with priority 0, the only interesting rates are additives (i.e. p; =
pi—1 + « and p; = p;_1 + B). the first one is then FCFS and the second one is LCFS. You can easily see
this with a simple example using « =1 and 8 = 2 and @« = —2 and 3 = —1 and processes that A, B and
C arriving at times 2, 0 and 1 and with burst times of 3, 2 and 4, respectively.

4. (10 points) Consider a page reference string for a process with a working set of size M, initially all empty.
The page reference string is of length P with N distinct page numbers in it. For any page replacement
algorithm,

(a) What is a lower bound on the number of page faults?

(b) What is an upper bound on the number of page faults?

Answer:
(a) N
(b) P
5. (15 points) If FIFO page replacement is used with four page frames and eight pages, how many page

faults will occur with the reference string 0172327103 if the four frames are initially empty? Now repeat
this problem for LRU.

EECS 343 Fall '14 - Midterm Name (netid): John Yossarian (jyo022)

Answer: FIFO 6, LRU 7

6. (10 points) When segmentation and paging are both being used, as in MULTICS, first the segment
descriptor must be looked up, then the page descriptor. Does the TLB also work this way, with two levels
of lookup?

Answer: No. The search key uses both the segment number and the virtual page number, so the exact
page can be found in a single match.

7. (20 points) Consider a demand-paging system with the following time-measured utilization:

e CPU utilization: 20%
e Paging disk: 97.7%
e Other 1/0 devices: 5%

Which (if any) of the following will (probably) improve CPU utilization? Explain your answer:

(a) Install a faster CPU

(b) Get a bigger paging disk

(c) Increase the degree of multiprogramming

(d) Decrease the degree of multiprogramming

(e) Install more main memory

(f) Install a faster hard disk or multiple controllers with multiple hard disks
(g) Add prepaging to the page fetch algorithm

(h) Increase the page size

Answer: Clearly the system is thrashing. If the level of multiprogramming is reduced (d) or the amount
of memory is increased (e), we could allocate more memory frames to the running processes, the system
would page fault less frequently, the system would page fault less frequently and the CPU utilization would
increase. A faster CPU (a) or bigger disk (b) or prepaging (g) would not do anything since the bottleneck
would still be between the disk and main memory. Increasing the degree of multiprogramming (c) and
increasing the page size (h) would only make things worse, since each process would have fewer frames
available and the page fault rate would increase.

8. (Extra 15 points) In [1], does the author state that is desirable to balance memory before balancing
processor or the other way around? Why?

Answer: Given the impact that thrashing has on service levels, it is highly desirable to first balance
memory, then to balance processor.

9. (Extra 15 points) Another paper-reading related question.

References

[1] P. Denning, “The Working Set Model for Program Behavior,” In Proc. of SOSP, October 1967.

